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Hyperbolic volume and mod p homology

Marc Culler1 and Peter B. Shalen1

Abstract If M îs a closed, orientable hyperbohc 3-mamfold such that dimZpi/j(M, Zp) &gt; 5 for some

prime /?, then M contams a hyperbolic bail of radius (log 5)/4 There îs also a related resuit in higher
dimensions

Introduction

In [8, Proposition 5.4] it was shown that if M is an orientable hyperbolic
3-manifold, and if for some prime p the Zp-vector space HX{M\ Zp) has dimension

at least 4, then M contains a bail of radius (log 3)/4. This implies that the volume
of M is greater than 0.11. In this paper we shall prove:

THEOREM A. Let M be a closed, orientable hyperbolic 3-manifold. Suppose that

for some prime p, the dimension of the Zp-vector space HY(M; Zp) is at least 5. Then

M contains a hyperbolic bail of radius (log 5)/4. In particular, the volume of M is

greater than 0.35.

By a hyperbolic bail in a hyperbolic «-manifold M we mean an open subset of
M which is path-isometric to an open bail in hyperbolic «-space H&quot;. The volume
estimate in the theorem can be deduced from the existence of a hyperbolic bail of
radius (log 5)/4 by using density estimâtes for sphere-packings as in [7] (see also [3]).

Theorem 6.1 of this paper asserts that the conclusion of Theorem A remains true
under the hypothesis that any three éléments of nx{M) generate an infinite-index
subgroup of nx{M). The latter hypothesis is actually weaker than that of Theorem

A; this is because, according to [8, Proposition 1.1], if A; is a positive integer and M
is a closed, orientable 3-manifold such that dimz HX{M\ Zp) ^ k -h 2 for some prime

p, then any k éléments of ttj (M) generate an infinite-index: subgroup of nl (M). Thus
Theorem A is in fact a spécial case of Theorem 6.1.

Supported by an NSF grant
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We will also prove a related resuit in higher dimensions. Recall that the rank of
a finitely generated group F is defined to be the minimal cardinality of a generating
set for F. A group F is said to be A:-free, where A: is a non-negative integer, if every
subgroup of F with rank at most k is free. We hâve:

THEOREM B. Let M be a closed hyperbolic manifold of dimension n &gt; 3.

Suppose that nx (M) is 3-free. Then M contains a hyperbolic bail of radius

Iog5
2(n - 1)

*

The first five sections of the paper are devoted to the proof of Theorem B. One

regards the hyperbolic n-manifold M as a quotient Hn/F, where F is a discrète,
torsion-free group of isometries of Hn. For each maximal cyclic subgroup X of F
and each k &gt; 0 one considers the set ZX(X) consisting of ail points of H&quot; that are
moved a distance less than k by some non-trivial élément of X. It is an elementary
observation (Proposition 3.2) that if M contains no hyperbolic bail of radius k/2
then the non-empty sets of the form ZÀ(X) constitute an open covering of Hn. The

nerve of this covering is a simplicial complex K. The géométrie properties of the sets

in the covering - which are fairly well-behaved neighborhoods of the axes of the

corresponding cyclic subgroups - impose topological restrictions on K: it is con-
nected, and the link of every vertex is connected.

As the sets in the covering are determined by certain maximal cyclic subgroups
of F, the vertices of K hâve a natural labeling by maximal cyclic subgroups. As F
is 3-free, the vertices of any 2-simplex of K generate a free group. However, if
k (log 5)/(n — 1), the discreteness of F can be used to show that this free group
is never of rank 3: this dépends on Proposition 3.5, which is an elementary
géométrie argument based on ideas that appeared in [4] and [8]. Thus in the

labeling of the vertices of K by cyclic groups, the three cyclic groups labeling the

vertices of any given 2-simplex generate a free group of rank 2. Using the

topological properties of K and elementary facts about free groups, one can
conclude that the group generated by ail the labeling cyclic groups - i.e. by ail

cyclic groups X for which Zk(X) # 0 - is locally a free group of rank 2. By
pushing the group theory a bit further one can then deduce that F is itself a free

group of rank 2, and this is impossible as F is the fundamental group of a closed

aspherical manifold.
In Section 1 we prove some elementary properties of the sets ZX(X), for X any

cyclic group of loxodromic isometries of Hn. In Section 2 we prove a purely
topological resuit about nerves of coverings of topological spaces. In Section 3 the

results of the two preceding sections are combined to establish the relevant
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topological properties of the complex K. The proof of the géométrie resuit

alluded to above, Proposition 3.5, is also given. In Section 4 we establish
the relevant facts about free groups and labeled complexes of groups. In
Section 5 the results of Sections 3 and 4 are combined to give the proof of
Theorem B.

Actually this is ail done in a somewhat more refined setting, and gives a

resuit, Theorem 5.1, which is more technical than Theorem B but includes it as a

spécial case. In Section 6 we will combine Theorem 5.1 with the specifically
3-dimensional results of [3] to deduce Theorem 6.1 and hence Theorem A.

The following conventions will be used throughout the paper. The hyperbolic
distance in Hw will be denoted dist. If S is a subset of H&quot; and r is a positive
number, nbhdr (P) will dénote the open r-neighborhood of S, i.e. the set of ail

points whose minimum distance from S is strictly less than r.

If a is a simplex in the simplicial complex K, the link of a in K, denoted by
XmkK(a), consists of ail simplices x such that (i) o r\x 0 and (ii) a and x span
a simplex of K. The support of a simplex a in K is the subcomplex of K
consisting of &lt;x and ail its faces; it will be denoted by \a\.

If S is a subset of a group T, we dénote by &lt;S&gt; the subgroup of F gener-
ated by S. (If S {x{,. xr}, we may also write (xx,.. xr &gt; for &lt;S&gt;.)

Let z,,. zr be éléments of a group F. We shall say that zx,..., zr are

independent if they freely generate a (free, rank-r) subgroup of F. (Hère we

regard {z,,. zr) as an indexed r-tuple; in particular, if two of the z, coincide,
then zu zr are not independent.)

We are very grateful to Sa&apos;ar Hersonsky for helping us with our 3-dimensional

hyperbolic trigonometry.

Section 1. Loxodromic isometries and displacement cylinders

1.1. Recall that an isometry x of H&quot; is loxodromic if there is an x -invariant
Une A(x) in H&quot;, and x acts on A(x) as a translation through some distance

length x &gt; 0. The line A(x) is unique, and is called the axis of x.
If x is an isometry of H&quot; we define a continuous non-negative-valued func-

tion Dx on H&quot; by DX(P) dist (P, x • P). Note that Dx=Dx-i.

1.2. Suppose that x is loxodromic with length /. Let P be any point of
H&quot; - A(x), and let Q dénote the point of A(x) closest to P. Set P&apos; jc • P and
Q&apos; x Q. We hâve LPQQ= LP&apos;Q&apos;Q=n/29 dist (Q9 Q&apos;) /, and dist (P, Q)
dist (P\ Q&apos;) r, where r rx(P) dénotes the perpendicular distance from P to
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A(x). Let 0 9X(P) dénote the dihedral angle between the planes PQQ&apos; and P&apos;Q&apos;Q.

Setting D DX(P) dist (P, P&apos;), one sees by elementary hyperbolic geometry that

cosh dist (P, P) cosh / + (sinh2 r)(cosh / - cos 0),

i.e.

cosh DX(P) cosh / + (sinh2 rx(P))(cosh l - cos 0X(P)). (1.2.1)

This formula is clearly valid for P e A(x) if we assign an arbitrary value to
6X(P). In particular we recover the familiar fact that dist (P, x • P) &gt; l for every
point P g H&quot;, with equality if and only if P g A(x).

1.3. Note that 6X is constant on every ray which is perpendicular to A(x) and has

its endpoint in A. If p is such a ray, the function rx \ p maps p homeomorphically
onto [0, oo) and thus defines a coordinate r on p. It follows from (1.2.1) that Dx \ p
is a strictly monotonically increasing function of r and goes to infinity with r.

(In the case where n 3 and x préserves orientation, 6X is constant on ail of H3.

This fact will not be used in the présent paper.)

1.4. Now for any loxodromic isometry x of H&quot; we defîne a non-negative-valued
function Ex on H&quot; by setting EX(P) min^ 1 Dxd(P) for every P e H&quot;.

PROPOSITION. Let x be a loxodromic isometry ofW. Then Ex is continuous,

andmmPeHnEX{P) length x. Furthermore, for every C &gt; 0 there exists R&gt;0 such

that EX(P) &gt; C for every point P such that rx(P) &gt; R.

Proof Set / length x. Then length xd dl for every integer d &gt; 0. Hence for
each d we hâve m\nP^nn Dxd(P) dl, and so

min EX(P) min dl /.
P 6 H&quot; d &gt; 0

To show that Ex is continuous on W it suffices to show that it is continuous on
the set H^ — Dxl([0, a)) for each a &gt; 0. For any integer d&gt;ajl we hâve

Dxd{P) ^ dl &gt; a for every P g Hn. It follows that for any p e Ha we hâve

EX{P) =minl^d^[(x/l]Dxd(P); since each of the functions Dxd(P) is continuous on
H&quot;, it follows that Ex is continuous on Ha.

Now let C be any positive constant, and let R be a constant such that
(sinh2 i?)(cosh / — 1) &gt; cosh C. Since xd has translational length dl, it follows from
(1.2.1) that Dxd(P)&gt;C for every positive integer d&gt;0 and for every P with
rx(P) :&gt; R. Hence Exd(P) &gt; C whenever rx(P) ^ R.
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1.5. PROPOSITION. Let x be a loxodromic isometry ofW. Let p be any ray in

Hn which has its endpoint in A(x) and is perpendicular to A(x); let us identify p
isometrically with [0, oo). Then f — Ex | p is monotonically increasing, andf(P) tends

to infinity with P.

Proof According to 1.3, the function Dxd \ p is strictly monotonically increasing
for every d&gt;0. Hence /= Ex \ p minrf;&gt; x Dxd\ p is also strictly monotonically
increasing. The final assertion of Proposition 1.4 implies that f(P) tends to oo with
P.

For any loxodromic x and any k &gt; 0 we set Zk(x) E~l[0, k).

1.6. PROPOSITION. Let x be a loxodromic isometry of W. For any
k &lt;lengthx we hâve Zk(x) =0. For any k &gt;lengthx the set ZÀ(x) is an open
contractible neighborhood of A(x) and is contained in nbhd^ A(x) for some constant
R&gt;0. Furthermore, the frontier of Zk(x) in W is the set Qk(x) Ex]({k}), and

Qk(x) is homeomorphic to Sn~~2 x R.

Proof Set / lengthx. Since minPeHn EX(P) / by Proposition 1.4, we hâve

Zk(x) 0 for any k &lt; l. On the other hand, since Dx is identically equal to / on
A(x), we hâve A(x) a Zk(x) for any k &gt; l; in view of the continuity of Ex it follows
that Zk(x) is an open neighborhood of A(x). To show that Zk(x) is contractible in
this case, we consider any ray p a W which has its endpoint in A(x) and is

perpendicular to A(x). It follows from Proposition 1.5 that Zk(x) np is a half-open
line segment with the same endpoint as p; since this holds for every such ray p, the

contractibility of Zk(x) is clear.

It follows immediately from Proposition 1.4 that Zk(x) c nbhd^ ^4(x) for some
constant R &gt; 0.

The continuity of Ex implies that the frontier of Zk(x) in H&quot; is contained in the

set Qk(x) =Exl({k}). To prove the reverse inclusion, we consider any point
P e Qk(x), and we let pP dénote the unique ray in Hn which has its endpoint in A,
is perpendicular to A(x) and contains P. According to 1.5, the function/ Ex \ pP
is strictly monotonically increasing. Since/(P) k, the monotonicity of/ implies
that P lies in the frontier relative to pP of the set f~l[0,k) Zk(x)npP. In
particular, P lies in the frontier of Zk(x) in Hn.

It remains to show that Qk(x) is homeomorphic to Sn~2 x R. For this purpose
we consider the set Q*(x) cHM consisting of ail points whose perpendicular
distance from A(x) is 1. If P is any point Qk(x), and pP is defined as above, then

pPnQ*(x) consists of a single point which we dénote h(P). This defines a

continuous map h : Qk(x) -* Q*(x). It follows immediately from Proposition 1.5

that h is a bijection. On the other hand, since we hâve shown that Zk{x) c
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A{x) for some constant R &gt; 0, it is clear that every compact subset of Q*(x)
has bounded pre-image under h. But Qx{x) is closed in H&quot; since it is the frontier of
ZÀ(x). Thus Qx{x) is locally compact and h is a proper map. It follows that h is a

homeomorphism. Since Q*(x) is clearly homeomorphic to5n&quot;2xR, this complètes
the proof.

We remark that in the case that n 3 and x préserves orientation we hâve

ZÀ(x) nbhd^ A(x) for some R &gt; 0. This fact will not be used in the présent
paper.

1.7. For any loxodromic isometry x of H&quot;, it follows from 1.1 that Dxd — Dx-d
for every d &gt;0. This implies that Ex Ex-\, and hence tht ZÀ(x) Zk{x~l) for
every A &gt; 0. Hence if X is any infinité cyclic subgroup of F with a loxodromic
generator x we may unambiguously write ZÀ(X) Zk{x) for any positive number k.

This notation will be used extensively in the next two sections.

Section 2. Nerves and connectedness

2.1. By an open covering of a topological space H we shall mean an indexed

family (Ut)ieI of non-empty open sets in H such that \JieI JJl H. Note that we

may hâve Ul Uj for distinct indices / and/ The nerve of the covering (Ut)ie, is an
abstract simplicial complex with an indexed vertex set {vt)ieI, where vt Vj if and

only if / =/ A collection {vlQ,. vlk] of vertices, where /0,.. ik are distinct
indices in /, spans a fc-simplex if and only if UtQn • • • n Ulk ¥&quot; 0.

If H is connected, any open covering of H has connected nerve. (This dépends

on our requirement that the sets in an open covering be non-empty.)

2.2. PROPOSITION. Let (Ut)lsI be a covering of a topological space H.
Suppose that

(i) for every i e I the set Ul is connected and has connected frontier, and

(ii) for any two distinct indices i,j e I we hâve Ut&lt;£Uj.

Then the link of every vertex in the nerve o/((7,Xe/ is connected.

Proof Let K dénote the nerve of (t/,)l€ 7. Suppose that we are given a vertex of
K, say vs for some s e L Set C link*i;5. We are required to show that C is a

connected simplicial complex. Let us write the set of vertices of C as an indexed set

(vJtej, where / is a subset of /. We hâve j e J if and only if vs and v} span a

1-simplex of K; by the définition of the nerve, this is équivalent to saying that j ^s
and UjnUsï 0.
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We dénote by Q the frontier of Us in H. By hypothesis (i), Q is a connectée!

space. Consider the indexed family (UjnQ)jeJ of open sets in Q. We claim that this

family is an open covering of Q.

First we must show that Uj n Q ^ 0 for any j e /. Since for j e I we hâve j ^ s,

hypothesis (ii) implies that Uj&lt;£Us. Since £/7 is connected by hypothesis (i), and
since UjC\Us^0 when j e J, it follows that Uj meets the frontier Q of C/, as

required. Next we must show that Q= {Jjej(Q^Uj)9 i.e. that gc (Jjej(Uj).
Given any point q € Q, we hâve # e £/, for some y e /; since q $ Us we hâve s 7^/
But since # g Ûs we must hâve £/, n {/, # 0. This shows that y e /, and complètes
the proof that (UjnQ)jeJ is an open covering of Q.

Let Is dénote the nerve of the covering (UjnQ)jeJ. Let w, dénote the vertex of
E corresponding to the index j e J. If wjQ,. wJk span a A&gt;simplex of E then

(ô n ^/0) n &quot; &apos;n(Qn uJk) ^ 0» hence in particular, (UJon- • • n t/yifc) n £/, ^ 0, so

that vJo,.. 9vJk,vs span a (A: H- l)-simplex of AT. This means that vJo,. vJk span a

A:-simplex of C. This shows that E is simplicially isomorphic to a subcomplex of C

containing ail the vertices of C.

Since Q is connected, the nerve E of the covering (£/, n 0/ey is connected. Thus
there is a connected subcomplex of C containing ail the vertices of C. It follows that
C is itself connected.

Section 3. Discrète groups and coverings of hyperbolic space

3.1. In this section, M will dénote a closed hyperbolic manifold of some
dimension n ^ 2. We may regard M as the quotient of HM by a co-compact, discrète,
torsion-free group F of isometries. We recall some elementary properties of F. Since

F is co-compact, each non-trivial élément x of F is loxodromic. The centralizer C{x)
of x is cyclic and consists of ail éléments having the same axis as x. In particular
C(x) is the unique maximal cyclic subgroup containing x. For two non-trivial
éléments x and y of F we hâve C(x) C( y) if and only if x and 7 commute, or
equivalently if and only if A(x) A(y). Thus there is a natural one-one correspon-
dence between maximal cyclic subgroups of F and axes of éléments of F.

3.2. PROPOSITION. Suppose that X is a positive number such that M contains

no hyperbolic bail of radius À/2. Then we hâve

where X ranges over ail maximal cyclic subgroups of F.
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Proof. Let P be any point of H&quot;. The hypothesis that M contains no hyperbolic
bail of radius X/2 implies that dist (P, x0 • P) &lt; X for some xoe F -\. (Indeed, if
dist (P, x - P) &gt; X for every x e F — {1} then by the triangle inequality B
nbhd//2 (P) is disjoint from x • B nbhdA/2 (x • P) for every x e F - {1}; hence the

covering projection maps B injectively into M, and its image is a hyperbolic bail
of radius À/2.) Now by 3.1, Xx C(x0) is a maximal cyclic subgroup of F, and x0
is a positive power of some generator xx of Xx. By the définitions we hâve

EX{{P) &lt; DXQ(P) dist (P, x0 • P) &lt; X, so that PeZX{(P)= ZX{(P). Since P e H&quot;

was arbitrary, the conclusion of the lemma follows.

3.3. PROPOSITION. Suppose that X and X&apos; are maximal cyclic subgroups of F\
and suppose that for some X &gt; 0 we hâve 0 ^ ZX(X) a ZÀ(X&apos;). Then X X&apos;.

Proof Let x and x&apos; be generators of X and X&apos; respectively, and set

A Ax, A&apos; Ax. By Proposition 1.6 we hâve ZX{X&apos;) cz nbhd^ A&apos; for some R &gt; 0.

Hence Z,(X) cz nbhd^yT. Now let H&quot; dénote the union of H&quot; with the sphère at
infinity S^~l. We give H&quot; the natural topology, in which it is homeomorphic to a
closed «-bail. Let Z dénote the closure of Z,(X) in H&quot;. Since ZA{X) &lt;= nbhd^ A&apos;, we
hâve ZnS^o&quot; l cz A&apos;r\Sn^ l {P, Q}9 where P and Q are the fixed points of x&apos; in
S^r1. Thus {P, Q} is invariant under x. Hence x2 fixes P and Q. Since x2 is

loxodromic with axis A it follows that P and g are the endpoints of A and hence

that A =A\ By 3.1 this implies Z X&apos;. D

3.4. Suppose that X is a positive number such that M contains no hyperbolic
bail of radius X/2. Let SC &amp;A(M) dénote the set of ail maximal cyclic subgroups
X of r such that Z,(X) / 0. Proposition 3.2 implies that the indexed family
(Z,(X))xz% is an °Pen covering of H&quot; (see 2.1). We will dénote the nerve of this
covering by K,{M).

PROPOSITION. Let X be a positive number such that M contains no hyperbolic
bail of radius X/2. Then K K,{M) is a connected complex with more thon one

vertex, and the link of every vertex of K is connected.

Proof Since H&quot; is connected, the nerve of any open covering of H&quot; is connected.
Set %=%,{M) and K Kk(M). If K had only one vertex, we would hâve
H&quot; Z/(Ar) for some Xeffî. This is impossible since by Proposition 1.6 we hâve

Z,(X) a nbhd/e (A) where A is the axis of a generator of X and R is some positive
number. To show that the link of every vertex of K is connected we apply
Proposition 2.2. According to Proposition 1.6, for each lef the set Zk(X) is

contractible and hence connected, and its frontier is homeomorphic to 5&quot;~2xR

and is therefore connected since n ^ 3. Thus hypothesis (i) of Proposition 2.2 holds.
That hypothesis (ii) holds is precisely the content of Proposition 3.3.
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3.5. As we explained in the introduction, the following resuit is the basic

géométrie fact underlying the proofs of Theorems A and B. The proof is a slight
variant of the proof of [8, Proposition 5.2 and Corollary 5.3]; see also [4].

PROPOSITION. Let xx, xr be independent éléments of F. Set

log(2r-l)À~ n-\ &apos;

Then ZÀ(xx) rv • • nZÀ(xr) 0.
Proof Suppose that P is a point of ZÀ(xx) n- - - nZÀ(xr). For each / e {1, r}

we hâve EX(P) &lt; A, and hence Dy(P) &lt; l for some positive power yt xdi of xt.
Clearly yx,...,yr are independent. We fix a number X&apos; &lt; X such that
dist (P, y, • P) DV(P) &lt; Xr for / 1,.. r. It then follows by induction on m ^ 1,

using the triangle inequality and the fact that the yt are isometries, that if y e F is

given by a word of length m in yx,.. yr then dist (P, y • P) &lt; mX&apos;.

For each m &gt; 1, let Sm dénote the set of ail éléments of F that are expressible
as reduced words of length m in yx,. yr. Since yx,. yr are independent, Sm has

cardinality exactly (2r)(2r — l)m~l. Let b be an open bail about P such that
y - b nb 0 for every y e F — {\}. Let p dénote the radius of b, and v its volume.
Then the balls y - b for y e Sm are pairwise disjoint and are contained in
nbhdmx+p(/&gt;). Hence

(2r)(2r - \)m&apos;lv &lt; vol nbhdmX+p(P) &lt; C exp (n - \)(rnX&apos; + p),

where C is a constant depending only on the dimension n. Hence

(2r - l)m &lt; C exp (n - \)mX\

where C is a constant depending on n and p but independent of m. If in the last

inequality we take logarithms of both sides, divide by m and take limits as m -*&gt; oo,

we obtain log (2r — !)&lt;(« — \)X\ which is impossible since

n
n — 1

Section 4. Structure of 3-free groups

4.1. Let W be a subgroup of a group T, and let k be positive integer. We shall

say that F is k-free over W if every subgroup of F which contains W and has rank
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&lt; k is free (of some rank &lt;k). Note that a group is A&gt;free if and only if it is A&gt;free

over the trivial subgroup; and that a k -free group is A:-free over every subgroup.
A group F will be said to hâve local rank &lt; k, where A: is a positive integer, if

every finitely generated subgroup of F is contained in a subgroup of rank &lt; k. The
local rank is the smallest integer k with this property, and is defined to be oo if no
such integer exists. Note that for a finitely generated group, the local rank is equal
to the rank.

The following resuit plays the rôle of an induction step in the proofs of the two
main results of this section, Propositions 4.3 and 4.4.

4.2. LEMMA. Let x, y and z be éléments of a group F. Suppose that x and y do

not commute, and that x, y and z are not independent. Let A be a subgroup of F which

contains x and y and has local rank 2. Suppose that F is 3-free over some finitely
generated subgroup J of A. Then the group (A u{z}&gt; is also of local rank 2.

Proof Since {A u{z}&gt; contains the non-commuting éléments x and y, it must
hâve local rank &gt;1. We must show that it has local rank &lt;2.

Set B {A u {z}&gt;. Let Bo be any finitely generated subgroup of B. Then there
is a finitely generated subgroup Ax of A such that Bo is contained in the subgroup
B{ &lt;{z} uAx &gt;. After possibly replacing Ax by a larger finitely generated subgroup
we may assume that x, y e Ax and that J &lt; Ax. Since A has local rank &lt; 2, we may
assume after further enlarging Ax that Ax has rank ^2. Hence Bx has rank at most
3. Since J &lt; Bx, and since F is 3-free over /, it follows that Bx is free of some rank
at most 3. We claim that Bx cannot hâve rank 3. This will imply that Bx &gt; Bo has

rank &lt; 2, and will complète the proof that B has local rank &lt; 2.

Assume that Bx is free of rank 3. Since Ax has rank &lt;2 it is generated by two
éléments u and v. Then w, v and z generate the rank-3 free group Bx. Hence by [6,

p. 59], Bx is freely generated by thèse three éléments. Thus we may regard Bx as a

free product Ax * &lt;z&gt;. Now T &lt;x, y} &lt;&gt; Bx is free by the Nielsen-Schreier theo-

rem, and has rank &lt; 2; since x and y do not commute, T must be free of rank
exactly 2, and must therefore be free on x and y. But since Bx has been identified
with a free product Ax * &lt;z&gt;, the subgroup &lt;x, y, z&gt; &lt;!Fu{z}&gt; is identified with
a free product T * &lt;z&gt;, and is therefore freely generated by x, y and z. This is a

contradiction since x, y and z are not independent.

4.3. Let F be a group. By a F-labeled complex we shall mean an ordered pair
(AT, (Xv)v), where AT is a simplicial complex and (Xv)v is a family of cyclic subgroups
of F indexed by the vertices of K. If (K, (Xv)v) is a T-labeled complex then for any
subcomplex L of K we shall dénote by 0{L) the subgroup of F generated by ail the

groups Xv, where v ranges over the vertices of L.
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PROPOSITION. Let (K,(XV)V) be a F-labeled complex. Suppose that K is

connected and has more than one vertex, and that the link of every vertex of K is

connected. Suppose that for every \-simplex e ofK the group 0( \e\) is non-abelian and
F is 3-free over 0{ \e\). Suppose also that there is no 2-simplex a ofKsuch that 0(\e\)
is free of rank 3. Then 0{K) has local rank 2.

Proof. We shall say that a subcomplex L of AT is good if (i) L is connected and
contains more than one vertex, (ii) 0{L) has local rank 2, and (iii) F is 3-free over
some finitely gênerated subgroup of &amp;(L).

If e is any 1-simplex of K, then 0( \e\) is by définition gênerated by two éléments,
and the hypothesis of the lemma implies that &lt;9( \e\) is non-abelian; in particular 0( \e\)
has local rank 2. The hypothesis also implies that F is 3-free over 6&gt;(|e|). Thus \e\

is a good subcomplex of K. It now follows from Zorn&apos;s Lemma that there exists a

maximal good subcomplex Lo of K. We shall complète the proof by showing that

4.3.1. CLAIM. The complex Lo is a full subcomplex of K. (This means that any
simplex whose vertices lie in Lo is itself a simplex of Lo.)

To prove this claim, suppose that a is a simplex whose vertices lie in Lo. Set

L Lo u |cr |. It is clear that L satisfies condition (i) of the définition of a good complex,
since Lo does, and that 0(L) 0(LO). Hence L is good; by the maximality of Lo we
hâve Lo L, so that a e Lo. This proves Claim 4.3.1.

4.3.2. CLAIM. If e is any l-simplex of Lo, then link^e) c:L0.

To prove this claim, let u and v dénote the vertices of e, and let w be any vertex
in the link of e. Let xu9 xv and xw be gênerators of Xu, Xv and Xw respectively. The
vertices w, v and w span a 2-simplex a. We set L Lou|&lt;t|. We shall show that L
is good; by the maximality of Lo this means that L LQ, so that w e Lo. Since Lo
is full in K, the claim will then follow.

Condition (i) of the définition of a good complex is clear. Condition (iii)
is also clear since &lt;9(L) ^ &lt;9(L0). To verify condition (ii), note that &amp;(L)

&lt;&lt;9(L0) u {xw}&gt;. We shall apply Lemma 4.2, with A 0(LO) and with x xu, y xv9

z xH, to show that 0(L) has local rank 2.

By the hypothesis of the proposition, the group 6&gt;( \e\) &lt;xu, xv &gt; is non-abelian;
that is, xu and xv do not commute. Since Lo is good, F is 3-free over some finitely
gênerated subgroup J of 0(LO). Finally, since m, v and w span a 2-simplex &lt;r, the

hypothesis of the proposition implies that 0{a) &lt;jcm, xv, xw &gt; is not free of rank 3,

and so xu, xt and xw are not independent. It now follows from Lemma 4.2 that 0(L)
&lt;&lt;9(L0) u {xH }&gt; has local rank at most 2, and the proof of Claim 4.3.2 is complète.
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We now proceed to the proof that Lo K, which will complète the proof of the

proposition. Note that since K is connectée! by the hypothesis of the proposition,
and since Lo is full and non-empty(i), we need only prove that for any vertex v0 of
Lo we hâve link^ (v0) a Lo. Set C link^ (v0) and D CnL0;we must show that
D C. Since Lo is connected and contains more than one vertex, we must hâve

D # 0. Note also that D is a full subcomplex of K. But C is also connected by the

hypothesis of the proposition. Hence in order to prove that D C we need only
prove that for any vertex v e D we hâve linkc (v) &lt;= Z). If e dénotes the 1-simplex
joining v0 to v, we hâve linkc (v) link^ (e) cz Lo by Claim 4.3.2, and hence

linkc (v) a D as required.

4.4. PROPOSITION. Let 0 be a normal subgroup of afinitely generated group
F. Suppose that 0 has local rank 2, and that F is 3-free over some finitely generated
subgroup of G. Suppose also that 0 contains an élément x0 with the property that for
every élément y e F which is not a power of x0, the élément yxoy~l does not commute
with x0. Then F is a free group of rank 2.

Proof Let y,,. yr be a fini te gênera ting set for T, and set 0k
(0 u {yx,. yk }&gt; for k 0, r. (In particular &lt;90 0.)

4.4.1. CLAIM. The group 0k has local rank 2 for k 0,. r.

By hypothesis, this claim holds for k 0. We proceed by induction on k.

Suppose that 0 &lt; k &lt; r and 0k _ x has local rank 2. Since 0 is normal in F and
contains Jt0, the éléments jc0 and ykxoykl belong to 0 and hence to 0t_ x. We now
wish to apply Lemma 4.2, taking x x0, y ykxoykl, z yk and A 0k_ {. By
hypothesis F is 3-free over some finitely generated subgroup / of 0. It is obvious
that x, y and z are not independent. Thus if x and y do not commute, Lemma 4.2

guarantees that 0k — (0k_ ^{y^}) has local rank &lt;2, and the induction is

complète in this case.

There remains the case in which x =x0 and y ykxoykl commute. In this case,
the property of jc0 given in the hypothesis of the theorem implies that yk is a power
of jc0. But in this case we hâve yke0 &lt;&gt;0k_u so that 0k 0k__u and the

induction step is trivial. The proof of Claim 4.4.1 is therefore complète.

It is clear from the définition of the 0k that 0r — F. Applying Claim 4.4.1 with
fc rwe conclude that F has local rank at most 2. Since F is finitely generated this

means rank r &lt; 2 &lt; 3. But by hypothesis F is 3-free over some finitely generated

subgroup of 0. Hence T is a free group. Since its local rank is 2, it is in fact free

of rank 2.
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Section 5. The proof of Theorem B

5 1 The goal of this section îs to prove the following theorem

THEOREM Let M be a closed hyperbohc manifold of dimension n ^ 3 Let us

wnte M W/F, where F is a co-compact, discrète, torswn-free group of isometries

ofW Set

and suppose that the following condition holds

(*) If x and y are non-commuting éléments of F such that ZÀ(x)nZÀ(y) ¥&quot; 0,
then F is 3-free over {x,y}

Then M contains a hyperbohc bail of radius À/2

5 2 As we observed in 4 1, a group which is A&gt;free is A&gt;free over any subgroup
Hence condition (*) of Theorem 5 1 always holds if F ^nx(M) is 3-free Thus
Theorem B of the Introduction is a spécial case of Theorem 5 1 In Section 6 we will
show how to deduce Theorem A of the Introduction from Theorem 5 1

Proof of Theorem 5 1 Suppose that M satisfies the hypothèses of Theorem 5 1

but contains no bail of radius À/2, where

Then in the notation of 3 4 we hâve a covenng (Zx(X))Xe3r of Hn with index set

3C 9C,(M) and nerve K Kk(M) By définition the vertices of K are in natural
one-one correspondence with the maximal cychc subgroups in the set 9C If we
dénote by Xv e 3C the maximal cychc subgroup corresponding to a vertex v, then

{K, (Xv)v) is a T-labeled complex in the sensé of 4 3

We shall show that (K, (Xv)v) satisfies the hypothèses of Proposition 4 3 By

Proposition 3 4, K is a connected simphcial complex with more than one vertex, and
the hnk of every vertex of K is connected Now let e be any 1-simplex of K, and let
v and w dénote îts vertices Let xv and xw be generators of Xv and Xw We hâve

v t^ w and hence Xv / Xw, hence by 3 1 the éléments xv and xw do not commute,
and the group 0{\e\) (xv,xwy is non-abehan On the other hand, by the

définition of the nerve K we hâve ZA(Xv)nZÀ(Xw) # 0, and so the hypothesis of
the Theorem implies that F is 3-free over (xv,xw) Finally, let a be any 2-simplex
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of K, and let w, v and w dénote its vertices. Let xu, xv and xw be generators of Xu,
Xv and Xw. By the définition of the nerve K we hâve ZÀ(XU) nZÀ(Xv) nZÀ(Xw)
^ 0. Hence by Proposition 3.5, the éléments xu, xv and xw are not independent. By
[6, p. 59] this means that 0(\a\) &lt;xw, xv, xw) is not a free group of rank 3.

Thus Proposition 4.3 applies and we conclude that 0{K) has local rank 2. We
claim that 0 0{K) in fact satisfies ail the hypothèses of Proposition 4.4. To show
that 0 is normal, observe that by définition 0 is generated by ail the maximal
subgroups in SC. If a maximal cyclic subgroup X belongs to $T, Le. if ZX(X) # 0,
then for any yef we hâve Zx{yXy~x) y • ZÀ(X) # 0. Thus 0 is a normal
subgroup of r.

We saw above that for any edge \e\ of K the group F is 3-free over the

2-generator subgroup 6&gt;(|e|) of 0(K). The only hypothesis of Proposition 4.4 left
to check is the existence of the élément x0. We take jc0 to be a generator of any
group Xo e 9C. If y is an élément of F such that x x0 and y ykxoykl commute,
then by 3.1, the éléments x0 and ykxoykl gênerate the same maximal cyclic
subgroup of T, so y^olk1 =^q1. Hence y\ commutes with x0. Thus yk and x0
belong to C(yl), which by 3.1 is a maximal cyclic subgroup containing x0 and is

therefore generated by x0. Hence yk is a power of x0.
It now follows from Lemma 4.4 that T is a free group of rank 2. However, this

is impossible, because F, as the fundamental group of a closed hyperbolic A2-mani-

fold, must hâve cohomological dimension n &gt; 3, whereas a free group has cohomo-
logical dimension 1. This contradiction complètes the proof of Theorem 5.1.

Section 6. The proof of Theorem A

6.1. We shall prove the following resuit.

THEOREM. Let M be a closed orientable hyperbolic 3-manifold. Suppose that

every subgroup of nx{M) whose rank is at most 3 is of infinité index in nx{M). Then

M contains a hyperbolic bail of radius (log 5)/4.

6.2. Now recall the statement of [8, Proposition 1.1]. Let Mbe a closed 3-manifold,
let p be a prime number, and let A: be a positive integer. Suppose that either M is

orientable or p 2. Suppose that the Z^-vector space HX{M\ Zp) has dimension at
least k -h 2. Then every subgroup of nx{M) having rank &lt;&gt;k is of infinité index.

In particular, ifMis a closed, orientable, hyperbolic 3-manifold, and if HX{M\ Zp)
has dimension at least 5 for some prime/?, then every subgroup of nx{M) having rank
&lt; 3 is of infinité index. Combining this with Theorem 6.1 we obtain Theorem A of
the Introduction.
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6 3 It remains to give the

Proof of Theorem 6 1 We can wnte M H3/F, where F îs a co-compact,
discrète, torsion-free group of onentation-preserving isometnes of H3 Recall that
since F îs co-compact, every non-trivial élément of F îs loxodromic In particular F
contains no parabohc éléments Set

log 5

We wish to apply Theorem 5 1 to conclude that M contains a hyperbohc bail of
radius À/2 It suffices to show that condition (*) of 5 1 holds

Suppose that jc and y are non-commuting éléments of F such that
ZA{x) nZÀ(y) 7e 0 We must show that F îs 3-free over &lt;x, y} Let 0 be a

subgroup of rank &lt; 3 contammg x and y We are required to prove that 0 îs free

The hypothesis of the theorem guarantees that 0 has infinité index in
F nx(M) Thus 0 îs not co-compact

Let us choose a point Po e Zk{x) nZA(y) By the définition of ZÀ(x) and ZA(y)
there exist positive integers a and b such that Dxa(P0) &lt; X and Dvh(P0) &lt; A, that îs,

max (dist (Po, xa(P0)), dist (Po, /(A)))) &lt; A

We observe that xa and j&gt;ô do not commute Indeed, it follows from 3 1 that
C(xa) C(x) and that C{yb) C(y) Hence if xa and yb were to commute then x
and j&gt; would also commute, which they do not

Before showing that 0 îs free we will show that it îs freely decomposable, î e

that it îs a free product of two non-trivial subgroups Assume to the contrary that
0 îs freely indécomposable According to [1], if 0 îs any freely indécomposable,
discrète, torsion-free group of onentation-preserving isometries of H3, then 0 îs

topologically tame, that îs, the quotient hyperbohc 3-mamfold H3/&lt;9 îs homeomor-
phic to the mtenor of a compact 3-mamfold with boundary Furthermore, according

to [2, Proposition 3 2], if 0 îs any non-co-compact, topologically tame, discrète,
torsion-free group of onentation-preserving isometries of H3, then any finitely
generated subgroup of 0 îs topologically tame

In particular, &lt;xa, yb} îs topologically tame Of course, since 0 îs non-co-compact,

&lt;jca, yb} îs also non-co-compact We now recall the statement of the main
theorem of [3] Let £ and rj be non-commuting onentation-preserving isometries of
H3 Suppose that (Ç,rjy îs discrète, torsion-free, topologically tame and non-co-
compact, and contains no parabohc éléments Then for any point Peffwe hâve

max (dist (/&gt;, É(/0), dist (i&gt;, tj(P))) ^ log 3
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As we hâve checked the hypothèses of this statement for Ç xa and rj yb we now
hâve

max (dist (Po, xa(P0)), dist (Po, /(/&gt;&lt;&gt;))) &gt; log 3.

Since

we hâve a contradiction. This proves that 0 is freely decomposable.
Thus we may wnte 0 — 0X * &lt;92, where the 0t are non-trivial. By Grushko&apos;s

theorem [9] we hâve rank 0X + rank &amp;2 rank ® - 3, and hence each 0t has rank
at most 2. But each 0t has infinité index in F 7^ (M), since 0 does; and it follows
from [5, Theorem VI.4.1] that any infinite-index subgroup of rank ^2 in the
fundamental group of the closed, orientable hyperbolic 3-manifold M is free. It
follows that 0y and 02 are free, and hence that 0 is free also. This complètes the

proof.
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