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Groups with no infinité perfect subgroups and aspherical 2-complexes

MlCHEAL N DYER

Abstract The purpose of this paper îs to generalize a theorem of J F Adams He showed in [A] that
if X îs a subcomplex of an aspherical 2-complex and the fundamental group G of A&apos; has no non-trivial
perfect subgroups, then X\s aspherical We weaken the hypothesis on G to &quot;no infinité perfect subgroups

&quot;

1. Introduction

In [W], J. H. C. Whitehead, asked the following question: Is a subcomplex of an

aspherical 2-complex aspherical!
A [G, 2]-complex X is a connected two-dimensional CW-complex with

fundamental group 7r,X £ G. If N is a subgroup of nxX, let XN dénote the covering of X
corresponding to N. For any group G, let HtG dénote the z&apos;th homology of G with
coefficients in the integers Z. A group G is said to be perfect if the abelianization
HxG of G is trivial; G is superperfect if Hx G H2G 0.

A [G, 2]-complex X is aspherical iff its second homotopy group n2X vanishes. If
A&quot; is a [G, 2]-complex which is a subcomplex of an aspherical 2-complex, then J. F.
Adams showed in [A] that X is aspherical provided G has no non-trivial perfect
subgroups. In this note we show that X is aspherical provided G is flnitely presented
and has no infinité perfect subgroups.

The idea of the proof is to show that if X is a [G, 2]-complex and G is a flnitely
presented group which has a flnite, non-trivial, normal, superperfect subgroup P
such that Q G/P has cohomological dimension 1 or 2, then the Hurewicz
homomorphism n2X -+H2XP is non-trivial.

2. Basic définitions

If X is a connected 2-complex and N is a subgroup of 7^ X then X is N-Cockcroft
if the Hurewicz homomorphism n2X n2{XN) -&gt; H2(XN) is trivial. The N-Cockcroft
property has been extensively studied in [Bo, BD, BDS, D, GH, H].

Let N be a subgroup of G. Then we say that G is N-Cockcroft if there is a

[G, 2]-complex X and an isomorphism cp : G -+7r, X such that X is cpiV-Cockcroft.
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The following is the main theorem of this paper.

2.1 THEOREM. Let P be a non-trivial, finite, superperfect, normal subgroup of
afinitely présentée group G such that Q G/P fias cohomological dimension 1 or 2.

Then G is not P-Cockcroft.

Note that the theorem is false if Q 1. In this case, G P is finite and

superperfect. Let G be the binary icosahedral group. In this case, G admits a

présentation with 2 generators and 2 relators. The realization of this présentation as

a [G, 2]-complex has H2X 0 HXX, so X is P-Cockcroft.
If G is a group, the maximal perfect subgroup PG of G is defîned as the normal

subgroup of G generated by ail perfect subgroups; it is also the intersection of the

(transfinite) derived séries of G.

2.2 COROLLARY. Let G be a finitely présentée group with maximal perfect
subgroup PG finite. Then any [G, 2]-complex X which is the subcomplex of an

aspherical 2-complex is aspherical

Proof If G is finite, the resuit is well known (see [BD]). Hence we will assume

that Q is infinité. If the [G, 2]-complex X is a subcomplex of an aspherical
2-complex and X is not aspherical, then by the main theorem of [BDS], we see that
there must exist a superperfect, normal, non-trivial subgroup P of G such that G is

P-Cockcroft and the quotient Q has cd Q &lt; 2. The group Q is infinité, so the

cohomological dimension of Q is 1 or 2. But the maximal perfect subgroup of G is

finite, so P is infinité. The theorem then says that G cannot be P-Cockcroft. Thus

X must be aspherical.

3. Two lemmas

In this section we will prove two lemmas preliminary to giving a proof of the

theorem.
Let G be a group and let C be a projective ZG-resolution of the trivial ZG-

module Z. To each integer / ^0 we hâve an associated kernel Kt ker {dl : Cl~^Cl x}

(C_, Z). For any [G, 2]-complex X, let X be the universal covering of X. Then

C*X, the cellular chain complex of X, can be thought of as a partial resolution

(of length two) of free left ZG-modules. For any [G, 2]-complex X, the
kernel Kx ker {dx : CXX-+ C0X} is called the relation module determined by X.

For any left ZG-module M, we let MG dénote the subgroup of éléments fixed by
the action of G; we let MG Z ®zc? M — M/IG • M (IG is the augmentation idéal
in IG) be M with the G-action killed.
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3.1 LEMMA. If P is a finite, normal subgroup of a group G and Q G/P, then

//&apos;(G, ZG) ^ Hl(G, ZQ) ^ Hl(Q, ZQ) for ail i &gt; 0. The first isomorphism is induced

by ZG -&gt; ZQ and the second by G-+Q.

Proof. Because P is finite, we hâve HJ(P, ZG) 0 for j &gt; 0. By using the

Lyndon-Hochschield-Serre spectral séquence, we see that Hl(G,ZG)
HXQ.IG*) for i&gt;0. But clearly ZGP ^ ®aeQ (ZP)P ^ ®aeQ (Z)a ^ ZQ as a

ZQ -module.

3.2 LEMMA. Let X be a [G, 2]-complex and suppose P is a superperfect, normal
subgroup ofnxXsuch that the Hurewicz mapfrom n2X n2XP -? H2XP is trivial (i.e.,
G is P-Cockcroft with respect to X). Let Kx ker {5, : C,I-^COI} be the relation
module determined by X, where X is the universal covering of X. Then

Z ®ZP K{ ker {dx (XP) : Cx(XP) -+ C0(XP)} ^ Z ®ZP C2X is a relation module for
Q=(nxX)/P. Furthermore, the surjection G^Q induces an isomorphism

®ZPKX) s H2(Q, Z ®ZPKX).

Proof Because P is a subgroup of nxX we hâve ClXP^Z®ZP CtX. That P is

superperfect and G is P-Cockcroft with respect to X implies that

0-&gt; C2XP -&gt; CXXP -&gt; C0XP -»Z-»0

is an exact séquence of free Zg-modules (a free resolution of the trivial module Z).
Tensonng the exact séquence (of ZG-modules) Q-&gt;n2X-&gt;C2X-+KX -»0 with
Z ®ZP~ and using the fact that X is P-Cockcroft, we see that Z ®ZP Kx ^ C2XP.

The isomorphism H2(G, Z ®ZP Kx) ^ H2(Q, Z ®ZP Kx) follows from the LHS
spectral séquence for the extension

1-P-G-+Ô-+1

together with the facts that P is superperfect and that Z ®ZP Kx is a trivial
ZP-module.

4. Proof of Theorem 2.1

From now on we assume that X is a [G, 2]-complex with fundamental group
equal to G. We let P be a finite, superperfect, normal subgroup of G so that the

Hurewicz map n2X -+H2XP is trivial. We let Q — G/P hâve cohomological dimension

1 or 2 and Kx be the relation module determined by X. The proof by
contradiction is given in a séries of steps as follows.
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STEP 1 is devoted to the proof of the following claim. Let p be the order of the

finite group P and consider the inclusion Kx -&gt;Z (g)z/&gt; Kx KXP.

CLAIM. If P is superperfect, then the image of Kx inside Z®ZPKX is

p -Z ®ZpK\-

Proof of the Claim. Let F2 -&gt; F, -+ ZP -? Z -? 0 be a partial resolution of Z over
ZP by finitely generated free modules. Let Lx dénote the kernel of the map
ôx : Fx —? ZP. Then the following diagram commutes:

/if
1

L

/ y&apos;

\P

The group P is finite implies that the vertical arrows are monomorphisms. The two
outer vertical arrows are clearly multiplication by p because the modules are free.

The group P is perfect implies that ôlP and df are epimorphisms and hence

L\P FlP and Lf Ff. Thus the interior vertical arrow has image which is

multiplication by p. Now one uses Schanuel&apos;s lemma and a simple argument to
show that the same is true of K{ -^&gt;KlP. This complètes the proof of the claim.

Hence the Zg-module A =Z ®ZFKx\KPX Z ®ZPKx\p • Z ®PKx. If we write
Z &lt;g&gt;ZP Kx ^ Zga =Z ®z/, C2X; this follows from lemma 3.2), then ^ ^ Z^g0&apos;.

STEP 2. The following diagram is commutative, with top and vertical séquences
exact:

0

H\Q, A) &gt; H\Q, Kf) H\Q, Z ®ZP AT,) &gt; H\Q, A) &gt; H\Q, Kpx)

[
H2(G,Kt) &gt;H2{G,Z®lPKx) 0 (4.1)

I

l
0
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The horizontal maps/and/&apos; are induced by Kx-+Z ®ZPKX and Kx -&gt;Z ®ZPKX,
respectively. By using a dimension shifting argument one shows that

H2(P,Kx)^Zp has trivial Zg-action. The fact that p-A=0 shows that

p • H2(Q, A) 0 also. The vertical séquences corne from the LHS-spectral séquence.
The left-most vertical séquence is exact, because cd Q &lt; 2 and H\P, Kx) =0 (this
is a conséquence of the finiteness of P). The fact that H2(P, Z ®ZP Kx) 0 follows
because P is superperfect and Z ®ZP Kx is a trivial ZP-module. We observe that the

map /&apos; is an isomorphism modulo torsion; that is to say, the kernel and the

cokernel of /&apos; are torsion groups. The group H3(Q, Kx) 0 because Q is two
dimensional. By lemma 3.2, Z ®ZP Kx is a free Zg-module, soy is an isomorphism,
by lemma 3.1.

STEP 3. Let M be any ZG-module and p{M) : M-+Z ®ZPM be the natural
surjection. We will show that p(Kx) : Kx -&gt;Z ®ZPKX induces a split epimorphism

/ : //2(G, Kx -&gt; H\G, Z®ZPKX

We will show that there is a map s : H2(G, Z®ZP KX)-+H\G, Kx) such that fs is

an isomorphism.
Now H2(G, C2X) ^H2(G, Z ®ZP Kx), by lemma 3.1; the isomorphism is

induced by p(Kx) d2, where d2 : ZGa C2X-+KX. This last follows because

p(Kl)d2 (\ ® d2)p(C2X). The map 1 ® d2 is an isomorphism because G is P-
Cockcroft and p{C2X) induces an isomorphism on H2(G, — by lemma 3.1. Thus
the map ô2 induces a map g : H2(G, C2X -+H2(G, Kx) whose composite gf is

induced by the natural map ZGa-&gt;ZQa. Thus gf is an isomorphism, again
by 3.1. Hence / is a split epimorphism and the map s can be chosen as

STEP 4. We will show that, if i : H2(G, KO -? H 2(G, Kx is the map in diagram
4.1, then im s im i.

First we observe that, by définition, im s im d2*. Let K2 ker d2 and consider
the long exact séquence arising from the short exact séquence Q-+K2-+
C2X-+Kx-&gt;0;

&gt; H2(G, C2X) -^ H2(G, Kx -» H\G, K2) -&gt; H\G, C2X) 0.

The group //3(G, C2X) 0 by 3.1 and the fact that cd Q &lt; 2 (3.2).
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The commutativity of the diagram below (where we identify H\P, K2) with
H\P, Kx)) shows that im / im d2* im s:

H2(G, KÇ)

H\G, C2X) &gt; H2(G, Ki H\G, K2) 0 (4.2)
I&apos; I&quot;

H\P, KX)Q &gt; H3(P, K2)Q.

STEP 5. We show that Zp®H\Q, ZQ) 0.

The map // (see 4.1) is an isomorphism because ker/nim i ker/nim s 0.

This implies /&apos; =j~lfi is an isomorphism. Thus, H\Q, A)=0 and hence

ZQ) H2(Q, ZpQ) =0.

STEP 6. The contradiction.

Case 1 (Q is free). The same proof above works (by simply reducing the

dimension of the cohomology groups and the kernels by one in 4.1 and 4.2) to show

that Zp ® H\Q, ZQ) 0. But this is impossible because H \Q, ZQ) is known to be

free abelian and non-trivial [Sw, corollary 3.7]. Thus, G is P-Cockcroft and Q free

leads to a contradiction.

Case 2: (cd Q 2). Because P is finite and cd Q 2 we hâve that

Z, ® H2{Q, ZQ) 0 by step 5.

Because G is finitely presented, so is Q. We observe that ([BE], theorem 5.2) Q
is a free product of duality groups of dimension 1 or 2. Let R be one of the factors,
and define D H\Q, ZQ) and E H2(R, ZR). Let q be any prime divisor of p.
The fact that Zp ® D 0 implies that Zq(g)D =0. This in turn implies that

Zq ® E 0. If R is a duality group of dimension 2, we hâve, for any Zq Q -module

M, H2(R,M)^Z®ZR(M®D). But because M is a Zq-module, we hâve

M ®D ^Zq®M ®D 0. Hence, the cohomological dimension of R &lt; 1 over the

ring Zq. This, together with the fact that R is torsion-free, shows that cd R 1.

Hence R is free and so Q is free. This brings us back to case 1. Hence no such group
G can be P-Cockcroft. This finishes the proof of Theorem 2.1.
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