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On planarity of graphs in 3-manifoIds*

YlNG-QlNG WU

A graph F in a 3-mamfold M îs called planar if ît îs contained in an embedded

2-sphere in M It îs abstractly planar if ît can be embedded into an abstract

2-sphere In [3] Scharlemann and Thompson gave necessary and sufficient conditions

for a graph F to be planar m S3 (see Theorem 3 m section 3) The spécial case

that F has a single vertex was proved by Gordon [1], while the genenc case was
shown [2] to be équivalent to An abstractly planar graph F m S3 îs planar if and

only if both F — e and F je are planar, where e îs a noncycle edge of F Fix an

embedding of F in a 2-sphere F We say that the embedding of F in S3 îs F-planar
if it can be extended to an embedding of F into S3 It turns out that the above resuit

îs équivalent to If both F — e and F le are F-planar, then F îs also F-planar
In this paper, we study the F-plananty of a graph F in a 3-mamfold M, where

F can be an arbitrary surface containing F, or more generally a 2-dimensional cell

complex with F as 1-skeleton An embedding of F in a 3-mamfold M îs called

F-planar if it can be extended to an embedding of F m M We are mterested in the

problem of whether the F-plananty of F îs determined be that of F — e and F&apos;je A
statement parallel to the case of F S2 îs not true in this gênerai setting However

we will show it îs true if F îs a &quot;regular&quot; graph
We first study the tnviahty of cycles This can be considered a spécial case of the

above problem, when the cell complex has only one 2-cell A cycle of F îs a

subgraph C which îs homeomorphic to a circle

DEFINITION Suppose F îs embedded in a 3-mamfold M Then a cycle C of
F là trivial (with respect to (M, F), if it bounds a disk with intenor disjoint from F

In section 2 we prove a theorem about tnviahty of simple cycles Note that if C

îs a cycle of F, and e îs an edge mtersecting C at most once, then C remains a cycle

in both F —e and F je Therefore it makes sensé talking about the tnviahty of C

with respect to (M, F -e) and (M je, F je)

* Partially supportée by NSF Grant DMS 9102633
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THEOREM 1. Suppose F is a graph embedded in a 3-manifold M. Let C be a

cycle in F, and let e be an edge of F with at most one end on C. If C is trivial with

respect to both (M, F —e) and {M je, F je), then it is trivial with respect to (M, F).

A link L in S3 is the unlink if each component of L is a trivial cycle. It turns
out that this is also true for any abstractly planar graphs in a 3-manifold M:

THEOREM 2. An abstractly planar graph F in M is planar if and only if ail
cycles of F are trivial.

We will prove Theorem 2 in Section 3, and use thèse theorems to give an
alternative proof of the Scharlemann-Thompson Theorem.

In Section 4, we study the F-planarity of graphs in arbitrary 3-manifolds M.
Suppose F is a graph in a compact surface F. We assume that dF is either empty
or a subgraph of F. An embedding of F into M is F-planar if it can be extended to
an embedding of F into M. We call the closure of a component of F — F a face of
F. The graph F is called a regular graph in F if each face of F is a disk, and the

intersection of any two faces is connected (or empty). Suppose e is an edge of F
with at least one end in the interior of F. Then both F —e and F je can be

considered as graphs in F in the natural way, so we can talk about the F-planarity
of F — e and F/e. The following theorem is proved in section 4.

THEOREM 5. Suppose F is a regular graph on a surface F, and suppose F is

embedded in a 3-manifold M. Let e be an edge of F with at least one end in Int F. If
both F je and F —e are F-planar, then F is F-planar.

The regularity condition on F is necessary. We will give an example of a graph
F on a torus F that can be embedded into S3, so that both F — e and F je are

F-planar, but F itself is not F-planar.
I would like to thank Marty Scharlemann for some helpful discussion on this

topic, and to the référée for many useful comments.

1. Définitions and préliminaires

Given a graph F in a 3-manifold M, choose a regular neighborhood for each

vertex and each edge of F, so that the disks ôN(v) n N(e) are mutually disjoint for
ail v and e. The union of ail such neighborhoods forms a regular neighborhood
N(F) of F and we define the exterior of F to be E(F) M - Int N(F). For each

vertex v, dénote by ô(v) the punctured sphère dN(v) - [j lntN(e); similarly, for
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each edge e, let ô(e) be the annulus dN(e) - (J Int N(v). Sometimes the graph may
vary, in which case we use ôr(e) and ôr(v) to dénote ô(e) and ô(v), respectively. If
C is a cycle, or more generally a subgraph of F, we use ô(C) to dénote the union
of £(0 with / ranges over ail edges and vertices of C.

For an edge e in T, dénote by F — e the subgraph obtained from F by deleting
the interior of the edge e. If e is not a loop, then F je is a graph in Mje. Dénote by
ê the image of e in T/e. The quotient map n : M -*M/e sends AT(F) to a regular
neighborhood N(F/e) of T/e in M/e, so it induces a homeomorphism £(r) s
£(/7e) M je - Int N{Fje). We identify £(r) with £(1» by this homeomorphism.
Note that Sr/e(ë) Sr(v) vôr(e)vôr(v&apos;) if de v ut/.

If X is a subset of M, dénote the number of components in X by \X\.
We define a simple disk to be a disk D in M which is bounded by a cycle of T,

and has interior disjoint from F. Thus a cycle of F is a trivial cycle if and only if
it bounds a simple disk.

Define a normal structure on N(T) to be a set of line segments {lx \ x e dN(F)}
as foliows: For any vertex v e F and any x e ô(v), let lx be the straight line in
D3 Af(i;) Connecting x to y. If e is not a loop, the closure of
N(e) — (J {lx | jc e (J &lt;5(i;)} has a product structure e xD2 such that for
x e 3e x ôD2, the /x defined above is the line between x and a point in de x 0. Now
for any x e p x dD2 with p e e, let lx be the line Connecting x to /? x 0. If e is a loop,
iV(e) — (J {/v | x e (J (5(V)} is homeomorphic to e x D2/de x 0, so we can define lx in
the same way as above. For any p e e, p x D2 is called a meridian disk of F (or e)

at /?, and p x ôD2 is called a meridian of T.

Suppose P is a surface in E(F). The normal extension D of P is the union of P
and the lines lx with x e P ndN(F). If P is a properly embedded disk in E(F)9 and

C is a cycle of F such that P intersects any meridian of C exactly once, and is

disjoint from the other meridians of T, then D is a dise with ÔD C. A surface S

in M with 35 in F is called in normal position if S is the normal extension of
S nE(F). The following lemma is useful in modifying disks to make their interiors

disjoint.

LEMMA 1.1. Suppose /),,.. Dn are simple disks in M with mutually disjoint
interiors. Suppose C is a trivial cycle, and C nDt is connectedfor ail i. Then C bounds

a simple disk D with interior disjoint from Dt for ail i.

Proof By an isotopy we may assume Dx ,...,£&gt;„ are in normal position. Let

Pt=Dtn E(F). Choose a simple disk D in normal position and bounded by C so

that P =DnE(F) is transverse to Pn and |Pn((J P,)| is minimal. Let A be the

closure of Int D n((J Dt). Since AnN(F) consists of lines lx with x g ôPn(\J Pt),

we know that A is the union of some circles which may intersect F at one point, and
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some arcs with différent endpoints on F. Thèse circles and arcs might intersect on
F, but are otherwise disjoint. If A has some circles, choose a circle a which is

innermost in some Dn and let A and At be the disks it bounds in D and Dt
respectively. Then (D — A)uAt can be veldD isotoped into a disk £&gt;&apos; with
|D&apos;n((J i&gt;l)|&lt;|i&gt;n((J Pt)\. If A has no circles but has some arcs, let j8 be an arc
in A which is outermost in the sensé that there is an arc y in some CndDl9 such

that P uy bounds a disk At in Dt with Int At nD 0. (This is possible because of
the assumption that C ndD, is connected for ail i). Let A be the disk in D with
dA dAt /?uy. Then a perturbation of (D — A)uAt produces a disk /)&apos; with
|/&gt;&apos;n((J/&gt;I)|&lt;|/&gt;n(U/&gt;l)|. By the minimality of \Pn([j Pt)\, neither case can
happen. Therefore A 0.

In section 3 we will need some handle addition lemmas. Let F be a surface on
the boundary of a 3-manifold M, and let / be a simple loop on F. Dénote by
x(M, J) the manifold obtained from M by attacking a 2-handle along /, that is,

t(M,/) =Mu(D1 x D2), where D1 x dD2 is identified with a regular neighbor-
hood N(J) of J in F. Dénote by (t(F, /) the surface (F - N(J))u(ôDl x D2). We
hâve the following generalized handle addition lemma.

LEMMA 1.2. Suppose S is a surface on the boundary of a 3-manifold M. Let y

be a \-manifold on S such that S — y is compressible, and let J be a circle in S disjoint
from y. If g(S, J) is compressible in t(M, J) with D&apos; a compressing disk, then S — J
has a compressing disk D such that dD ny adD&apos;ny.

This was implied in the proof of [4, Thm 1]. It was shown that under the

assumption we hâve \dD ny\ &lt;&gt; \dD&apos;ny\, but the argument there has actually
proved that dD ny aôD&apos;ny.

2. Trivial cycles in a graph

Given a cycle C in F a M, and a noncycle edge e of F, if e does not hâve both

endpoints on C, then C remains a cycle in F - e and F je. The following theorem
shows that the triviality of C with respect to (Af, F) is determined by that with
respect to (M, F -e) and (Mje, F je).

THEOREM 1. Suppose F is a graph embedded in a 3-manifold M. Let C be a

simple cycle in F, and let e be an edge of F with at most one end on C. If C is trivial
with respect to both (M, F —e) and {Mje, F/e), then it is trivial with respect to

(M, F).
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Proof The Theorem îs simple when C îs disjoint from e Let n M-+M/e
be the quotient map By assumption C bounds a disk D m M/e with intenor
disjoint from F/e Since e îs disjoint from C, n~\D) îs a simple disk in Û bounded
by C

Now we assume e has exactly one end on C Since C îs trivial with respect to
(M, T - e), there îs a disk D m M such that 3/) C, and Int D nf Int D ne
Consider E(r) M - Int N(r) The surface P DnE(r) îs a planar surface

satisfying
(*1) ÔP consists of circles d0, d,, dn, where d,, dn are mendians of e

on dN(e), and d0 îs a curve on £(C) intersecting each mendian of C at a

single point
Conversely, any planar surface P in £(jT) satisfying (*1) can be extended to a disk
D in M such that ôD C and Int D nT lnt D ne

Now consider C as a cycle m F/e Since C îs trivial with respect to (M/e, F/e),
there îs a disk Z)&apos; in M/e bounded by C with Int /)&apos; disjoint from F/e The surface

g Df nE(F) îs a disk satisfying
(*2) &lt;3(2 is a curve on dN(C\je), which intersects each mendan of C at a single

point
Conversely, any such disk Q can be extended to a disk /)&apos; m M/e with dD&apos; C and

Int Z&gt;&apos;n(J»=0

We choose P and Q to satisfy (*1) and (*2), as well as the following gênerai

position and minimality conditions

(*3) n \P nô(e)\ is minimal, and k |0 o&lt;5(e)| is minimal

(*4) P intersects Q transversely, and |Png| is minimal subject to (*3)
(*5) PnQnô(e&apos;) 0 for each edge ef in C

(*5) is possible because by (*1) and (*2) each of Pnb(ef) and Qnô(e&apos;) is an

essential arc in ô{e&apos;), so we can isotop Q to make them disjoint Since k is minimal,
Q n ô(e) consists of parallel essential arcs So we may further assume

(*6) each component of Qnô(e) intersects each ô; at a single point,

If either n 0 or k 0, then an extension of P or Q is a dise D in M with
dD C and Int D n F 0, so C is trivial with respect to (M, F), as required

Hence we assume both n and k are positive Label the components of dP so that,

begmning with a point on ôN(C)9 an arc of dQnô(e) intersects 3,,32, d«

successively

A point of SP n dQ is labeled / if ît is a point on d, Thus any arc on P n g has

a label on each of îts end points

LEMMA 2 1 A component ofPnQ in P is an arc which is either essential or has

both ends on ô0
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Proof. If P n Q has some circle components, a 2-surgery of P along some disk
in Q bounded by an innermost circle will reduce |Png|. Therefore PnQ consists

of arcs only.
If P nQ has some arc which is inessential in P and has both ends on some 3,

with j 7^ 0, let a be an outermost one, so there is an arc j8 on 3, such that a u /?

bounds a disk A in P with interior disjoint from Q. A boundary compression of Q
along A produces two disks, one of which satisfies (*2), but has less components of
intersection with ô(e), contradicting the minimality of k.

LEMMA 2.2. There is a label i0 &gt; 0 such that no arc of P nQ has both ends

labeled i0.

Proof. Otherwise choose an a, for each / 1,...,«, with dot, on ôr Then the
innermost such a, will be an inessential arc on P.

Examine the order in which the indices appear on ôQ. By (*6), if we delete ail
the 0 indices, the séquence is 1,2,...,/*, «,..., 2, 1 repeated k/2 times. The 0

indices appear only possibly between two successive l&apos;s.

LEMMA 2.3. An arc oc of PnQ which is outermost in Q is of one of the

following types.

Type (i): a has both ends labeled 1 or both ends labeled n.

Type (ii): a has one end labeled 1 and the othere labeled 0.

Proof. Note that if i,j are successive labels on ôQ, then |i — j\ &lt; 1. Therefore if
a is not of Type (i) or (ii), then the labels of a are either {0, 0} or {i, / -h 1} for some

i &gt;0. Let P be the arc on ôQ so that au/? bounds a disk A in Q with interior
disjoint from P.

Suppose a has label 0 on both endpoints. Then da divides d0 c dP into two arcs
d&apos;o and 3q, one of which, say Ôq, has the property that it intersects a meridian of C

if and only if j? does. So 3qUJ3 intersects any meridian of C at a single point. Let
P] be the part of P bounded by ôfQKja. Then P&apos; PxuA satisfies (*1). Moreover,
\dP&apos;\ ^ \dP\, and a perturbation of P&apos; has less components of intersection with Q
than P does. This is impossible by (*4).

Now suppose a has labels {/, i + 1} for some / &gt; 0. Then the normal extension
of A is a disk A&apos; in M such that 3J/ a&apos;ujS/, where a&apos;cD, fi&apos;ae, and

Int A&apos;nF 0. So we can isotop /T through J&apos;to reduce |2) ne\. This contradicts
the minimality of n.

Note that the proof does not apply to the case when the labels of a are {0, 1},
since part of P&apos; may be on C.
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LEMMA 2.4. There are at least two outermost edges a,, a2 of Type (ii).

Proof. By Lemma 2.2, there is an index i0 such that no arc in PnQ has both
ends labeled i0. Let A be the set of arcs in PnQ with one end labeled i0. Let A be

a disk in Q such that y BA — dQ is an arc in A, and A contains no other arcs in
A. Note that there are at least two such zl&apos;s. So we need only to show that there is

at least one type (ii) outermost edge in A.

Suppose there is no outermost arc of type (ii) in A. Then by Lemma 2.3, each

outermost arc in A is of type (i), so the labels of the arc are either {1, 1} or {/i, «}.
If there are two such outermost arcs, then the index i0 appears between them, which
is impossible by the définition of A. So there is only one outermost arc on A. This
implies that the arcs of PnQ are ail parallel in A. It is now clear that every arc in
A has the same index on both ends. Especially, both ends of y are labeled /0,

contradicting the choice of i0.

Now let Au A2 be two disks in Q such that ôAt — ôQ is an outermost arc of type
(ii). Then the normal extension of zl, is a disk A \ in M with BA \ a, u /?, u yn where

a, is an arc in D Connecting a vertex vt of C to the first intersection x of e with Int /),
pt is an arc on e Connecting x to vo e nC, and yt is an arc on C Connecting v0 to

vt. (yt may degenerate to a single point.) Since BQ intersects a meridan of C at a

single point, the two arcs y{ and y2 cannot hâve an edge in common, and hence

intersect only at v0. Thus A \ n A 2 /?, j32, so A A \ u A 2 is a disk in M. Let Z),

be the part of D bounded by dA, and let D2 be (D — Dx) \jA pushed off pl — v0.

Then D2 is a disk in M with dD2 C, and |Int D2ne\ ^ n - 1. This contradicts the

minimality of n |Int D n e\.

3. Planar graphs in manifolds

In this section we will discuss the planarity of graphs in a 3-manifold. Suppose

F is a graph embedded in M. An edge e of F is called a free edge if it is not a cycle,

and one of its endpoints is not incident to any other edges. Clearly, if e is a free

edge, then F is planar in M if and only if F — e is planar. Therefore, without loss

of generality we will always assume that F has no free edges.

We need the following définitions: A graph F in M is called split if there is a

2-sphere S in M which is disjoint from T, and séparâtes M into M, and M2, such

that both Mt contain part of F. It is called decomposable if there is a vertex v e F
such that ô(v) has a compressing disk D in E(F) which is separating. The following
lemma and its proof is similar to that of [3, Lemma 1.3].

LEMMA 3.1. Let F be a split or decomposable graph in a 3-manifold. If ail

proper subgraphs of F are planar, then F is planar.
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Proof. First assume F is split. Let S be a 2-sphere disjoint from F, separating M
into Mj and Àf2, such that r, MtnF are proper subgraphs of T. By assumption,
there are 2-spheres S, a M such that f,cSr By 2-surgery along disks bounded by
innermost circles of S, n S, we can delete ail intersections of St with S, and get
S, a Mt. Tubing 5, to S2 gives a 2-sphere containing T.

Now suppose F is decomposable, and let D be a separating compressing disk of
ô(v) in E(F). It can be extended to a 2-sphere 5 in M so that SnT {?;}, and S

séparâtes M into M, and M2. Let Ft F nMt. Since Tz is planar, there is a 2-disk

D, in E M — Int iV(i/) which contains T, n is. By surgery along disks bounded by
innermost circles or outermost arcs of D n£&gt;, in Z), we can assume DtnD 0.
Gluing a band on ô(v) to DxuD2 produces a single disk containing FnE, which

can be extended to a sphère in M containing F.

Deflne a eut point of T to be a vertex t; such that F — v has more components
than F. Let {vu vk} be the eut points of F. Then there is a component X of
F — {vx, vk} which has the property that Fl (the closure of X) contains at
most one of thèse vt ; for otherwise one can fînd a simple loop in F passing through
some of the £&gt;/s, contradicting the définition of cutting points. This subgraph Fx is

connected, and has no eut point of its own. (It is possible that Fx F.)
Suppose F is abstractly planar. Embed Fx into a 2-sphere S. Since Fx is

connected and has no eut points of its own, the closure of each components of
S — F] is a disk. Let Do, D{,.. Dn be thèse disks. If Fx contains a eut point v of
T, choose Do to contain v. Let D S — Int Do.

Dénote by F\ the closure of F ~ Fx. Then FcxnFx {v} or 0, depending on
whether Fx contains a eut point v of F. Embed F\ into a disk D&apos; so that
dD&apos;&apos;r\F\ {v} or 0 accordingly. Glue D and D&apos;together, we get an embedding of
F into S2 DvD&apos;. We fix this embedding.

Recall that /),,..., Dn are the closures of the components of D — Fx.

LEMMA 3.2. We can number the disks so that Bk Dxw -uDk is a disk for
ail k.

Proof. If Dt is a disk such that DxnDt is not connected, then Dx\jDt is not
simply connected, so there is a région Q in D bounded by a boundary component
of Dx uDr Q is the union of some D/s. Choose / so that Q contains a minimal
number of thèse disks. Since Dt is a disk, dQ is not completely contained in ôDn so

there is a disk D} in Q which has an edge in common with Dx. If DxuDj is not
simply connected, then it bounds a région fl&apos;cfl, contradicting the choice of Dr
Hence we can name this D} as D2. Generally, if Bk Z&gt;, u • • • uDk is a disk, then

by the same argument we can find Dk+X so that BknDk+x is an arc, and hence

BkuDk+x is a disk. The Lemma now follows by induction.
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A link in S3 is a trivial link if and only if ail of its components are trivial. The

following theorem shows that this is also true for graphs in 3-manifolds.

THEOREM 2. An abstractly planar graph F in M is planar if and only if ail
cycles of F are trivial.

Proof We want to show that the inclusion F-+M can be extended to an
embedding of FkjBh into M. This is done by induction. By assumption, 8D{
bounds a disk with interior disjoint from F, so we hâve an embedding of fuZ),
into M. Generally, suppose we hâve extended F -&gt; M to an embedding
ik : F KjBk -&gt;M. By Lemma 3.2, Bk is a disk, and BknDk+l is an arc. Consider the

graph F&apos; — F — Int Bk a M. Then ôBk and dDk+{ are cycles in F&apos; which are trivial
with respect to (M, F&apos;). So by Lemma 1.1, dDk+l bounds a disk Ak+X which has

interior disjoint from F\jBk. Now we can deflne ik+l : FuD,u• • uDk+ { -+M
so that Dk + l is mapped to Ak+Ï. This complètes the induction.

It foliows that the image of Bn is an embedded disk A in M so that A n F Fl,
and dA a r,. When F Fl this implies F is planar. When F * Fu the set Fx kjF\
is either empty or a eut point, which implies F is split or decomposable. By
induction we may assume that ail proper subgraphs of F are planar. The theorem

now follows from Lemma 3.1.

As an application of the above theorems, we give an alternative proof of a

theorem of Scharlemann and Thompson [3].

THEOREM 3. A finite graph F a S3 is planar if and only if
(a) r is abstractly planar¦;

(b) every graph properly contained in F is planar;
(c) nl(E(F)) is a free group.

Proof Since nx(E(F)) is free, E(F) is the connected sum of some handlebodies.

If r is not connected, then it is split, and the theorem follows from Lemma 3.1. So

we assume r is connected. When F has only one vertex, the theorem was proved in
[1], so we assume r has some noncycle edge e. By induction on the number of edges

in r, we may assume that F je is planar for ail such e.

According to Theroem 2, we need only to show that each cycle of F is trivial.
Let C by a cycle in F. There are several cases.

CASE 1 (C does not contain ail vertices of F). In this case there is some

noncycle edge e which has at most one endpoint on C. Since both F — e and F je

are planar, C is trivial with respect to both (S3, F -e) and (S3/e9 F/e). By Theorem
1, C is also trivial with respect to (S3, F).
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CASE 2 (F has some cycle edges). A cycle edge cannot contain ail vertices of F
because F has more than one vertex. By Case 1, a cycle edge is a trivial cycle, so
it bounds a simple disk. It follows that F is decomposable, and the Theorem follows
from Lemma 3.1.

In the remaining cases, ail edges not in C are noncycle edges with both ends on
C. Let e be such an edge. Its endpoints divide C into two arcs C, and C2.

CASE 3 (There is an edge ef which has one endpoint on each of IntC,).
Consider the cycle C, \je. It is incident to just one endpoint of e\ By Case 1, C, \je
bounds a disk Dt with interior disjoint from F. By Lemma 1.1, we can choose the

D, to hâve disjoint interiors. Thus D Dx uZ&gt;2 can be modified off e to become a

simple disk bounded by C.

CASE 4 (No such edges e&apos; as in Case 3 exist). Note that in this case ë, the

image of e in F/e, is a eut point of F/e, and hence a decomposing point because F je
is planar. We want to apply Lemma 1.2 to our situation. To do this, let M E(F),
and let F dN(C u e) — Int N(F). This is a punctured genus 2 surface, with one
hole for each end of each edge which is not inCue. Let ex,..., ek be the edges and

v{,.. vk the vertices of C. Dénote by mx a meridian of et, and by / a meridian of
e. Let y =m,u&gt; • -umk.

F —y is isotopic to ô(e) vô{vx) u- • -u^) ôr/e(ê) u((J {ô(v,) | vt$de}).
Since ê is a decomposing point of F/e, ôr/e(ê) is compressible in E(F). So F — y is

compressible.
Consider x(E(F), J). This is the manifold obtained from E{F) by attaching a

2-handle along a meridian of e, so it is actually the exterior of F — e. The surface
&lt;t(F, /) is the punctured torus dN(C) — Int N(F — e). Since F — e is planar, C
bounds a disk in M, which gives rise to a compressing disk D&apos; of a{F,J) in

J£(r — e), so that ZV intersects each m, at a single point. By Lemma 1.2, F — J has

a compressing disk D in £(r) intersecting each m7 at most once. Since F — 7 is a

punctured torus, and m, are meridians, if D is disjoint from some m,, it is disjoint
from ail mJ9 so it will be a compressing disk of some ô(v{), which implies F is

decomposable, and the Theorem follows. So we assume D intersects each w7 at one

point. Then we can modify D so that dD intersects any meridian of C at a single

point. The normal extension A of D is now a simple disk bounded by C.

4. F-planarity of graphs

Let F be a finite 2-dimensional cell complex with a connected graph F as its
1-skeleton. F is called a regular graph in F if the attaching map of each face (i.e.
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2-cell) is a cycle in F, and the intersection of any two faces is connected. Suppose
F is embedded in a 3-manifold M. Then F is called F-planar if it can be extended

to an embedding of F in M. Suppose e is an edge of F which is not contained in
the boundary of any faces of F. Then/— Int e has F — e as 1-skeleton, and Fje has

F je as 1-skeleton. To simplify notations, we call F je (resp. F — e) F-planar if it is

(F/e)-planar (resp. (F — Int e)-planar). The following is a generalization of Theo-

rem 1.

THEOREM 4. Suppose F is a regular 2-complex with F as its \-skeletony and

suppose F is embedded in a 3-manifold M. Let e be a noncycle edge of F such that
both F —e and F je are F-planar. Ife intersects each face of F at most at one of its
endpoints, then G is F-planar.

Proof This follows from Theorem 1 and Lemma 1.1 by induction on the

number of faces in F.

The most interesting case of F-planarity is when F is a surface. It was shown in
[2] that Theorem 3 is équivalent to the following:

THEOREM y. Let F be an abstractly planar graph in S3 (or R3). If F has a

noncycle edge e such that both F — e and F /e are planar, then F is planar.

The following is a similar resuit for regular graphs in an arbitrary compact
surface F. Suppose F is such a graph, and e is a noncycle edge which has at least

one endpoint in the interior of F. Since Fje s F, both F — e and F je can be

considered naturally as a graph in F.

THEOREM 5. Suppose F is a regular graph on a surface F, and suppose F is

embedded in a 3-manifold M. Let e be a noncycle edge of F with at least one end in

Int F. If both Fie and F — e are F-planar, then F is F-planar.

Proof We may assume that each end of e has valence at least 3, otherwise F is

hemeomorphic to F je, and the planarity of F follows from that of F je. Especially,

an end of e in Int F is incident to at least 3 faces of F.

Dénote by D\ D&quot; the two disks incident to e. Consider the 2-complex
G F — Int D&apos;u Int D&quot;. First suppose e has both ends on some face D of G, then

D contains ôD — e because D r\D&apos; is connected. Similarly, D contains èD&quot; — e. By

assumption dD is a cycle, so dD ô^D&apos;kjD&quot;). This is now a very spécial case: F has

3 edges and 2 vertices, and F is a 2-sphere. Since F je is F-planar, F je, and hence

F, is contained in a 3-ball. Therefore the theorem follows from Theorem 3&apos;.
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Let D{,..., Dn be the faces of G and consider G as a subset of M. Since Dt
intersects e at most once, it remains a disk in M je. By assumption F le is F-planar
in Mje, so ÔD &apos;je bounds a disk A in M le with Int A nF/e 0. Since ôDr nDt is

connected, dA nDt is connected for ail i 1,..., «. By Lemma 1.1 we can choose
A so that Int A r\Dt 0 for / 1,..., n. Let Q be the disk A nE(F/
e) A nE(F) in F(F). Q is disjoint from (J Dn and 5g intersects each meridian
of dD&apos; — e at a single point. Let y be an end of e in Int F. Isotop Q so that
|dgn&lt;5(e)| is minimal. Then A dQnô(v) consists of arcs on the punctured
sphère ô(v) which are ail essential. As the circle dQ intersects a meridian of
dD&apos; — e dit a single point, there is an arc a e A with exactly one end on the circle

/ &lt;5(t;) nô(e), while ail the other arcs in A hâve both ends on /. The arcs in A,
being part of dQ, are disjoint from the disks Du ,Dn. Because F is a surface,
and v is in Int F, thèse disks eut ô(v) into an annulus. It follows that ail arcs in
A — {a} are inessential, which is absurd unless a is the only arc in A. Therefore
ÔQ intersects a meridian of e at a single point. The normal extension A

&apos; of Q is

now a disk bounded by dD\ with interior disjoint from G. Similarly, there is a

disk A&quot; bounded by dD&quot;, such that Int A&quot;nG 0, and by Lemma 1.1, it can be

chosen so that A&apos;c\A&quot; e. The surface G\jA&apos;kjA&quot; is now an embedding of F in
M.

The regularity condition in Theorem 4 is necessary. Consider the graph F on a

torus F as shown in Figure 1. Embedding F into S3 in the trivial way, we get a

graph Fx which is F-planar in S3. Let F2 be the embedding of F in S3 as shown in

Figure 2, obtained from Fx by interchanging a crossing in Figure 1. Let e be the

edge shown in the figure. It is easy to see that F2 — e and F2/e are isotopic to

Fx—e and FJe respectively, so they are F-planar in S3. One can also isotop F2 so

that it lies on the trivial torus. But F2 is not F-planar. To see this, one may need

the following fact.

Figure 1
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Figure 2

LEMMA 4.1. Suppose F is a graph in S3, and C is a trivial cycle with respect to
(S3, F). If F nE(C) is connectée, then the simple disk D bounded by C is unique up
to ambient isotopy fixing F.

Label the vertices of F2 as in Figure 2. Dénote by C(/,,...,4) the cycle

successively passing through the vertices labeled ix,..., ik. Suppose F2 is F-planar.
Then C(l, 2, 3, 4) and C(l, 5, 3, 6) should bound simple disks with disjoint interi-
ors. By Lemma 4.1, the disks are unique up to isotopy, so we can take the disk D
bounded by C(l,2, 3, 4) to be the shaded région in Figure 2. Now C(l,5, 3, 6)

cannot bound a disk with interior disjoint from r2u£), because it has linking
number 1 with some curve in F2uD — C(l, 5, 3, 6).
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