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On Cheeger&apos;s inequality

Robert Brooks1, Peter Perry2 and Peter Petersen V3

In [Ch], Cheeger proved the following gênerai lower bound for the first
eigenvalue A, of a closed Riemannian mamfold:

THEOREM ([Ch]):

where

area (N)A=inf
n min (vol (A), vol (B))

where N runs over {possihly disconnected) hypersurfaces of M which divide M into
two pièces A and B, and where area dénotes (n — \)-dimensional volume, and vol
dénotes n-dimensional volume, where n dim (M).

h(M) is called the Cheeger constant of M.
Cheeger&apos;s inequality is quite straightforward to prove, and is essentially the

co-area formula of géométrie measure theory. It is therefore surpnsing that the

inequality plays such a crucial rôle in the study of the geometry of the Laplace
operator, see [Bu3]. Indeed, one has the following gênerai upper bound for A, in
terms of h, due to Peter Buser [Bu]:
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Commonwealth of Kentucky through the Kentucky EPSCoR Program

2 Partially supported by NSF Grant DMS-9006092 and by NSF grant RII-8610671 and the
Commonwelath of Kentucky through the Kentucky EPSCoR Program

* Partially supported by the NSF and the Alfred P Sloan Foundation
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THEOREM ([Bu]):

Xx &lt; cxh H- c2h2,

where cx, c2 dépend only on a lower bound on the Ricci curvature of M.

Thus, from a qualitative point of view, kx and h are essentially the same thing,
in the sensé that one tends to zéro if and only if the other does (in the présence of
bounded curvature).

We observe that Cheeger&apos;s inequality is true, and is proved in exactly the same

way, when M is a complète, non-compact manifold, or a manifold with boundary
and either Dirichlet or Neumann boundary conditions, provided one interprets kx

and h correctly.
It has therefore been an interesting question to understand, in a gênerai way,

how sharp Cheeger&apos;s inequality really is. A major problem in coming to terms with
this question has been that, for the most part, Cheeger&apos;s inequality is the only
generally useful method known for estimating kx from below.

In this paper, we will explore this question in three ways. First of ail, by a

celebrated theorem of Selberg [Se], there are gênerai lower bounds

&gt;

3
i( p) ^J6

for certain arithmetic Riemann surfaces Sp9 which we will discuss below. Selberg
raised the question of whether

k(S)&gt;-

for thèse surfaces, and it was suggested in [Bi] that perhaps one could demonstrate
this by showing that h{Sp) &gt; 1 for thèse surfaces.

We will show that this is not the case, and indeed h(Sp) is so small for thèse

surfaces that one cannot even obtain Selberg&apos;s ^ bound via Cheeger&apos;s constant:

THEOREM 1.1. Forp \ (mod4),
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Note that 31og(3)/27r has a value of approximately 52455 The value of
(l/4)( 52455)2 îs approximately 068788, a httle bit bigger than 1/16

Secondly, we will show

THEOREM 2 1 There exist two isospectral Riemann surfaces Sx and S2 whose

Cheeger constants satisfy

This too answers a question raised in [Bi]
Both of thèse results lie in the category of surfaces with boundary geometry

and indeed the examples hâve constant curvature - 1 For our third resuit, we will
leave this category to study the spectral geometry of manifolds of 2 and 3

dimensions with no curvature assumptions We will show

THEOREM 3 1 For n — 2 or 3, there is a constant K(n) such that, if M is a

compact n-manifold satisfying

then the Cheeger constant of M is bounded above and below in terms of the spectrum
of M

We give some numencal estimâtes for K(n) below In a sépara te paper [BPP], we
show by example that the number K{n) cannot be made arbitranly small

According to Cheeger&apos;s înequahty, is bounded below by h, so the content of
Theorem 3 1 is to give an upper bound for /, in terms of h analogous to Buser&apos;s

înequahty, where the constants involved dépend only on spectral data, rather than

pointwise curvature bounds Indeed, Theorem 3 1 may be thought of as a version
of Buser&apos;s Inequality, with Lp curvature bounds for p &gt; n/2, n dim (M), replacing
pointwise curvature bounds The dimension restriction enters from the fact that L2

bounds are available from the spectrum, so one requires that 2&gt;n/2

The first two results answer questions which were raised by Frédéric Bien in
[Bi] We would hke to thank him for his prodding, which encouraged us to wnte
the présent paper

Acknowledgements The first two authors acknowledge with gratitude the

support of the N S F and the Commonwealth of Kentucky through the Kentucky
EPSCoR program The first author would also hke to thank the Department of



602 ROBERT BROOKS PETER PERRY AND PETER PETERSEN

Mathematics of UCLA and the Mathematical Sciences Research Institute for their
hospitahty durmg the préparation of this paper

1. Selberg&apos;s theorem

Let F PSL(2, Z), and let

ÎMJ
be the congruence subgroup of F of level n It îs easily seen that F jFn
PSL(2, Z/n) Then F (and hence Fn) acts on the hyperbohc plane H, with quotient
a finite area Riemann surface with singularises, whose fundamental domain îs the

well-known figure shown in Figure 1

For ail n, H/Fn îs a finite orbifold covenng of this surface, and for n # 2 or 3,

H/Fn has no singularises
It was shown by Selberg [Se] that À}(H/Fn) &gt;-j| for ail n, and he further

conjectured that A,(H/FJ &gt; \
Selberg&apos;s Theorem can be &quot;compactified&quot; m a number of ways, to provide

famihes of compact Riemann surfaces with large A, For our purposes, one of the

most interesting of thèse compactifications îs a récent resuit of Burger, Buser, and

Dodziuk [BBD], which proceeds in the following way
Let us take a Riemann surface S with an even number of cusps, and pair off the

cusps in some arbitrary way Then, for each 8, we may perturb the metnc on S

shghtly, to obtain a new Riemann surface Se, which îs compact and bounded by
géodésie circles of length s We may then glue corresponding cusps together to
obtain a closed surface Sr

Figure 1 The fundamental domain
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It is more-or-less évident that, as e tends to zéro h(S( tends to h(S). To see this,
observe that as e -&gt;0, the necks in S€ become arbitrarily long, so that the optimal
way of dividing Sr into two pièces is to divide S into two pièces, and then snip ofT

the appropriate thin necks. Any other method would hâve to involve a curve which
passed through the whole length of the neck, and hence contribute too much to the

numerator in the ratio defining h.

It is less obvious that A, (S,) tends to A, (S) as e tends to 0. This is shown in

[BBD].
If we now set Sp H/Fp, we will now estimate h(Sp) from above:

THEOREM 1.1. Letp \ (mod 4).
Then

2tt (p +

Proof. We will first pick two generators

1 1

0 1

and

1 0

for PSL(2,Z). Note that thèse two generators are the &quot;géométrie&quot; generators for
the fundamental domain F shown in Figure 1 - that is, they correspond to éléments

of 71,(5) which identify the edges of F.

We may now describe Sn in the following graph-theoretic way: Consider
the graph Gn whose vertices are given by éléments of PSL(2, Z/«), and whose

edges are given by left-multiplication by U and V. This is a trivalent graph,
where every vertex has two edges corresponding to U and one corresponding
to V.

To obtain Sn, we will take one copy of F for each vertex of G,,, and glue

boundary components of F according to the edges of Gn.

We will now try to décompose Sn in the following way: we will write
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where An and Bn are unions of copies of F. This will be accomplished by cutting Sn

along boundary components of F. Since we want the cuttings to be of finite length,
we will only eut along edges corresponding to V.

To record this information in a useful way, we observe that if W is a matrix in
SL(2, Z), then multiplication by U does not change the bottom row of W, while V

flips top and bottom rows with a sign change. Thus we are led to the graph G&apos;n,

described as follows: the vertices of G&apos;n are équivalence classes of row vectors in

Z/n x Z/w, with (a, b) ~(— a, — b), and the greatest common divisor of a and b

relatively prime to n. Furthermore, (a, b) and (c, d) are joined by an edge if

det f ,1=11 (mod n).
\b d)

We show G&apos;n for n 5 in Figure 2. Note that each vertex of G&apos;n has exactly n

edges leading from it.
In order to visualize G&apos;n, we note that G&apos;5 is the 1-skeleton of the icosahedron.

In gênerai, Gn is dual to the 1-skeleton of a polygonal division of a surface into
regular «-gons, so that G3 is the 1-skeleton of a tetrahedron, G4 is the 1-skeleton of
an octahedron, and so on.

We will now estimate h(G&apos;p) for p a prime number.

LEMMA 1. For p \ (mod 4),

Proof. We begin with the following algebraic:

LEMMA 2. Given {a, b) and (a\ b&apos;) with

there exist two distinct paths of length 2 joining (a, b) and (a\ b&apos;) in G&apos;p.

Proof. A path of length 2 joining (a, b) and (a&apos;, b&apos;) is given by a vector (c,

satisfying:

(a) det ±1 (mod/?)
\c d
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and

(0,1)

(1.0)

(2.1)

(1.4)

(0,2)

Figure 2 The graph G &apos;5

(b) det( C, fl= ±l(mod/7).

Two such paths given by (c, d) and (c\ d&apos;) will be distinct unless

Since

det
b
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any vector (c, d) may be written as

{c,d)=kx{a,b)+k2{a\b&apos;\

so that

(a b\ (a b
A:2det

\c d) \a b
det

while

so that choosing

&amp;,= +- A:2=±-
a a

gives four possible choices for (c, d), which represent two distinct paths in Gp.
This complètes the proof of Lemma 2.

Now let us décompose Gp into two sets A and B by removing a collection of edges

£, and suppose that #(A) &lt; #(£). We wish to estimate #(£)/#(^4) from below.
For each élément (a, b) e A, and for each élément {a&apos;,b&apos;) e B not a multiple of

(a, b), the Lemma establishes that thèse are two paths of length 2 joining (a, b) to

(a\ b&apos;). In each of thèse two paths, one of the two edges must lie in E. Furthermore,
each edge lies in at most 2(/? — 1) différent sets of paths of length 2. It follows that

20-1)
so that

#(/!) 2(/&gt;-l)

since
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This estabhshes the lower bound of the lemma
To establish the upper bound, we will assume p 1 (mod 4), and divide Gp into

two sets A and B as follows Let

A {(0, a) a îs a square (mod/?)} u {(/?, c) b ^ 0 îs a square (mod/?)}

and

/? {(0, a) a îs not a square (mod/?)}

u {(/&gt;, c) b # 0 îs not a square (mod/?)}

Note that #(A) =#(£)= (/&gt;2 - l)/4
Let £ be the number of edges joining an élément of A with an élément of B

Then

CLAIM

Proof No élément of A of the form (0, a) îs joined with an élément of B of the

form {b, c), since

îs not a square (mod/?) Similarly, (0, a) îs not joined to an élément of the form

(0, a&apos;), since

On the other hand, every élément of A of the form (b, c), b ^ 0, îs joined to

exactly éléments of B, since if det I 1=1, then the vertices joining

(/&gt;, c) are the vectors of the form (b\ c&apos;) + k (b,c)=(b&apos; + k b,c&apos; + k c), and,

since b # 0, each équivalence class (mod/?) occurs as the first coordinate of such a

vector exactly once
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It follows that

#(£)= 4_

#04)

and so h{Gp) &lt; (p — \)p/2(p + 1), as desired.

To prove the theorem, we may now divide Sp into two pièces in the following
way: let s/ be the union of the fondamental domains corresponding to matrices in

PSL(2, Z/p) whose bottom row lies in A, and &amp; Sp — se. Then se and ^ are

séparated by a géodésie curve (possibly with several components) consisting of one

arc for each élément of E. This arc is isometric to the bottom arc in Figure 1, and
the length of this arc is easily calculated by elementary hyperbolic trigonometry to
be log(3).

On the other hand,

area ((sJ)) area (F) • #(A) • p,

since each vertex of Gp corresponds to p copies of F in Sp, and

area (F) =^,

so that

&lt;
l0g{3) h{G^

&lt;
3 log (3) ip ~ l)

n/3

as desired.

2. Isospectral surfaces

In this section, we will prove:

THEOREM 2.1. There exists a pair of isospectral Riemann surfaces Sx and S2

with h(Sx)
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We begin the proof with the analogous statement for graphs. Consider the

graphs Gl and G2 shown in Figures 3 and 4.

Thèse graphs are the Cayley graphs for coset spaces G/Hl and G/H2 respec-
tively, where the G PSL(3, Z/2),

with generators

Figure 3 The graph Gx

Figure 4 The graph G2
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representing the solid Unes, and

representing the dotted Unes, see [Bu2] for détails.
This triple of groups was used in [BT] to provide examples of isospectral

surfaces of genus 3 and 4, and by Buser in [Bu2] to provide examples of flat
surfaces which are isospectral and topologically planar. The drawings in Figures 3

and 4 came from [Bu2].
The fact that thèse graphs are isospectral cornes from Sunada&apos;s Theorem [Su],

or can be verified directly.
We now observe the following distinction between the two graphs: graph G2 can

be disconnected into two pièces, one of which contains 2 vertices and the other of
which contains four vertices, by removing one vertex, while the graph G{ cannot be

so disconnected.

Now consider a Riemann surface So as shown in Figure 5, which is built out of
two F-pieces as shown in Figure 6.

Hère the bottom boundary component has length e, assumed small, while the

top two components are of some sizeable length (say, for instance, at least 10e). It
is easy to arrange this so that every géodésie of So other than the one of length e

has length at least, say, 3e.

We now form two surfaces S, and S2, which are coverings of the surface

So, and are obtained in the follow way from the graphs G{ and G2: we open

up So along the two curves A and B to obtain a surface S which is conformally
S2 with four disks removed. At each vertex in the graph Gt (/ 1,2), we

place a copy of S, and then join boundary components corresponding to
A whenever the corresponding vertices are joined by a solid edge, and similarly
for B.

According to Sunada&apos;s theorem [Su], the surfaces S, and S2 are now isospectral.
We claim that h(S]) =£h(Ss). To see this, we fîrst observe that

h(S2) &lt;

IOtt&apos;

since S2 may be disconnected into two pièces, the smallest of which contains fîve

F-pieces, by cutting one curve of length e, and each y-piece has area 2n.
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Figure 5 The surface So

On the other hand, we hâve that

e

which can be seen as follows: the most efficient way of dividing S{ into two pièces

by a géodésie curve of length e has the smaller pièce consisting of 3 Y-pieces. One

can get a somewhat better Cheeger constant by cutting along a curve of constant
mean curvature homotopic to this géodésie, rather than the géodésie itself, but this
curve cannot eut off an area larger than four F-pieces. Thus the best Cheeger
constant that can be achieved by cutting along only one curve is E/871. But if one
cuts along two curves, the length must be at least 2e, while the smallest pièce can
be at most \4n. Thus, /*(S,) is at most e/$n.

This complètes the proof of Theorem 2.1.

Figure 6 One K-piece
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3. A bound for the Cheeger constant

In this section, we will prove:

THEOREM 3.1. For n 2 or 3, îhere is a constant K(n, 2) such that, if M is a

compact n-manifold satisfying

VVol(M)
then h(M) is bounded above and below by the spectrum of M.

Our proof gives a value of K(2, 2) of approximately 58.16359, and a value of
K(3, 2) of approximately 236.65428. In [BPP], we show by example that K(n,p)
cannot be arbitrarily small.

Note that, from Cheeger&apos;s inequality, h(M) is bounded above by 2v/%. Thus,
the non-trivial part of Theorem 3.1 is to bound h(M) from below in terms of
spectral data. In fact, we will prove:

THEOREM 3.2. Given n and p &gt; n/29 there is a constant K(n,p) such that if M
is an n-manifold satisfying

v
&apos;&quot;Vol(M)1&quot;&apos;

then h(M) is bounded from below in terms of Vol (M), kx(M), and ||Ricc||p.

We remark that Theorem 3.1 follows from Theorem 3.2 by noting that Vol (M)
is the a0 term in the heat expansion of M, and hence a spectral invariant, while for
manifolds of dimension &lt;6, ||Ricc||2 is bounded by the a2 term in the heat

expansion.
We begin our discussion by fîrst considering the function

ex-\

which occurs in the volume and eigenvalue estimâtes below. It is easily seen that as

x -&gt;0+ and as x -? + oo, we hâve that g(x) -&gt; oo. Since g&apos;(x) has a unique zéro in

(0, oo), it follows that there is a positive number x0 at which g(x) attains its
minimum. This value is given approximately by

jco= 1.594625
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and

g(xo) 1.55441386.

We do not know a closed-form expression for either x0 or g(xQ).

The idea of the proof of Theorem 3.2 can now be described as follows: Suppose
that D is a judiciously chosen domain in M, and dénote by De the tubular
neighborhood

DE {x e M : dist (x, D) &lt; e}

about D, with boundary dDe.

Suppose that the volume of De — D is not too big, and vol (D) and e are not too
small. Then we may construct test functions/le and/2f by

A« l on/)

2 e
1 — dist (x, £&gt;) for dist (x, D) &lt; -

e 2

0 for dist (x, D) &gt; ^

and

/2 f
1 onM-i)£

- dist (x, D) - 1 for - &lt; dist (jc, D) &lt; 8
e 2

0 for dist (x, D) &lt; -

Then/l£ and/2e are functions with disjoint support whose Rayleigh quotients are

bounded by

U|grad(/,,c)f 4 /Vol (Z).-D)
2V Vol(Z&gt;)
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and

Vol(M-De)

respectively.
If vol (DJ &lt; vol (M) - vol (Z&gt;), then we hâve that

vol(Z»

by the minimax characterization of Àx.

The strategy is now to choose D and s so that if /z(M) is too small, then the

right-hand side of the équation will be smaller than the left-hand side. This will then

give an implicit bound for h(M) from below.
This is essentially the strategy of the argument of Buser in [Bu].
In order to implement this strategy, we will need an effective way of estimating

the volume of De from above. In the situation of [Bu], where one assumes pointwise
curvature bounds, this is handled by the Heintze-Karcher Theorem [HK]. In our
case, we will need the following estimate, due to Gallot [Gai], which is an Lp
version of the Heintze-Karcher Theorem:

THEOREM [Gai]. Let Q be a domain in M with boundary dQ H a hyper
surface. Dénote by QR the domain consisting of ail points at distance at most Rfrom Q.

Then

_ i) Vol (QR) - Vol (Q) + (B(p)ct) ~ &apos; Vol (dQ)

(«-

where p is any number &gt;n/2, B(p) is an explicit constant given by

- 1Y/2
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q+ dénotes the positive part of the mean curvature of H, a is any constant, r__ is the

négative part of the Ricci curvature, and

r_

See [Gai] for a discussion of notation.
Note that |r_/a2- 1|+ &lt; |Ricc|/a2.
We will apply (1) in the following way: let H be a hypersurface which realizes

the Cheeger constant (see [Bu] for a discussion of the existence of such a

minimizer), and let Q be the component of M — H which has the smallest volume,
making an arbitrary choice if both components hâve the same volume. Then H is

a hypersurface with

area (H) h • Vol (Q)

and

with equality if H does not divide M into two pièces of equal size.

From hère on, we will always let H and Q dénote thèse choices.

In order to illustrate our line of argument, and also because we will need part
(b) below later, we will prove:

LEMMA 3.1. Let k and c be positive numbers, and let M be a manifold satisfying
one of the two following conditions:

Either
(a) The Ricci curvature is bounded below by k
or
(b) The volume of Q is bounded below by c • Vol (M).
Then, for p &gt; n/2, h is bounded below in terms of the spectrum of M and URicc)^.

In case (a), h is bounded below by A,, /?, and k, while in case (b), h is bounded below

in terms of Àu Vol (M), URicc^, and c.

Note that case (a) is a weak version of Buser&apos;s inequality.
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Proof. We apply inequality (1) with R 0. We then hâve

ae ~ \)\(Vol (QF) - Vol (Q) &lt; (eB(p)ae ~ \)\(B(p)a)~lh • Vol (Q)

{B(p)ol)2p
h2p-Vo\(Q)

JM
d vol (2)

and

4 Vol (Oe) - Vol (Q) 4(eB{p)*e - 1)

Vol (Q) À a /

a&quot;2&quot;1

Vol (O)
(3)

Let us choose s xo//?(/?)a, so that B(p)ae — x0. We may then eliminate s from
the above, so that the right-hand side of inequality (3) becomes

4B2(p)g(x0) - l)2&apos; -1

B(p) B(p)2poc2p&apos;
;h2p +

- 1

Vol (Q)
(4)

Let us first consider case (a). In this case, we may choose a so large that the

third term in (4) is 0.

In inequality (2), we may then find a constant h0 such that if h &lt;h0, then

Similarly, in inequality (3), we may find hx such that if A &lt; A,, then

4 Vol (Q,)-Vol (Q) kx

Vol (Q) &lt;Y*
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On the other hand, by the minimax characterization of Al9 we hâve

4 Vol (Qe) - Vol (Q) 4 Vol(fle)-Vol(fl)\

617

&lt; max

e2 Vol (fi) &apos;e2 Vol (M)- Vol (Qe)J

4 Vol (fi8) - Vol (fi) 4 Vol (fie) - Vol (fi)
Vol (O)

/ 4 Vol (Gfi) - Vol (Q) 4 Vol
&lt; max ^-

c2 Vol (M) - 3/2) Vol (Q)

- Vol (Q)

(1/2) Vol (Q)

/4 Vol(Qf)~Vol(Q)
V2 Vol(O)

using that Vol (M) &gt; 2 Vol ((2).

Therefore, if h &lt; min (Ao, /z,), we hâve a contradiction. This establishes (a).
To establish (b), we argue similarly, except that we can no longer make the third

term in (4) disappear by choosing a large. We can, however, replace

JQ

by

|Ricc|&apos;

2&quot;

We now hâve the two inequalities

Vol (Qe) - Vol (Q) &lt; (e x° - 1)

(B(p)*)2p

-xh • Vol-

Vol (fi) H (5)

and

4 Vol (fic) - Vol
Vol (Q)

r • Vol (M)
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We may now choose a sufficiently large so that the third right-hand term in (5)
is less than (1/3) Vol (Q), while the third right-hand term in (6) is less than A,/3.
Then, as before, we may find Ao and Aj such that if A &lt; Ao and A &lt; A,, right hand
sides of (5) and (6) are less than (1/2) Vol (O) and (1/2)A, respectively. The proof
of (b) now concludes in the same way as the proof of (a).

The difficulty in proving Theorem 3.2 is now clearly that we hâve no a priori
control over Vol (Q), and hence the denominators in the third terms may go to zéro.
We will remedy this by choosing R in the inequality (1) so that Vol (QR) is large.
To do this, we will not need to choose a value for R, but only for ô, where

Vol (O).

Applying (1) to thèse choices, we hâve

4. __„, t&lt;
s2 Vol (QR) s2 1

L_ v A/ J l_

h2* 1 ||Ricc||g
&apos;

(B(p)a)2p (\+ô2) ol2p(\+ô2)Vo\{Q)

1+^2
&apos;

B(p)\+Ô2

(il) h2&apos; 1 l|Ricc||g -I

B(p)2p(x2p~2\+Ô2 0L2p-2(\+ô2) Vol(Q)J&apos;
V

It now remains to choose a and ô in a reasonable way. We will do this in such

a way as to minimize the sum of the two terms not involving h. To do this, we will
need the following elementary

LEMMA 3.2. For A and B positive, the minimum of

IS

and occurs when
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Applying this to (7), we see that the sum of the first and last terms îs mimmized
by

for

KP &apos;

ô21&quot; Vol (Q)1»

Setting

Q(p, n) 4{B2(p))g(x0)(p - l

we may rewnte the minimum as

&apos; &apos;

ô2&quot;&gt;Wo\(Q)l&quot;&apos;(\+ô2)

We want to make (8) less than A,, which will be achieved when

using the fact that

(TT^)&lt;1&apos;

so that

Notice that a does not dépend on Vol (£2), while ô -+ oo as Vol (Q) -* 0

Notice also that the sum of the two remaining terms îs

h Vol(Q) (n-\)2p &apos;

/»2&quot; Vol(Q)
+

1
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so that the coefficients of h ¦ Vol (£2) and h2p ¦ Vol (fl) dépend on ô2 Vol (fi), and

not on ô2 alone.

In order to make use of (8), we must hâve that

Vol (QR + S) £ Vol (M) - Vol (fl*),

or, in other words,

Vol (QR +,) - Vol (QR) &lt; Vol (M) - 2 Vol (QR). (9)

But

Vol (QR + C) - Vol (QR) &lt; (eB^ - 1)| Vol (QR) - Vol (Q) + -^^ h Vol i

¦ h2p Vol (Q) + -—j-^
OC I

where &quot;

• • •
&quot; dénotes terms which are small when h and Vol (Q) are small.

Substituting

l|RiccL
ô2/p Vol (fi)l/&quot;&apos;

we find that (9) holds when

(e*° -l)\ô2 Vol (fi) + • • •+
3 Vol(Q)] &lt; Vol (M) -2(\+ô2) Vol (fi),

ô2 Vol (fi) (ex°- 1)( 1 + ——\ + 2 + • • • U Vol (M) - 2 Vol (fi).

Now suppose that

Q(p,n)\\Kii
\o\(M)Vp
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We may then find a value for à2 Vol (Q) such that (7) is less than A, and (9)
holds, unless either Vol (Q) is bounded from below or the &quot;

• • •
&quot;

terms are bounded
from below. In the first case, Lemma 3.1 gives us a lower bound for h. In the second

case, we then hâve lower bounds for two expressions of the form

(const)A • Vol (Q) + (const&apos;)/z2/7 • Vol (Q).

Using the upper bound for h by Cheeger&apos;s inequality, we then hâve a lower
bound for Vol (Q). We then also hâve a lower bound for h. Note that since we also

hâve a value for ô2 Vol (Q), we now hâve a bound for ô as well.
This concludes the proof of Theorem 3.2, and hence also Theorem 3.1.
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