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Link invariants via the eta invariant

J. P. Levine

Introduction

In their fundamental work on the Index Theorem for bounded manifolds,
ATIYAH-PATODI-SINGER introduce a real-valued invariant rj(M, 9\ associated

with a closed oriented odd-dimensional Riemannian manifold M (say connected)
and a unitary représentation 9 of its fundamental group; a basic observation is that
fj gives a diffeomorphism invariant of (M, 9) - see [APS II]. It is a conséquence
of the Index Theorem that if (M, 9) is the boundary of (F, 0), then fj(M, 9)

signature (V, ff) — k signature V, where k is the dimension of the représentation. In
the présent work we consider pairs (M, a), where M is a (connected) closed oriented
odd-dimensional manifold equipped with a G-structure a, i.e. a homomorphism
from nx(M) to a group G. We interpret fj(M, 9ol) as a function p(M, a) : Rk(G) -? (R,

where Rk(G) is the (real) variety (or inverse limit of such, if G is countably
generated) of représentations of G into the unitary group U(k), k &gt; 1. In (II.2) we
show that p(M, a) is piecewise-continuous-more precisely, Rk(G) admits a stratification

by subvarieties so that p(M, a) is continuous on each open stratum. With an

eye to the use of this invariant to study link concordance, we examine the

invariance of p(M, a) under homology cobordism - in (IL3) we show that p(M, a)

dépends only on the homology cobordism class of (M, a) except on the points of
some proper subvariety of a particular type that we call spécial. For example, if
9 e Rk(G) factors through some group of prime power order then 9 cannot lie on

any spécial subvariety. Thus for such 9 p(M, a) • 9 is a homology cobordism
invariant of (M, a) - thèse are essentially the signature invariants of SMOLINSKY
[S]. But the global nature of p, and its continuity property, gives this invariant more

power than the individual évaluations, as is illustrated by the examples in (111.4,5).

In order to apply p to links we first point out that the compléments of certain
classes of links admit &quot;canonical&quot; G-structures, where G is either a free abelian

group Z&quot;1, a free group F, or an &quot;algebraic closure&quot; F of F, depending on which
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class of links. The représentation varieties of Zm and F are well-understood, but we
need to study Rk(F). Our approach, motivated by the use of the dihedral group in
[CO], considers certain quotients of F whose algebraic closures are more easily
understood. In particular we can construct some rather explicit analytic curves in
Rk(F). This is ail done in Chapter I.

To illustrate the scope of thèse invariants we give two realization theorems

(III.3) which, for certain groups G and Hermitian matrices X with entries in ZG,
construct links with G-structures on their compléments such that p(M, ce) • 6 can be

computed from the signature of 9(À). We then make two particular applications. In
the fîrst we construct two one-dimensional links which are seen to be non-concordant

only by looking at p on a proper lower stratum of i?1(Zm), the ra-torus - the

more traditional signature invariants, as well as the ALEXANDER polynomial, fail
to detect this. By contrast we prove (in (II.4)) that such examples cannot exist for
higher-dimensional links or for one-dimensional links with a mild triviality prop-
erty - i.e. for such links, p contains concordance information only on the open
principal stratum of continuity. In the second example we exhibit the phenomenon,
first detected by COCHRAN-ORR [CO], of links of any odd-dimension (with
vanishing fi -invariants in dimension one) which are not concordant to boundary
links. For thèse examples we compute p on the analytic curves in Rk(F) constructed
in Chapter I.

Many of the results of this paper were announced in [L4]. In a future work (see

also [L4]) we will use signature functions on représentation varieties to study the

CAPPELL-SHANESON homology surgery T-groups of infinité groups. The

WALL surgery groups of finite groups are understood largely through the use of
this technique but, for infinité groups, the locally constant nature of the signature
function makes it less useful - on the other hand this property allows one to
globalize and obtain A^-theory invariants (see e.g. [Mi]). By contrast, for homology

surgery groups the signature function has discontinuities and so is more likely to
yield useful information - for the same reason it is unlikely that globalization is

possible.

Chapter I: Unitary représentation varieties

1. If G is a (discrète) group, then we let Rk(G) dénote the set of ail fc-dimen-
sional unitary représentations of G. It is a standard fact that, when G is finitely-gen-
erated, Rk{G) is a real algebraic variety. If xl9.. xn is a set of generators of G,

then p \-+ (p(xx),..., p(xn)) imbeds Rk(G) into U(k) x • • • x U(k). Each relation in

{x{,. xn} defines a real polynomial équation (using A ~l Â7) and so, if G is

finitely-presented, we see Rk(G) displayed as the zeroes of a finite set of real
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polynomials. In the infinitely présentée! case we appeal to the Noetherian property
of the real polynomial ring. Rk(G) is the zéro set of an infinité set of polynomials,
but since the idéal thèse polynomials generate is finitely generated, we can equally
well regard Rk(G) as the zéro set of a finite set of polynomials. It is easy to check

that the variety obtained is independent (up to isomorphism) of the présentation
of G.

Since we will often hâve to do with infinitely-generated groups, we wish to give

Rk(G) the &quot;algebraic&quot; structure induced by the finitely-generated subgroups of G.

In other words a function/ : Rk(G) -* R is regular if/= g o /* where i : H -&gt; G is a

homomorphism from some finitely-generated group //, /* : Rk(G) -+ Rk(H) the

induced function and g : Rk(H) -»(R is regular. Functions into Rk(G) - from some
real algebraic variety, or Ri (H), for another group H - are regular if their composition

with every regular function Rk(G) -&gt; R is regular. We adopt similar définitions

for (real) analytic functions into or out of Rk(G). It is easy to see that any
homomorphism (j&gt;;G-+H induces a regular map &lt;/&gt;* : Rk(H) -* Rk{G) and the
&quot;suspension&quot; Rk(G)-^&gt;Rk+l(G), defined by the inclusion U(k)^U(k + l), is

regular.
The topology on Rk(G) will always be the &quot;classical&quot; (rather than the Zariski)

topology, i.e. that inherited as a subspace of U(k) x • • • x U{k) if G is finitely-generated,

or the direct limit topology if G is infinitely-generated.

Examples

(a) R\{G) is the usual character group of G. If G Zm (free abelian group of
rank m), then RX(G) is the m-torus.

(b) If G Fm, the free group of rank m, then Rk(G) U(k) x • • • x U(k) the

w-fold product.
(c) If G is finite, then Rk(G) is the disjoint union of a finite number of conju-

gacy classes of sums of irreducible représentations.
(d) Suppose G D, the infinité dihedral group with présentation {x, t :

t2 1, txt~{ jc&quot;1}. Then R2(D) has nine components. Eight of them are

single conjugacy classes - pull-backs of eight of the ten conjugacy classes of
U(2) -représentations of Z/2 x Z/2 via the abelianization Z&gt;-&gt;Z/2xZ/2.

The ninth component is the union of the conjugacy classes of the alge-

braically imbedded circle i : S1 £ R2(D) defined by i(œ) -1 J,

i (co) - x I This component contains the pull-back of the remain-

ing two conjugacy classes of représentations of Z/2 x Z/2.
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(e) For any subring A of the real numbers IR, we consider an enlargement of
the dihedral group DA, defined to be the semi-direct product A x Z/2.
More specifically DA is the split extension of A by Z/2, where conjugation
of A by the generator t of Z/2 is given by: tXt~l — — X for any X e A. Then

there is an analytic map ï : U-+R2(DA), defined by ï(s) • / I 1 and

ï(s) - X
-2msa for X e A. If A contains Z properly, then ï is an

imbedding. Note that, under the restriction map R2{DA) -&gt;R2(D), we obtain
an infinité cyclic cover f(R) -+i(Sl).

(f) The preceding examples in (d) and (e) can be further generalized. Let 77 be

a finite group; and A a subring of U. Consider the wreath product A§n
which is, by définition, the semi-direct product ATI x 77, where ATI is the

group algebra and conjugation of an élément X of ATI by an élément g g II
is defined to be g • X g ATI.

For A — Z, we define an algebraic imbedding i : Tk c+ Rk(A§II), where k |77|,

and Tk is the £-dimensional torus. For the définition we identify the coordinates of
C* (or R*) with the éléments of 77. This induces an identification Ck C77 and
Tk (R77/Z77. Thus there is an induced multiplication Tk x Z77 -? 7*. We also use

the obvious identification of Tk with the diagonal unitary matrices (maximal torus
of U(k)).

We now define / by the formulae:

(i) (ï(t) • g) - y =gy for t g Tk, g e 77 c Z§77, y g C77

(ii) (i(î) • X) - y (tA) • y for t g 7*, A g Z77 &lt;= Z§77, y e C77.

If A U we can define an analytic imbedding ï : Uk UTI c&gt; ^(R§77) by the

formulae:

(iii) (f(a) • g) • y gy for a g KW7, g g 77 c |R§77, y g C77

(iv) (f(a) • A) • y e(aA) • y for a g R77, A g (R77 c R§77, y g C77

where e : IR77 -&gt;Tk R77/Z77 is the (exponential) quotient map.
As in (e), the restriction Rk(M§II)-+Rk(Z§II) induces an infinité cyclic cover

Finally we mention the flurry of récent activity in the study of SU(2) (and
SU(n)) représentations of knot groups, much of it aimed at the calculation
of the Casson invariant and instanton homology of 3-manifolds (see e.g.

[B], [F], [K], [KF], [KK]).
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2. In this section we recall the notion of algebraic closure of a group and after
some préparation in sections 3 and 4, give some examples of unitary représentations
of some of thèse groups using l(e), (f). A group G is said to be algebraically closed

if any contractible System of équations over G has a unique solution in G. A System

of équations over G : x; wt (xx,. xn), \ &lt;,i &lt;n, where wt --= wt (x{,. xn)
g F * G, F the free group gênerated by the indeterminates {jc,}, is said to be

contractible if p(wt) 1, where p : F * G -+F is projection. In other words, wt is a

product of conjugates of éléments of G. A solution of such a System is a collection
of éléments g{, gn in some overgroup of G, such that g, w, {gx,.. gn) for ail
/. The term algebraically closed appears often in group theory literature (see e.g.

[Ne]) with rather différent meaning than ours. (If we replace the contractible
condition with a weaker one - acyclic - which means p(wt e [F, F], one obtains a

similar theory. It is not known if thèse two notions of algebraically closed actually
differ.)

In [Ll] it is shown that every group G admits an essentially unique homomor-
phism / : G -&gt; G, where G is algebraically closed and / is &quot;initial&quot; among such

homomorphisms. G is called the algebraic closure of G. If / : X -? Y is a map
between finite polyhedra and its cofiber is contractible, i.e. / is a homology
équivalence and f*nx{X) normally générâtes nx(Y), then/induces an isomorphism
nx(X) ^&gt;nx(Y). For any group G, its nilpotent completion G is algebraically closed

(see [L]). We dénote by G e G the subgroup of ail éléments which are part of a

solution to some contractible System of équations over G, i.e. G is the image of the

canonical map G -*G extending G ^&gt;G. We call G the residually nilpotent algebraic
closure of G.

Despite the size of G it does seem to hâve a reasonable collection of unitary
représentations. In [VI] it is proved, for example, that any unitary représentation of
a free group F extends to a unitary représentation of F (in fact, of F). It will be

proved, in a future paper, that for any fmitely-generated group G, any unitary
représentation of G which lies in the &quot;component&quot; of Rk(G) containing the trivial
représentation, extends over G. We will be interested in some examples where

représentations of G extend to many différent représentations of G. The topological
implications of this phenomenon will arise later in Section (III.5).

Our construction of représentations of algebraic closure will rely on the relation-
ship of the algebraic closure of certain groups to the groups DA and /t§77 discussed

in example (e) and (f) in Section 1. In fact it is shown in [L] and [CO] that, for the
dihedral group Z), D DA where A Z[£]. We will show that, more generally, for
any /&gt;-group 77, Z§/7 s Z§/7 s Z[l//&gt;]§/7.

3. We will consider a gênerai semi-direct product G A x /7, where 77 is any
group, A is a left Z77-module and the conjugation action of 77 on A in G coincides
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with the left multiplication of 77 ç Z77 on A. Our aim is to give a description of G

in terms of 77 and the 7-adic completion of A, where 7 777 is the augmentation
idéal of Z77.

Let Â \imA/IqA. We show that A is a module over Zjrc]. First note that
7(77^) ç (777)«, where 7(77^) is the augmentation idéal of 77^, the q-th term of the
lower central séries of 77 (defined recursively by FIl IJ, Uq [77, 77^ _ ,]). To see

this, by induction on q, consider a gênerator [g, h] of 77^, where g e 77, h e TIq_x.
Then we hâve

[g, h] - 1 =((g - 1)(A - 1) -(h - \)(g - \))g-xh-xe(in)I{nq^x).

But I{TIq_,) c {in)q-\ by induction.
Now A/IqA is a module over Z[n]/(IIJ)q so it is also a module over Z[77]/

7(77^) • Z[77]. But this is the same as ZJ77/77J - for any group G and normal
subgroup N, Z[G/N] =ZG/I(N) • ZG. Since 77 is the inverse unit of {77/77^}, we
conclude that A is a module over Z[77].

PROPOSITION 3.1. A x 77 is the nilpotent completion of A x 77.

Proof. First note that (A x 77)^ Iq~ lA x IJq. This is a straightforward recur-
sive calculation, using the fact that 7(77^) ç (777)^. Therefore the lower central séries

quotients G/Gq A x U\ïqXA x 77^ (A\lq~xÂ) x (77/77,,) and the resuit follows
by letting q -» oo.

Suppose (ÀtJ) is an (n x «)-matrix over Z77 with the property eO^) ôtJ (e is the
usual augmentation Z77 -?Z). Then the linear System of équations:

7=1

has a unique solution in Â for any cc{ e Â. In fact, the recursive formulae:

n

i a -+- 1 — z
— / \ i/ — u i a &apos; 10

~~~

7=1

define {JfI&lt;7} ^ ^ satisfying Z^+ x ^ mod /M and XJL j Ay^ a, mod 7M. If
7? c Z77 is any subring and i? an 7? -submodule of Â, we dénote by B the
7?-submodule of ^4 consisting of ail éléments which appear as part of the solutions
of a System (i) with ÀtJ e R and a, e B. This can be alternatively described using the
Cohn localization [Co]. If S dénotes the set of matrices over R which become
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non-singular over Z after augmentation, then Rs is the &quot;localization&quot; of R in which
the matrices of S become non-singular. The observation above means that the
inclusion B ç A extends to a unique homomorphism Rs (g) R B Bs -+ A and B is its
image.

PROPOSITION 3.2. Axll (ZI1)A x 77.

Note. In this formula, A x FI and 77 mean the residually nilpotent algebraic
closures, while (Zfï)A is the module localization defined just above.

Proof. Suppose (a, g) g A x 77 ^A x 77 A x 77. To understand a and g we
examine a System of équation over A x IJ, denoting the indeterminates (Xn x,). The

System breaks up into two Systems - corresponding to the variables {Xt}, {xt}. The

System over 77, obtained by projecting the original System, is contractible if the

original System is and, in this case, will hâve unique solutions xt gt g 77. Making
this substitution in the original System results in a System of linear équations (i),
where a, g (Zfl)A, ktJ e Z77. The contractibility of the original System implies
e{XtJ) ôu and so the solutions lie in (Zfl)A.

To complète the proof we will show that, for any a e (Zfl)A, the élément

(a, 1) g (Zfl)A x 77 is part of a solution of some contractible System of équations
over A x 77. Suppose we hâve a linear System (i) with XtJ e Z77, a, g (ZÛ)A and

e(Ày) èv whose solution set contains a. Since {ZÛ)A is a Z77-module it suffices to
consider the case where every a, g A. Write out ktJ ôtJ + I,rcljr(gur — 1), where

cljr g Z and gljr g 77. Then consider the foliowing System of équations:

(ii) (Xl9

where the ordering of the terms in the product can be chosen at will. This is a
contractible System over (Zfl)A x 77 with indeterminates {(Xl9 1)} which
corresponds precisely to the linear System (i). Now there is some contractible System of
équations over 77:

(iii) xt w,(x,,..., xn\ \&lt;,i&lt;,n

such that each gljr is a member of the solution set of (iii). (The single System (iii)
is obtained by putting together the individual Systems which give rise to each gljr.)
We may now substitute for each gljr appearing in (ii) the variable xt from (iii) such

that xt gljr is part of the solution. Now (ii) contains two sets of indeterminates:
{(Xl9 1), (0, X/)}. If we identify the variable (0, */) in (ii) with xt in (iii), then the
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combinée System (ii), (iii) is a contractible System over A x 77 whose solution set

contains (a, 1), as desired.

4. We now specialize to the case of 17 a /?-group. As a conséquence of
Propositions 3.1 and 3.2 we prove:

THEOREM 4.1. If II is a p-group and A a left 1.11-module, then there is a
natural inclusion A x 77 ç= Ap x 77, extending the identity on A x 77, under which

A x 77 c Aip) x 77.

Notation. Ap=Zp®zA ZpU ®zn A and A(p) Z(/&gt;) ® A Z(/?)77 ® ^,
where Z^ is the ring of /?-adic integers and Z(/?) is the ring of rational /?-adic integers
i.e.

LEMMA 4.2. If II is a p-group, then (777)n Ç/?777, /or swwe positive integer n9

and pk{IU) c (777)2, /or sorae positive integer k.

Proof Let i* Z/p; we must prove that the augmentation idéal 777 £ i?77 is

nilpotent, i.e. (777)&quot; 0 for some n. Suppose 77 is cyclic of order p with generator
t. Then 777 (t - 1) and so (777)&quot; ((/ - 1)0 (tp - 1) 0. We now proceed by
induction on the order of 77. Let N be a cyclic central subgroup of order p and set

n=n/N. By induction (777)n &lt;= Ker {7*77 -? 7*77 &apos;} Z77 • 7N, for some «. So

(777)^ c (Z77 • 7/V)&apos; Z77 • (7A0&apos; 0, since A^ is central and of order p.
To prove the second inclusion we first note the simple formula: for any g e 77,

gr — 1 r(g — 1) mod (777)2. This follows by induction on r: gr — 1 =g(gr~ *
— 1) +

g - 1 s g&quot;l - 1 +g - 1 (mod (777)2) s (r - l)(g - 1) +g - 1 (mod (777)2). Now

suppose g^ 1 for every g e n. Then pk(g — 1) 6 (777)2 for any g e 77.

As a conséquence of this lemma the /?-adic topology and the (777)-adic top-
ology on Z77 coincide on 777. Thus 777 =\imqIII/(III)q coincides with (777)^

lim* inipk(in). Since Z77 / 7/7 Z and (ZII)p/(III)p Zp9 we hâve Z77 c (Z77)p.

Now, by Proposition 3.1, A xll Â x fl Ârx 77, since 77 is a p-group. Recall
77 77 77 for any nilpotent group. So A Z77 ®z/7 ^ c (Z77)p ®znA=Ap and

the first assertion of Theorem 4.1 follows.
To prove the second assertion we need:

LEMMA 4.3. Let II be a p-group and A a left Zll-module such that
Z ®z/7 A 0. Then Z(p) ®z A 0. In particular, if{ktj) A is a square matrix over
Z77 such that e(À) is non-singular over Z, then X is non-singular over Z(/7)77.
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This lemma implies immediately that, under the inclusion Z/7 -&gt;ZpTI established

above, we hâve Z/7 ^Z(p)/7. Thus the second assertion of Theorem 4.1 follows
from Proposition 3.2.

Proof of Lemma 4.3. We first note that the second assertion follows from the

first by considering A to be the Z77-module with présentation matrix X.

Let R Zip again and let A&apos; R®ZA=RTI ®z/7 A. So R ®RnA&apos; 0. We

will prove that, for any RIJ-module B, that R ®Rn B 0 implies B 0. If A&apos; 0,

then A consists entirely of éléments of finite order prime to p. But then

1{p)®A 0.

Suppose II is cyclic of order p with generator /, then R ®RnB — 0 implies that
/ — 1 is an epimorphism of B. But (t — \)p tp — 1 0 and so B 0. We proceed

by induction on |/7|. Again let N be a central cyclic subgroup of order p and
U&apos; TI/N. Let B&apos; RI1&apos; ®Rn B; then R ®Rn, B&apos; R ®Rn B 0 and so, by
induction, we hâve B&apos; — 0. If we now consider B as an iW-module and note that
R ®rn ^ RW ®Rn B B&apos; 0. But we know the lemma is true for N and so we
conclude B 0.

We can now combine Theorem 4.1 with the représentations of l(f), to deflne the

analytic map ï : Uk-+Rk(Z§Il)9 where k |/7|, using ï defîned in l(f) followed by
the restriction of représentations IR§/7 to Z§/7 via 4&gt; from Theorem 4.1.

Chapter II: The signature invariant

1. In [APS I, II] an invariant, which we dénote ?/a(M), is defîned for a closed

smooth oriented connected odd-dimensional manifold M and a unitary représentation

a : nx (M) -» £/(£). We give a brief outline. If M is Riemannian, an invariant
rja(M) g R is defined from the spectrum of a certain self-adjoint elliptic linear
differential operator. The following theorem is of paramount importance:

INDEX THEOREM [APS II]. If M dN where N is a connected compact
Riemannian oriented manifold, and a ex tends over Ill(N) then:

signa(A0=Â:

where signa(iV) is the (twisted) a-signature of N (a is also used to dénote its extension

over I1X(N)) and L(p) is the Hirzebruch L-polynomial in the Pontriagin forms
ofN.



Link invariants via the eta invariant 91

We will recall the définition of signa(7V) below. As an immédiate conséquence of
the Index Theorem, one concludes that rça(M) r\a{M) — krjo(M), where o dénotes
the trivial représentation, is a diffeomorphism invariant of (M, a). Then the Index
Theorem implies the formula:

(1) UM)=k sign (N) - signa(AT).

Thus rjx(M) is an integer if M bounds but, by contrast, [APS II] supplies the

following example:

(2) If M S1 and a : il, (S1) -&gt; (7(1) is defined by a(f) (elnia\ for a suitable

generator / of 77, (S1) and a real number a, then:

-20 0&lt;a&lt;l

Let&apos;s recall the définition of signa(iV) - see [APS II] or [N] also.

We adopt the following convention. If a : 77 —? U{k) is a représentation and A is

a left Z/7 or C/7-module, then Ck ®a A dénotes C£ ®cn A where C£ is C* with the

right C/7-module structure defined by the formula v • g va(g); v is interpreted as

a row-vector.
Now we can define H+(N;&lt;x) to be the homology of the chain complex

C* ®a C^(N)9 where N is the universal covering space of N, if /7=/71(iV).
H^(N; oc) supports an intersection pairing via the following pairing on the chain
level:

(3) &lt;*;, (g)cuv2(g)c2y vl(x(&lt;c,, c2})vT2

where &lt;Cj, c2&gt; is the equivariant intersection pairing on N with values in Z77, vx is

the transpose of v and ~ dénotes complex conjugation. If dim N 2q, then (3)
induces a — l^-Hermitian pairing on the complex vector space Hq(N\&lt;x). More
generally, one obtains a non-singular pairing of H^Nicc) with //2&lt;/- *W cW; oc) -
using Poincaré duality.

If G is a group, then a G-manifold will be a pair (M, a), where M is a compact
oriented manifold and a a collection of homomorphisms cct :7r1(MJ-^G, where

{M,} are the components of M, each af defined up to an inner automorphism of G.

Now suppose (M, a) is a G-manifold, where M is also closed and odd-dimen-
sional. For any 0 e Rk(G), the composition don gives a unitary représentation of
7r, (M) (or 7i, (MJ, for each component of M) and so fj6oc(M) e U is defined. We
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can thus define:

by p(M, a) • 9

2. Our first resuit is that p(M, a) is &quot;piecewise continuous.&quot; The discontinuities
will be subvarieties of Rk(G). When G is finitely-generated, and so I£*(G) is an
ordinary (real) algebraic variety, then a subvariety is the zéro set of a regular
function (or, equivalently, a fini te set of functions). To cover the case of G

infinitely-generated we define a subvariety to be, in gênerai, the zéro set of a regular
function.

THEOREM 2.1. If (M, a) is a G-manifold, M closed odd-dimensional, then there

exists a stratification: Rk{G) =I02li2&apos;&lt;&gt;r,2ZI+12&quot;t offinite length {i.e. Et
is empty for some /), where each It is a subvariety of Rk(G), such that

p(M, oc) \ It — Zl+l is continuous for every i ^ 0. The discontinuities of p(M, a) are
ail given by integer jumps, i.e. when reduced mod Z, p(M, a) is continuous.

We will call {Z,} a continuity stratification for (M, a). lx will be called a singular
locus and Eo — II a domain of continuity, if Ix is a proper subvariety. Of course
there are many possible continuity stratifications, although it is possible to define a

minimal one when G is finitely gênerated.

Proofi The particular continuity stratification we propose is obtained as follows.
Consider, for any 9 e Rk(G), the number:

(1) r(0)= £ dhncHt(M;0*).
i 0

We will prove that, for any r, the subset of Rk(G) defined by

(2) Zr {8eRk(G)

is a subvariety of Rk(G). Note that Eo Rk(G) and Er (f&gt; if r &gt; kN9 where AT is the

total number of simplices in a triangulation of M.
To see that Ir is a subvariety, consider the free ZG-chain complex {CXM), 5J,

where M is the regular G-covering of M defined by a. Each ôs : C(M) -? CS_X(M)
is represented by a matrix (Ap over ZG, and so H+(M; 0a) is the homology of the
chain complex C* ®e C^(M) whose boundary operators are represented by the
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complex matrices (0(/lJ7)). Each 9(Xsy) is, itself, a matrix and thèse form blocks in the

larger matrix. Since

dim HS(M; 0a) dim (C* ®0 CS(M)) - rank (0(AJ,)) - rank (0(k],+ &apos;))

we hâve r(0) =kN-2Ts rank (0(Aî,)). If T(6) is the block sum of the matrices

(0(/l*)), over ail s, then

(3) Ir {0 : rank !T(0) &lt;: £(*:# ~ r)}.

Since the entries of 7(0), and therefore its minors, are regular functions of 0, and

Zr is defined, according to (3), by the vanishing of minors, we conclude that Zr is

a subvariety.
We must now prove that p(M, a) is continuous on the sets Vr {0 :

dim //*(M; 0a) r}. We may as well assume that M is connected (since p(M, a) is

additive under disjoint union) and G =ttj(M), a =identity, since, if we use the
notation p(M) for p(M, a) in this spécial case, we hâve p(M, a) p(M) o a*, where
a* : Rk(G) -*Rk(nx(M)) - the function induced by a - is regular.

Rk(n{(M)) is well-known to be closely related to the class of fc-dimensional flat
bundles over M. For each principal £/(/:)-bundle Ç over M, let A(Ç) dénote the

space of flat connexions on £ and B(£) A(Ç) modulo the action of the gauge

group of bundle automorphisms of £. Then the disjoint union of {B(Ç)} is

homeomorphic to the quotient ^(7r1(M))/conjugation. Suppose we choose a

Riemannian metric for M. Then the rç-invariant rjc(M) can be defined, for any
c e A(Ç), by considering the linear elliptic self-adjoint differential operator
Ec ±(*DC — Dc*) on Oeven(£), where Dt is the covariant derivative defined by c,

* the duality involution defined by the metric.
Let 0O e Vr and c0 e A(Ç) a corresponding connexion. To show continuity of

p(M) | Vr at 0O, we can instead consider rjc(M) as a function of c e V&apos;r near c0,
where V&apos;r is the set of c such that Ec has nullity r. Note that y\c (M) — p(M) • 0 is

constant, for corresponding c, 0, and the nullspace of Ec corresponds to H^(M, 0)

by Hodge Theory (see [APSII]). Now choose e &gt;0 so that ECQ has no non-zero
eigenvalues X with \X\ &lt; e and let W be a neighborhood of c0 so that ±6 is not an
eigenvalue of Ec for any c e W. We can follow [APS III, p. 74fl] and write
rjc(M) =rj&apos;c + y\&quot;c for c e W, corresponding to eigen-values X with \X\ &lt; e and |A| &gt; e,

respectively. Now r\&quot;c is, up to a constant, the rj-function of an invertible operator
if c e W and, as shown in [APS III], is therefore a differentiable function of c. On
the other hand, r\&apos;c is just a finite sum of the signs of those eigenvalues X of Ec with
|A| &lt; e. If d(c) dénotes the total dimension of the eigenspaces of Ec for eigen-values
X with Ul &lt; £, then d is locally constant on W, Since d(c0) r, we hâve d(c) r in
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some neighborhood W ^ W of c0. But then, if c e W n V&apos;r, Ec has no eigenvalues
X with 0&lt;|A|&lt;6 and so tj&apos;c O. So we conclude that rjc(M) is continuous in
W&apos;nV&apos;r.

The continuous function p(M, a) : Rk(G) -» R/Z, defined by reducing p(M, a)

mod Z, is well-understood. It is locally constant when dim M 3 mod 4 and differs
from a locally constant function by an explicit formula depending only on the

déterminant Rk(G) -? R\(G). (See, e.g. a forthcoming paper of M. Farber and the

author.) Furthermore p(M, a) dépends only on the G-bordism class of (M, a), by
the Index theorem.

3. We propose to investigate the extent to which p(M, a) is an invariant of
homology G-bordism. We say (M, a) and {M\ a&apos;) are homology G-bordant if there
is G-manifold (N, fi) such that dN Mf - M and p \ nx (M) a, 0 rc, (M&apos;) a&apos;, up
to inner automorphism, and H^(N, M) H^(N, M&apos;) 0. It will turn out that, in
this case, p(M, a) p(M\ a&apos;) except on a subvariety of Rk(G) of a certain type.

Let A be a finitely-presented CG-module. We define a subvariety Z^ of Rk(G) by

To see that this is a subvariety, consider a présentation matrix (A^) for A. Then, if
(Av) is an (m x /i)-matrix - i.e. A has w generators and m relations - C* ®e A is the

quotient of Cnk by the row-space of the complex (mk) x («^)-matrix (6(Ày)). Thus

Z^ is the zéro set of ail the nk x nk minors of (^(Ay)), and each minor is clearly a

regular function on Rk(G).
We define a spécial subvariety of i^C^) to be a subvariety of the form IA, where

^4 =C ®j_Af for some finitely-presented ZG-module Ar satisfying:

(1) Z®ZG^&apos; 0.

In particular, if (ÀtJ) is any square matrix over ZG such that (6(A(/)) is unimodu-
lar, where e : ZG -&gt; Z is the usual augmentation, then {6 : det (9(1^) 0} is a

spécial subvariety. If f(9) det (0(2^)), we refer to / as a spécial function. Since

^©b ^u^5 the union of two spécial subvarieties is spécial. Note that a

spécial subvariety of Rk(G) is invariant under conjugation by any élément of U(k).
If k 1, then for any spécial subvariety IA there is an élément X e ZG such that
e(Â) 1 and 0(A) 0 for any 0 e IA. If (ÀtJ) is an m x « présentation matrix of A
then some intégral linear combination of the (n x n) -minors of (e^)) equals 1. This
is just a polynomial in the entries of (e(ktJ)) and we choose X to be the same

polynomial, replacing each occurrence of e(Xy) of Xy. Because k 1, 9(X) is a linear
combination of the (n x «)-minors of (9(XU)), for any 0 g R\(G).
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We point out the following important property

PROPOSITION 3 1 A spécial subvanety contains no point of Rk{G) which

factors through a représentation of a group ofprime power order

Proof This îs an immédiate conséquence of lemma (14 3) Suppose we hâve a

homomorphism G -*P, where P îs a /?-group, and 0 îs induced by 6&apos; e Rk(P) If A&apos;

îs a ZG-module satisfying (1), let B&apos; — ~ZP ®ÏGA&apos; Then ît follows from lemma

(I 4 3) that B C ®z B&apos; 0 Therefore C* ®eA Ck ®e B 0

Dénote by Pk(G) ç /£*((?) the set of ail 6 which factor through some group of
prime power order Pk(G) îs often a dense subset of Rk(G) - e g If G Zm, then

Pi (G) Ç #i(G) Tm, the ra-torus, îs the set of ail m-tuples (zl5 zm) where each

zx îs a /7-th power root of umty (some prime p) In (/(£) the éléments of
pnme-power order are dense - they are the éléments whose eigen-values are ail

powers of some single prime Thus Pk(F) îs dense in Rk(F) for a free group F Also
P2(D) is dense m R2(D) but, by contrast, P2(Da) consists only of those représentations

induced from R2(Z/2) by the canonical homomorphism DA -&gt;Z/2, if \e A -
see (I l(e)) For finite groups G which are not a product of groups of prime power
order, ît îs easy to see that Pk(G) îs smaller than (and, therefore, not dense in)
Rk(G)

Our interest in spécial subvaneties stems from

PROPOSITION 3 2 Suppose C is a free chain complex over ZG, finitely
gênerated in each dimension, and suppose C Z (x)ZG C satisfies

(2) Hq(C) =0, for m&gt;q&gt;n, and Hn(C) is torsion-free

Then there is a spécial subvanety I ^ Rk(G) such that Hq{C, 9) 0, for m &gt; q &gt;n,

ifO$Z
Proof We begin with the standard construction of a chain contraction

sq Cq -&gt; Cq+ i, for m &gt; q ^ n, satisfying

(3) ôsq H- sq + d 1 for m &gt; q &gt; n and ôsn \ dCn +
1

Define sn dCn+x-+Cn+x so that dsn — \, since Hn(C) is torsion-free, dCn+l is

a direct summand of Cn and so we can extend sn over Cn Now assume sq is

defined for n &lt; q &lt; l £ m, so that (3) holds for l&gt;q&gt;n As a conséquence
5 o (S/_ a - 1) 0 Since H{(C) =0, Im (^_ 5 - 1) s dC/+ and so, since C/ is

free, we can construct £/ as desired
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Now choose homomorphisms sq : Cq -&gt; Cq + j, for m &gt; q &gt; n, so that 1 (g) sq — sq

(Cq is free). For any 0 e Rk(G) define ^ : C* ®0 Cq-&gt;Ck &lt;g&gt;0 Cq to be 1 ®sq. The

endomorphism dsq + sq+ld is an isomorphism - in fact, the identity - for
m &gt; q &gt;n when 0 is the trivial représentation, since it is then just k copies of
ôsq + sq+ld. If we define fq(6) det (ôsq + s9q + ô), then /^ is a spécial function for
m ^ q &gt; n. ïf we define £ Zw+ u • • • ulm, where Iq is the zéro set of fq, then 2&quot;

is a spécial subvariety and dsq + sq+xd is an isomorphism for m ^ q &gt; n if 6 $ Z.
We see that this implies Hq(C;8)=0 (for m&gt;q&gt;n). Let (/^ ôjJ +^+1d,
an isomorphism if 8 $ I. It is clear that &lt;^(Ker ô) ç= Im ë and so dimc Ker d ^
dimc Im d. On the other hand ImSç Ker 5, and so Im d must equal Ker d.

COROLLARY 3.3. Suppose (M, a) and (N, j?) are homology cobordant G-mani-
folds. Then, for some large subset (i.e. complément of a spécial subvariety) L of
Rk(G), p(M, a) | L p(N, j?) | L.

Combining this Corollary with Proposition 3.1, we hâve the following. Suppose
/ : V-&gt;Rk(G) is an analytic map from a connected analytic manifold V such that
i(V) contains at least one point of Pk{G) - for example, the maps / and Fof (I.l.(d),
(e), (f)) and (1.4) hâve this property. Then p(M, a) ° / p(N, fi) ° / off some proper
analytic subvariety of V - in particular p(M, a) ° / p(N, fi) ° / on an open, dense

subset of V.

Proof of Corollary. Let (W, y) be a homology cobordism between (M, a) and

(N, 0). Then H*(W, M) H^W, N) =0 and so, by Prop. 3.2, H*(W, M: Oy) 0

in a large subset of Rk(G). In particular sign0y (W) 0, for ail such 6, since this is

the signature of a Hermitian form actually defined on Image {H^(W; 9y) -&gt;

H^(W, M; Oy)} - similarly sign(W/)=0. It then follows immediately from the
Index Theorem (11.1(1)) that p(M, &lt;x) - 0 p(N, P) • 6.

4. In this section we will show that in many cases, including ail our applications
to higher-dimensional links and some classical links (see Proposition (III.2.2))),
p(M, a) has a singular locus I which is a spécial subvariety. When this is the case,

p(M, a) 11 gives no information about the homology bordism class of (M, a). In
other words, as long as p(M, a) p(N, P) on the complément of £, there is no way
to use the results of the previous section to show that (M, a) and (N, p) are not
homology bordant. (We will, however, give some examples, in (III.4), in the context
of classical links, where p(Af, a) and p(N, p) coincide on any domain of continuity
but differ in any large subset of Rk(G) - and so, by Corollary 3.3, are not
homology bordant.)
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We need a preliminary définition. Dénote by R°k(G) the set of ail 6 e Rk(G) such

that there exists a common non-zero fixed vector v eCk for every 9(g), g e G. In
other words R°k(G) is the conjugacy class of the subvariety Rk_x(G) £ Rk(G). This
inclusion is defined by 9 \—? S where ff(g) • (z,,. zk) (0(g) • (z,,.. z* _ x), z^).
Let Rk(G) dénote the complément of R°k(G).

THEOREM (4.1). Let (M, a) be an odd-dimensional connected oriented G-mani-

fold which satisfies:

(i) HXM) 0 for 1 &lt; i &lt; n - 1 (n dim M)
(ii) HX(M) -&gt;HX(G) is an isomorphism, and HX(G) is torsion-free
(iii) If n 3, f/ze« a factors through a finitely-presented group n : nx{M) ^

n^G, with Hx (n) % Hx (G) and H2(n) 0.

Then,for some large subset L of Rk(G), LnRk(G) is contained in some domain

of continuity for (M, a).

Remark, (a) If n &gt; 3, (iii) is automatically satisfied for n nx(M).
(b) I do not know whether p(M, a) is continuous on some large subset.

Before proving Theorem (4.1) we point out a corollary.

COROLLARY (4.2). Suppose (M, a) and (N, fi) are G-manifolds of the same
dimension satisfying (i)-(iii) in Theorem (4.1). Suppose that, for every domain of
continuity D in any Rk(G), there exists a large subset L such that p(M, oc) and p(N, /?)

agrée on D nL. Then for every k there exists a large subset Lk of Rk(G) such that

In other words, if p can detect that (M, a) and (N, are not homology
cobordant, then it can, in fact, detect it in some domain of continuity.

Proof of Corollary. Set Ak {6 e Rk(G) : p(M, a) • 9 * p(N, P) • 9}. We show,

by induction on k, that Ak is contained in a spécial subvariety of Rk(G). By the

theorem Ak £ IkjR%{G), for some spécial subvariety I. By induction Ak_ x Ak n
Rk^x(G) is contained in a spécial subvariety I&quot; of Rk_x{G). It is an immédiate

conséquence of the définition of spécial subvariety that I&quot; Rk_ {(G)nZ&quot;, for
some spécial subvariety I&quot; of Rk(G). Since R°k(G) is the conjugacy class of Rk__ X(G)

and I&quot; is invariant under conjugation, we hâve AknRk(G) £l&quot;, and so

Ak ^ lui&quot;. Since lui&quot; is spécial, the proof is complète.

Proof of Theorem (4.1). By (i), (ii) we can choose IçM,Ia one-point union
of circles, so that #,(M, X) 0 for i &lt; n - 1. Thus, by Proposition (3.2), there is
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a spécial subvariety Z of Rk(G) so that //,(M, X; 0a) 0 for 0 £ Z, i &lt;n-\. So

H^Mieaiï&amp;HtiXidoij) for i&lt;n-2, 0 g £, where j : nxX^%xM is induced by
inclusion. If «^5, then Hn_2(M;0oi) =0 for 6el, since Hn_2(M,6a)
//2(M; 0a), by duality, and 2 &lt; « - 2.

Consider the continuity stratification {Zt} constructed in the proof of Theorem

(2.1): Zd {0 : dimc H^(M, 0a) ^ d}. By the above considérations and duality, we

hâve, for n &gt; 5:

1) dimc H^(M; 9a) 2(dimc H0(X; 0a) + dimc //!(X; 0a)) for 6 $ Z.

Furthermore

dimc H{(X; 0a) dimc 7fo(Z; 0a) - kx(X) dimc H0(X; 0a) -f ifc(/w - 1);

m=rank//1(Ar).

So (1) becomes dimc H*(M; 0a) 4 dim H0(X; 0a) + 2A:(m - 1), if 0 6 Z. But a

simple computation shows that H0(X; 0a) 0 exactly when 0 g Rl(G). Thus we
hâve shown that, for d 2k(m - 1), Rk(G) =ZdvZ and Zd+ x c ^(G)ul The
theorem now follows, for « &gt; 5, using the continuity stratification:

Rk(G) ^Zd

We now look at n 3. By duality:

(2) dimc //„(M; 0a) 2(dim Hx (M; 0a) + dim H0(M; 0a))

We will also use the foliowing exact homology séquences:

(3) 0-&gt;H{(M; 0a) -? ^(M, *; 0a) -&gt; //0(*; Ool) -+ H0(M; 0a) -^0

(4) H2(M9 X; 0a) ^ H, (Z, *; 0a,) -&gt; ff, (M, •; 0a) -&gt; ^ (M, X; 0a) - 0.

Note that #0(*; 0a) C* for ail 0, H{(X, ?; 0a,) Cmk for ail 0, H0(M; 0a) 0 if
0 g R°k(G), and ^ (M, JT; 0a) 0 if 0 £ Z.

From (iii) we can construct maps:

M ^Bïl -&gt;5G, whose composition induces a.

This enables us to factor 5, in (4), as a composition:

H2(M, X; 0a) -&gt; Jf2(Jftc, X; 0a) -&gt; //, (JT, ?; 0a,).
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But H2(7t)=0 implies H2(Bn,X)=0 and so, by Prop. 3.2, we can choose a

spécial subvariety Z&apos; of Rk(G) so that H2(Bn, X; 0a) 0 if 0£Z&quot;. Note that
Hx (Bn, X) 0 if i&lt;\ and, since n is finitely-presented, the chain complex
{Cq(Bn, X; ZG)} is of finite type for i &lt; 2.

Let d 2k(m - 1) again. Then we hâve Rk{G) ZduZuZ&apos;, since if 0 $ ZuZ&apos;

we hâve, by (4), that dimc HX(M, *; 0a) mk, using d —09 and thus, by (3), that
dim€ HX(M; 0a) &gt; it(w - 1). By (2), 0 e Zd. We also see that Zd+, s i^(G) u
r ul&apos;, since if 0 ^ Rl(G) ulul&apos; we hâve from the preceding argument and (3)
that dimc HX(M; 0a) k{m - 1). Thus, by (2), dimc H+(M; Otx) 2k(m - 1) since

Now the conclusion of Theorem (4.1) follows using the continuity stratification:

Rk(G) ^Zd+lvZuZ&apos;^Z£i+2vi;vZ&apos;^&apos; •olursflullnl^&apos;&quot;

An examination of the proof of Theorem (4.1) shows that condition (iii) is

required only to assure that, for some spécial subvariety Z in Rk(G),
dimc HX{M, *; 0a) mk if 0 $ Z. Thus we can look for substitutes - for example:

ADDENDUM TO THEOREM (4.1). The Theorem holds if {iii) is replacée by:
(iii)&apos; G is free abelian and the ZG-module HX(M, *) has rank m.

Proof. Since H{(M, X) ®ZG Z &amp; HX(M, X) 0 we can apply Nakayama&apos;s

lemma to construct A g ZG, with e(A) l, so that AHX(M, X) 0. Thus, if
A=ZG[\/A], then HX(X, *, A)-+HX(M, *; A) is onto. Since HX(X9*\A) is free

(over A) of rank m and HX{M, *; /l) % HX(M9 *) ®zg^ st^ has rank m, we
conclude that /^(M, *; A) is free of rank m. Now let Z {0 : det 0(zJ) =0} a

spécial subvariety. If 0 ^ T, then we can extend 0 to a représentation of A9

0&apos; : A -+M(k, C), by defining O&apos;(\/A) 6(A)~\ For such 0 we hâve /^(M, *; 0a) «
HX(M, *) ®0 C^ % HX(M, *; yl) ®r C* which is clearly of complex dimension mk.

Chapter III: Application to links

1. We now apply the invariants p(M, a), defined in Chapter II, to obtain several

invariants of links. We first fix terminology and notation. By an n-link we will mean

a smooth imbedding/: S&quot; + • • • + Snm -&gt;S&quot;1 + 2, where {S&quot;) are m copies of Sn; m is

the multiplicity of/. Lf(/) =/(S7) is the i-th comportent of / L{f) U A(/)
admits a unique (up to homotopy) trivialization of its normal bundle (0-framing of

/) agreeing with the orientation induced by the natural orientations of Sn + 2 and
{S&quot;} and satisfying the extra condition, if n 1, that the translate L\{f) of L,(f)
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along either normal field in the 0-framing has zéro linking number with Lt{f)&gt; We
will also only consider links/with the property that the linking number of any two
components of/is zéro.

We recall the notions of meridian and, for n 1, longitude. Given an «-link/
let

F:SïxD2 + - - + Snm xD2-&gt;Sn + 2

be an imbedding such that F | S&quot; x 0 =/| S&quot;, for ail /, and such that the associated

trivialization of the normal bundle of L(f) agrées with the O-framing. Choose

xt s S&quot; and x e S1 and let ml=F\xlx S1 and, if n 1, l, F | S&quot; x x. Choose y,

from the base-point of Sn + 2 — L(f) to F(xn x). Then yt • mt • y~l and y, • lt • y~l
define éléments fxn Àte 7i1(5w + 2

— L(f)) which dépend only on/and the choice of
yt. If we make another choice of {yj then we obtain ^x\iX7x^XK^7X f°r some
Çt eni(Sn + 2 — L(f)) and, conversely, for any ^ we can choose a corresponding
{yr}. The set {fin Àt} is a meridian-longitude pair - /^ is a meridian, A, a longitude
(for « 1).

The surgery manifold M(/) is defined to be:

M(f) Sn + 2-Image (F) vFllD&apos;:+l xSl.
i= i

Clearly

There are four ways in which we can consider M{f) as a G-manifold, for
différent choices of G and with varying restrictions on / Three will dépend on a

choice of meridans.

(a) G=Zm (free abelian group of rank m), a \nx{M(f))-+~lm defined by
a(&lt;D (KZi A(/))&gt; where / dénotes linking number, or, alternatively, by the

Hurewicz homomorphism followed by the identification of Hx(M(f)) « Zm

defined by S^L i nt \jit] &lt;-&gt; («j,..., nm). This does not dépend on a particular
choice of meridians.

(b) Suppose that/is a boundary link (see e.g. [Gu], [CS]). This means that the

Lt(f) bound disjoint submanifolds (SEIFERT &quot;surfaces&quot;) of Sn + 2
or,

more algebraically, that for some choice of meridians, the homomorphism

/i : FM-»rc1(»S&quot;I~f&quot;2 — £(/)), where Fm is the free group with basis

{*,,..., xm}&gt; defined by fi(xt) ju,, admits a left inverse a&apos; :
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nx(Sn + 2 - L(f)) -&gt;FW - i.e. a&apos; o jj, identity. Note a&apos; induces a : nx(M(f))
-&gt; Fm since it is easy to see that &lt;x&apos;(A#) 1. An Fm-structure on/is a choice
of such a&apos;. The jpm-structure is determined by the choice of meridians
since /z induces an isomorphism Fm xnx(Sn + 2- L(f))/(nx(Sn + 2- L(f))m
where, for any group G, Gw is the intersection of ail terms in the lower
central séries of G (see [Gu]). Not every choice of meridians for a boundary
link will détermine an Fm-structure, though, since not every set of conju-
gates of a basis of Fm is again a basis. Two différent Fm-structures on a

boundary link differ by a spécial automorphism of Fm i.e. one which sends

each xt to a conjugate of itself. The structure of the group of spécial
automorphisms of Fm is known - see [Ko].

(c) Suppose that n &gt; 1, or n 1 and the //-invariants of/vanish. This means
that {A,} ç nx(S3 — L(/))w, or, alternatively by [M], that any meridian
choice fi : Fm-+nx (S3 - L(f)) induces an isomorphism Fm % nx (S3 — £(/)),
where G dénotes the nilpotent completion of G. It is then also true that \i
induces isomorphism Fm % nx(S3 — L(f)) % nx(M(f)), where G dénotes the

residually nilpotent algebraic closure of G (see (1.2)). An Fm-structure on/
will mean any homomorphism a : nx(M(f)) -+Fm such that a(/O is a

conjugate of xn for each meridian of/. Such a induces an isomorphism
tc,(M(/)) « Fm but it is not necessarily true that a(jUz) xl for some choice

of meridians. It is true, however, that any link with an Fm-structure has

vanishing fi -invariants. Any two Fm-structures on / differ by a spécial
automorphism of Fm i.e. an automorphism which sends xt to a conjugate of
xn for every /. Also note that, for any séquence of éléments g,,. gm e Fm,
there is a unique automorphism of Fm defined by xt h-» gtxtg~l (see [Ll]).
Since the centralizer of xt in Fm is the cyclic group gênerated by xl9 it is easy
to describe the group of spécial automorphisms of Fm.

(d) A refinement of (c) is possible if n &gt; 1 or, for n 1, when/has vanishing
/î-invariants. This means that the longitudes {A,} lie in the kernel of the map
7c,(S3 - L(/)) -tit^S3- L{f)) to the algebraic closure (see (1.2)). This is

équivalent to requiring that the map \x : Fm-&gt;n](S3 — L(f)) defined by any

choice of meridians induces an isomorphism Fm » nx{S3 — L{f)) «
nx(M\f)). An Fm-structure of/is a homomorphism cl&apos; : nx(Sn + 2 — L(f))
-? Fm (and, therefore, inducing a : nx (M(/)) -? Fm) such that, for any choice

of meridians, &lt;x&apos;(jit) is conjugate to xn for ail i. As in (c), there may not
exist a meridian choice so that a &apos;(/O *,. If n &gt; 1, or if/is a sublink of a

homology boundary link (see [C], [Ll]),/admits an /&quot;&quot;-structure. This may,
in fact, be true for every link with vanishing jx -invariants - it may even be

true that Fm — Fm. Again any two Fm-structures differ by a spécial automorphism

of Fm (each xt is sent to a conjugate of itself). As in (c) for any
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{gt} Ç Fm, xt H-^g^Xjg&quot;1 defines a unique spécial automorphism of Fm, but
it is not known whether the centralizer of xt consists only of powers of xr
Thus the group of spécial automorphisms is not completely known.

Two links /, f are concordant if there exists a proper smooth imbedding:

F : / x (SI + • • • + Snm) -*/ x Sn + 2

with F(t xSnt)^t x Sn + 2, for t 0, 1 and F | 0 x Snt =f\ S? and F | 1 x S?

/ | S?. If/, / are links with a G-structure (G Fm, Fm or Fm), then F is a G-con-
cordance if it is equipped with a homomorphism a : ^((7 xS&quot; + 2)- Image F)-&gt;G

which restricts to the given G-structures of/,/&apos; up to an inner automorphism of G.

(We will generally identify G-structures which differ by an inner automorphism.)
When G Zm it is clear that any concordance admits a unique a.

PROPOSITION (1.1). Iff9f are G-concordant G-links, then M(f) and M(f)
are homology G-bordant. Moreover, there exists a homology G-bordism (V, a) such

that the inclusions induce homomorphisms nx(M(f))-*nl(V),nl(M(f))-+nl(V)
which are normally surjective.

Proof. If F is a G-concordance, then we can extend F to an imbedding
F&apos;:Ix(Sn{xD2+- + SnmxD2)^IxSn + 2 and then we define V

(IxSn + 2)- Image F u^ (7 x (Dnx +l x S1 + • • • -f Dnm+ l x S1)). If a is induced
from the G-structure on F, then the assertions of the Proposition follow easily.

PROPOSITION (1.2). Suppose/is a G-link andfis a concordant to another link
f&apos;-ifG= Fm, suppose/ is a boundary link andfis boundary concordant tof. Then

f admits a G-structure so that f andf are G-concordant.

A boundary concordance between two boundary links is a concordance

F : I x(S1-\ h S?») -&gt; Sn + 2 such that some choice of meridians fi : Fm -»

n{(Sn + 2- Image F) admits a left inverse a : nl(Sn + 2 - Image F) -? Fm i.e. a^ 1.

Proof. Consider the homomorphism

2- L(f)) -+nl(IxSn + 2-ImF)=0

induced by inclusion. It follows from [Ll] that the induced map n -* ^and û

isomorphisms. When G Fm,/is a boundary link and F a boundary concordance,
then n/n^ -? 6/0^ is an isomorphism. In fact \i induces isomorphisms Fm « njn^ and
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Fm&amp;6/9(O by Stallings Theorem. Since the G-structure on/gives an identification
of n/n^, n or n with G, we obtain, via the inclusion, an identification of 6/6w9 ff or
S with G. By the same argument we obtain from the G-structure on F an
identification of n&apos;ln&apos;œ or %&apos; or %&apos; with G, where n&apos; 7C1(5W + 2 — L(f&apos;)). To see that
this identification defines a G-structure on/&apos;, which then is clearly G-concordant to

/, we only need note that any meridian choices for /&apos; are conjugate, in 0, to
meridians of/. When G Fm, we note that any meridian choice for F corresponds,
under OI6œ ttn&apos;/n&apos;^, to a meridian choice for/&apos;.

2. Suppose / is an n-\ink with a G-structure, where G Zm, F&quot;, Fm or Fm

(a Zm-structure means no extra structure). We will use the G-structure a&apos;, or rather
the induced a :nx{M(f))^&gt;G, to define an invariant for / from p(M(f), a) :

Rk(G) -* [R. We will dénote this invariant cr(/), eb(f), ô{f) or (?(/), respectively,
when G Zm, F&quot;1, Fm and F*.

Although thèse invariants take values in R, the non-integral part is determined
in most - and probably ail - cases by a classical signature invariant of the compo-
nent knots. For any link/let st{f) dénote the signature of L,(/), i.e. the signature
of any Seifert surface bounded by Lt(f) - thus st(f) =0 if n # 3 mod 4. For a

complex number z, with \z\ 1, we define arg z e R/Z by z e27r/argr.

THEOREM (2.1). Let f be any (Iq - \)-link. Then:

(a) &lt;7(/)-0=(-l)*+12 f ^(/)arg^) mod Z

for any S eMx(J.m).
(b) Iffis also a sublink ofa homology boundary link with an Fm-structure, then:

m

ô(f) ¦ 6 -1)«+ &apos;2 X *,(/) arg det 0(x,) mod Z
l= 1

/or 0^ 0 e 9tk(Fm).

In (a), (b), {jcf} ar^ /te standard generators of Tm or Fm c Fm.

/ (a) If we define F(/) i)n + 3
uF (Dnx +1 x Z)2 -h • • • -h 2)^ -f D2) then

=dV(f). By pushing the interior of a Seifert surface for £,(/) into Dn + 3

and attaching to its boundary Dn+l x 0, we obtain a closed oriented (n -h l)-man-
ifold Vt ç int V(f). We can arrange that the {Kj are mutually disjoint by choosing
the pushoffs carefully. Now remove the tubular neighborhoods of {Vt} from V(f)
to obtain a cobordism V between M(/) and S1 x Vl + h S1 x Vm. Note that
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Hx{M(f)) &amp;HX(V) with a basis représentée! by {S1 x jcJ, xt g Vt. By the index
theorem we hâve:

modZ

where ocj : 7r,(S1 x Vt) -&gt;Zm is induced by the inclusion 51 x F, ç F and the
identification HX{V) ^Hx{M(f)) &amp;Zm defined by the ordering and orientation of the

components of/. Note that a,, on nx(Sl x Vt) xn^S1) x te^K,), is of the form
et x Pn where et : ^(S1) -»Zm is an isomorphism onto the /-th summand in Zm and

A : ^(K,) -»Zm k induced by the inclusion Kf ç F. According to [APS II] - see

also [N, Th. 1.2], we hâve the formula:

Vl a) • 0 i

The desired formula will foliow if we show that sign (Vl,0pi)= sign F,.
First note that sign (K,, 0)8,), considered as a function £%x(Zm)^&gt;Z, dépends

only on the bordism class of (Vn /?,) in Q&quot;+1(Zm) and so defines an additive
function on Qn+l(Zm). Now consider the familiar isomorphism:

~ l(Zm ~ l)

where \M\ fi e Q%Zm~x) corresponds to [Àf*, fi x o] e Qq{Zm) and [M^~ \ fi e

Qq~ \Zm~x) corresponds to [S1 xMq~\\x fie Qq{Zm). But sign (5, x Mq~ \ p)
0, for any p, since intersection numbers are ail zéro in S1 x M U x M, and, as

a resuit, we see that sign (Mq, fi) sign (Mq,/?)?), if g nx{Mq) -*Zm and

p : Zm-»Zm~! is projection on the first (m — 1) factors. The resuit now follows by
induction on m.

(b) Suppose / is a homology boundary link, i.e. we hâve an epimorphism
4&gt; : nl(M(f)) -&gt;Fm so that 0(/i,) xt mod [Fm, Fm], for any /-th meridian \xv

Applying the Pontriagin construction to &lt;/) yields disjoint &quot;singular&quot; Seifert
surfaces, i.e. closed oriented disjoint submanifolds M, £ M(f). We can make the {M,}
connected by a simple surgery argument using the fact that 0 is an epimorphism.
Two différent components of M, can be joined by a path whose image under 0, a

closed path in K(Fm, 1), is null-homotopic - such a path can be used to form a

connected sum of the two components. By pushing the {M,} slightly into int V(f)
we obtain {Vt} and define V to be the complément in V(f) of the union of disjoint
tubular neighborhoods of the {Vt}. Now it\(V) &amp; Fm with a basis {xt} consisting of
meridians of the {Vt} - in fact, there is a standard construction of the universal
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cover of V with fundamental domain V(f), attachée together along copies of
{/ x Vt}, similar to the construction of Viro [Vi] for finite branched covers. Imbed

[-1, 1] x Mt into M(f) disjointly, so that 0xM,is identified with M, s M(/). For
each w e Fm define D(w) to be a copy of V(f). Attach D(w) to D(xetw), e ± 1 by
the attaching diffeomorphism (t, x) &lt;-? — f, x), jc e Mn\&lt;*et &lt;&gt; 1. Then V(f)
UweF&apos;»D(w) ls simply-connected and a free cover of V{f).

The inclusion M(f) ç V induces the homomorphism &lt;/&gt; under this identification
nx(V) « Fm. Since dV M{f) - (S1 x Vx + • • • + S] x Vm\ the Index Theorem
tells us that:

where cj&gt;l9 induced by the inclusion S1 x Vt ç V, is easily seen to be projection onto
^(S1) foilowed by the inclusion e, : n^S1) -»Zm defîned by et(t) ^,» where t is the

appropriate generator. The product formula of [N, Th. 1.2) gives p(Sl x Vn(j)l)
(-l)«sign(Kl)p(S&apos;I,eï). If {e2nmj} are the eigenvalues of 0(xf) for
0 e ^(Fm) - 0 &lt; ûj &lt; 1 - then, by [APS, II]:

p(S\el)-6= X (l-2a,) -2argdet^(x/) modZ.
ay#0

Since x7 0(^J mod [Fm, Fm] and the déterminant of a commutator is 1, we hâve:

(1) pCMCA^-e^C-^^^XsignCFJargdet^fe) modZ.

Now suppose / is a sublink of a homology boundary link g. Suppose, in

addition, that / is equipped with an Fm-structure ij/ and g has an Fw-structure &lt;j) as

above (n &gt; m). Let xx,.. xm be a basis of Fm and yl9 ,yn a, basis of F&quot;. We

construct a commutative diagram:

(2)

W7 is the manifold obtained from / x M(f) by adding handles along the compo-
nents of g not in /; thus dW M(f) - M(g). Note that /„, and /&apos;*, induced by
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inclusions, are both onto - we can, in effect, identify base points of thèse three

spaces by choosing them on an arc / x x0 for some x0 e M{f) away from the

components of g. Choose meridians }iu \im e nx(M{f)) and fi&apos;l9..., fi&apos;ne

nx{M{g)) so that **(//,) *i(/O for i &lt; m. We show that there is a unique
homomorphism e : Fn^Fm satisfying:

Write ^ wf(0OO,...,0OO; &gt;&gt;,,.. -*yn\ where vv^,. .,zn;yu. .,yn) is a

product of conjugates of the {z,} as a word in the free group on {zJ5 ^}. Thus the

System of équations:

(4) ut w^iHi),. \lt(jim), 1,.. 1; Mi,. un)

is contractible over Fm and so has a unique solution {ut} in Fm. We define e

by ^(^i) &quot;, for 1 ^ / ^ w. We now show that e satisfies (3). By (4), e extends

to a homomorphism: e&apos;:G^&gt;Fm, where G is the group with présentation

{yu...9yn,zu...,zn:yl wAzu...,zn9yl,...,yn)},by defining

Let y : G -+Fn be the epimorphism defined by y(yt) =yn y(zt) 000- We need to
show that e&apos; e oy. But this will follow from two observations:

(1) e&apos;(y,)=eoy(yl), and

(2) Kernel y GW (the intersection of the lower central séries), by STAL-
LINGS theorem [St], and Fm is residually nilpotent.

Since Kernel ï# &lt;/C+ i» • • • »
/*«&gt;&gt; then, by (3), ^&apos; is defined by the require-

ment that the bottom square of (2) commute. It remains to show that \jjf ° /„, \j/.

But \\tf o i^(iit) ^T+(/^&apos;) efiifi&apos;t) ^(/O&gt; if &apos; - m- Moreover n/ng is generated

by {{i,} for every #, where n 7r,(M(/)), since/has vanishing /ï-invariants if « 1

(see [M]) or by [St] if n &gt; 1. Thus \jj and ^&apos; ° /+ induce the same homomorphism
on every nilpotent quotient. Since Fm is residually nilpotent ij/ \j/&apos; ° /„,.

We now apply the Index Theorem and (2) to conclude that:

ô(f) P(^(/)&gt; &lt;A) p(M(g), e o (/)) e*p(M(g), &lt;t&gt;) mod Z.

Thus, by (1) and (3) we hâve:

m

&lt;r(/) • 6 s p(M(g), (t&gt;)de (- \)&quot;+ &apos;2 X sign (F,) arg det #(/i,) mod Z.
/= 1
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Since tK/O l$ conjugate to xn it only remains to check that sign(K,)
Now st(f) is defined to be the signature of any Seifert surface for L,(/) L,(g).
We may add a disk to its boundary to obtain a closed submanifold V\ of M{f)
and, furthermore, since the linking numbers of the components of g are ail zéro, we

may assume V\ misses the other components of g and so V\ £ M(g). It now suffices

to observe that Vt and V\ are homologous in M{g), since this means that they
détermine homotopic mappings M{g) -+S1 via the Pontriagin construction, and so

are (oriented) cobordant.
This complètes the proof of Theorem (2.1).

There is a completely analogous resuit for Fm-]inks but, in fact, this is already
contained in (b) as a conséquence of the resuit of Vogel [VI] that every unitary
représentation of Fm extends to one of Fm.

Some unsolved questions are:

(i) Does (b) hold for Fm in place of Fml The proof uses residual nilpotence of
Fm. It is open whether Fm Fm and, of course, whether every unitary représentation

of Fm induces one of Fm.

(ii) Is (b) true for every Fm-link? It is open whether every PMink is a sublink
of a homology boundary link. There are précise homotopy and group-theoretic
obstructions to an Fw-link being concordant to a sublink of a homology boundary
link (see [Ll], [Le], [LMO]). For example if H3{Fm) 0 (for n 1) or if the &quot;Vogel

localization&quot; of the m-fold wedge of circles is aspherical (for n &gt; 4) then every
Fm-link is concordant to a sublink of a homology boundary link.

We conclude this section by observing that for many links/the invariants &lt;r(/),

ab(f), d{f) or â{f) satisfy the conclusion of Theorem (II.4.1), i.e. they are

continuous on LnRk(G), for some large subset L of Rk(G).

PROPOSITION (2.2). (a) If f is any link of (pdd) dimension n &gt; 1, or an
Fm-link with n 1 {or a boundary link), then &lt;x(/), â{f) and a{f) {or vb{f)) hâve

a domain of continuity in Rk{G) which contains LnRk{G)for some large subset L of
Rk{G).

(b) Iff is a one-dimensional link with Alexander invariant of rank m — 1, then

o{f) has a large domain of continuity.

The Alexander invariant is Hx {X), where X is the universal abelian covering of
S3 — L(/), regarded as a module over Z[Zm]. If m 2, for example, the condition
in (b) means the Alexander polynomial is zéro.

Proof (a) is an immédiate conséquence of Theorem (II.4.1) for n&gt;\

{Hx{G)*l.m). For n 1, recall from [Le] that, for an Fm-link, the Fm-structure
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7ti(S3 — L(f)) -*Fm factors through a finitely-presented group satisfying (iii). To

prove (b), we apply the Addendum to Theorem (4.1).
Putting Proposition (2.2) together with Corollary (II.4.2) we conclude that, for

the class of links described in the Proposition, no additional concordance information

can be obtained from ô, â, g, ab on any singular locus that cannot be already
obtained on a domain of continuity. On the other hand we will show by examples

that, for some one-dimensional links/, a(f) can detect concordance on a singular
locus when it is useless on the domains of continuity.

3. We will now concern ourselves with some gênerai methods of constructing
links to display the possible values of thèse signature invariants. We présent two
such realization theorems.

THEOREM (3.1). Let G be a finitely-gênerated group with a set of normal

generators {gx,.. gm} and X (XtJ) a — \)q + l-Hermitian matrix over ZG - i.e.

XlJ=z( — \y+xXjn where X\~* X is the anti-involution of ZG defined by g h-»g~l for
every g e G - satisfying:

(i) H\(G) is free abelian of rank m

(ii) e(X) is non singular and, in addition, e(XlJ) ±ÔV for ail i, j if q 1, and

e(Xn) is evenfor ail i, if q ^\93,or7.(e: ZG -» Z is the usual augmentation.)

(iii) The coefficients, in any Xn, of ail éléments of order 2 in G are even.

Then there exists a (2q — \)~dimensional sublink f of a homology boundary link,
and a G-structure oc on M(f) such that aOO gt, for some set {ju,} of meridians of

f and such that :

(1) p(M(f), OL)-e=k signe(X) - sign 9(X)

for ail 9 g Rk(G) if q &gt; 1, or for ail 6 in some large subset of Rk(G) if q 1.

Note that (M(/), a) has a large domain of continuity, namely the set of ail 9

with det 9(X) ^ 0. To obtain examples of links/where o(f) does not hâve a large
domain of continuity we will use:

THEOREM (3.2). Let X =(Xy) be a Hermitian matrix over Z[Z2] satisfying&apos;.

(i) e(Xy)=±ôlJfori,jï&gt;2
(ii) Xu=0.
Then there exists a one-dimensional 2-component link f such that:

(2) &lt;t(/) • 9 sign e(X) - sign 9(X), for ail 9 e Rx (Z2).
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Proofof Theorem (3.1). Let/0 be the trivial w-component link in S2g+] and so

L(/o) bounds the trivial disk link Ao in D2q + 2. Choose a set of generators
hx,. hn for G. By assumption there exist words wf(jcl5 xn9yl9 ,ym),
for 1 &lt; i &lt; «, satisfying w,(;c,, xn9 1,.. 1) 1 such that h, wt(h\, - -, hn,

gi&gt; - - • &gt;gm)&apos; Let E be the &quot;fînite is-group&quot; (see [C]) with generators:

xl9...,xn,yï9...,ym and relations xt wt(xu...,xn9yl9...9ym) (\&lt;i&lt;,n).

Clearly E is normally generated by yx,. ym and Hx (E) « Zm. Let 0 : E -? G be

the epimorphism defîned by 0(*,) hn (friy,) gt.
We start by constructing a slice link/, with an is-structure on M(/,). Attach

n 1-handles to D2q + 2 along S2q+l-L(f0) to produce Xo so that nx(X0-A0)
is free on generators {xl9. xn9yl9 ...,ym} where {jc,} are the classes of the

cores of the 1-handles and {yt} are meridians of /0. Now attach n 2-handles

to Xo along normally framed smooth curves in dX0 — L(f0) representing

wt(x,,. xn,yx,. ym)x~lenx(Xo — Ao) to obtain X. If n 1 we may choose
thèse curves to be isotopic in ôX0 to the curves which go once around the 1-handles,
since wt(xx,. xn9 1,. 1) 1 (if n &gt; 1, this is automatic) - see [L2] for example.

Thus we may choose the normal framings so that thèse 2-handles cancel the
1-handles on Z)2* + 2-and so XxD2q + 2. Let/, be the slice link defîned by/0
in dX and Al9 in D2q + 2, the slice disk defined by AoçX. Note that
D2q + 2

— A}= X — Ao~ K the standard 2-complex associated to the présentation:

{xl,...9xn9yl9...9ym:xl wl(xl9...9xn9yl9. .,j&gt;m)} of E. Thus D2q + 2-Ax
~K and M(/,) çD2&lt;? + 2- Ax are G-manifolds via (t&gt;:E-&gt;G. If # &gt; 1, then

HC/+](K; 6) 0 for ail 0. If # 1, we can apply Proposition (II.3.2) to conclude
that H2(K; 0)=0 for ail 9 in some large subset of Rk(G).

We also note that/, is a sublink of a homology boundary link. Let/, be the link
obtained by adding to /, the transverse sphères of the 2-handles used to construct
X. M(/,) is the boundary of the manifold Y obtained by removing from X the

transverse disks of the 2-handles and nx(Y) &amp; nx(X0 — Ao) is the free group on
{jc,, xn,y{,. ,ym}. Under the induced homomorphism nx(M(fx)) -»7r,(F),
meridians map to {yl9. 9ym9 x~lwt(xi,. xn9yu ,ym)} which normally
generate nx{Y). Thus/, is a homology boundary link.

We now produce the desired link / from /, by adding handles of index q -h 1 to
D2q + 2 along S2*+1 -L(/,). Suppose {5;} is a collection of k disjoint ^-sphères,
with normal framings {t[}9 in S2q+l -L(fx) satisfying:

(a) 5; is null-homotopic in S2qJrX - L{fx)
(b) the linking numbers 1{S[, Sj) e(ÀtJ) if / ^j
(c) if q 1, {S;} is the trivial link in S2q+l

(d) if t\ differs from the standard normal framing on S\ by a, € nq(SOq+,) -
note that S&apos;t is unknotted in S2*+1 by (c) or a classical theorem of
WHITNEY if q &gt; 1 - then Afa) e(ku) where h : nq(SOq+l)-&gt;nq(S9) » Z
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is the standard évaluation map. Recall that h is onto for q 1, 3, 7 and

onto 2Z for ail other odd q. (Also note that S[ is oriented by t&apos;t.)

Let W be the manifold produced by surgery on S2q+X along {S[, t[). Then W
is homeomorphic to S2q+l by (b) and (d) if q &gt; 1 since (e(Aiy)) is non-singular, and

by (c) and (d) if q 1, since e(AJ ± 1 (see [L5], [L6]). If/&apos; is the link defined by

/, in W\ then M(f) ÔX\ where X&apos; is produced from D2q+l - Ax by adding
handles along {S&apos;t91\ j. By (a), X&apos; ^ # v Sq +1 v • • • v Sgk+ l and so M(/) and JT

are G-manifolds via (j) and the cores of the handles represent a basis {a,} of a free

summand of the ZG-module Hq+l(X&apos;), where X&apos; is the G-covering of X&apos;. Then
Hq+l(X&apos;; 0) » Cn ®0 Hq+l{X&apos;) * Cnk for any 9 e Rn(G) if &gt; 1, or for 0 in some

large subset L of Rn(G) if # 1. The intersection pairing in Hq+l(X&apos;) is repre-
sented, via the basis {a,}, by a matrix {A^} over ZJ? - by (b) and (d), e(A;y) e(Ay).

We conclude, from the Index theorem, that:

p(M(f), 9)=n sign (e{XtJ)) - sign (0(A;))

if g &gt; 1, or for 6 e L if q 1.

One way to construct a family of {S&apos;l91\} satisfying (a)-(d) is to choose a bail
B^S2g+l - L(fx) and construct {S;} e B. In fact such {5;} is completely deter-
mined by (b)-(d) and automatically satisfies (a) - note that AJ, e(Ay). Our goal is

then to modify {S&apos;l9 /^}, without disturbing (a)-(d), but changing k\3 to the desired

ÀtJ. This can be done in almost the identical manner as in the argument in
[L3: appendix]. If q &gt; 1, then one can change À&apos;y to A^±g if / #y, or to
Ki ± (S -•- — 1)* + lg ~l) if &apos;¦ =7» f°r some g # 1 in G and particular values of i, 7, by

changing S&apos;t to »S^ #5, a connected sum of 5^ with s a small sphère linking S&apos;J9 along

an arc which, when lifted to X\ connects a lift B of B to gB. Such a change does

not affect property (a). A séquence of such changes will realize Ày - at each stage
l(S&apos;t, S&apos;j) e(Kj) so (b) will hold at the end. To achieve (d) we simply construct t,

as stipulated. For q 1, we must be more careful in the construction in order to

préserve property (c). We follow the argument in [L3] more closely. Note that the

change from Àv to Ay can be broken up into a séquence of elementary changes of
the form

tJ±{g~\)
lJ

(ij) ¥= (a, b) or (b, a)

for some g e G and 1 ^ a, b ^ k. To effect this change we replace S&apos;a by

S^#S0#S1? where 50, Sx are two small circles in B linking S&apos;b. The arc y0
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Connecting S&apos;a to So is inside B, while the arc y, Connecting S&apos;a to Sx represents a

product of conjugates of meridians in nx{S3 — L(fx)) which maps to g e G. To
préserve property (c) it suffices to choose y0 and yx so that they are isotopic in
S3— (Ji&apos;S&apos;i- The method for choosing yx is indicatd in Figure 1. We use the well
known fact that 7^(S3 — L(fx)) is generated by conjugates of the meridians.

Finally note that/is a sublink of a homology boundary link. In fact^, as a link
in W\ is a homology boundary link.

This complètes the proof of Theorem 3.1.

Proof of Theorem (3.2). We use the construction in [L3: Appendix] and point
out the existence of the required 4-manifold W with dW M(f).

Let M(/o) Sl x S2#Sl x S2, where f0 is the trivial 2-component link;
M(/o) =dW0, where Wo is the boundary connected sum S1 x D3 ±1 S1 x D3.

Then, for the universal abelian covers, M(/o) and Wo, we hâve Hx{M{fQ)) «
Hx{Wq) the free Z[Z2]-module of rank one generated by the élément e as described
in [L3]. We now add k 2-handles to Wo along framed circles at £ S3 — L(f0)
Ç M(/o), whose lifts dl ç M(/o) represent Àne e Hx(M(f0)). We can choose {&lt;x,} so

L

s;

Figure 1
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that they form a trivial link in S3 and so that the framing of at has winding number
e(ku) ± 1. The resulting 4-manifold W has dW M(f&apos;) for a new link/&apos;. For
convenience in analyzing the homology, let us further modify W by doing surgery
along an interior curve y representing e - call the resulting manifold W&quot;. Now
HX(W&quot;) 0 and H2{W&quot;) is a free Z[Z2]-module on k + 1 generators sl9...,sk9s
where s is represented by a transverse 2-sphere of the surgery and st has a

représentative cycle in W&quot; At — klX A -f ct as follows: At is the core of the (Ufted) z-th
2-handle added to Wo, with boundary ât; A is a disk, bounding a lift of a translate

y&apos; of y, created by the surgery - and cl is a homology in W&apos; — y between &lt;r, and
A,!?&apos;- We now check some intersection numbers in W&quot;. Clearly s • A 1 (i.e. we can
so choose s) and s - At=s - ct=0; therefore s - st= klU and obviously s - s 0. We
set Ay s, - Sj - this is easily seen to agrée with the définition of k&apos;^ in [L3]. The
modification of k&apos;tJ to achieve the desired ky is then exactly as in [L3], as well as the

proof of Theorem (3.1). Thus the intersection matrix of W&quot; is (ktJ). Since
HX(W&quot;) 0 it will be true that H2(W&quot;; 0)*C®e H2(W&quot;\ unless 6 is the trivial
représentation. This follows from a universal coefficient argument using that the

group ring C[Z2] has homological dimension 2 and H2(Z2; 6) =0 unless 6 is the

trivial représentation. Formula (2) now follows from the Index Theorem.
This complètes the proof of Theorem (3.2).

ADDENDUM TO THEOREM (3.2). The Alexander polynomial of f is

(x — l)(y — 1)/)(jc, y), where D det k. The Alexander polynomials of the comportent
knots off are &lt;P(x, 1) and &lt;P(l, y), where &lt;P is the déterminant of the matrix obtained

from k by removing the first row and column. Note that 4&gt;(1, 1) ± 1.

This is ail proved in [L3].
The continuity stratification of R\(Z2) for o(f) is easy to describe for the link

constructed in Theorem (3.2). Let Ix s Rx(12) T2, the 2-torus, be the zéro set of
D and E2 £ T2 the zéro set of 0 - thus Z2 is a spécial subvariety but Ix is not, in
gênerai. Then tx(/) is continuous on T2 — Ix and on X&apos;j ~(IxnI2). If Ix is not
spécial, then we hâve the possibility that concordance might be detected by the
values of &lt;T(/)onI,. We will give some examples of this phenomenon in the next
section.

4. We consider some examples of Theorem (3.2).
Consider the (2 x 2)-matrix over Z[Z2] Z[x,x~\y9y-1]:

-GO
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where

p(x,y)=p(x + x x)-q

where p, q, No, N{ are integers to be specified Let/be a one-dimensional lmk of 2

components with

o{f) 9 sign e(k) - sign 9(k) for any 9 e Rx (Z2)

as promised by Theorem (3 2)

If we project the torus T2 R\(Z2) onto the square S in M2 consisting of ail
(m, v) with \u\ &lt; 1 and |i;| &lt; 1 by settmg u Re (x), v Re (&gt;&gt;), then the zéro sets

rl5 2*2 of p, t are pull-backs of the zéro sets I\, lf2 of p\ %&apos;, respectively, where

p&apos;(u,v) =2pu-q
T&apos;(u,v)=(l-2N0(l-u)(l-v))(\-2Nl(l-u)(\-v))

So 1*1, Zi consist of a straight-lme and a pair of hyperbolas, respectively See

Figure 2 - we assume |y| &lt; 2\p\, No # Nx and ANt &gt; 2p/(2p — q) for the curves to
mtersect in the manner shown

Clearly o{f) 6 0, if 6 e T2 - Ix If 9 e Ix - Z2, then o{f) 6 sign x(9)
Thus o(f) 9 +1 on points 0 of r, projecting to the upper and lower segments
of Z\ —12 and o&quot;(/) 0 — 1 on points 9 of Z, projecting to the middle segment
of E\-I2

Compare this to a link f satisfying

a(f) 9 sign c(k&apos;) - sign 0(k&apos;) for 9 e Rx {Z2)

where

usmg the same p, t as for/ Then o-(/) 9 o(f) 9, except when 0 projects to the

middle segment of I\ - Z&apos;2 in which case or(/) 0 h- 1

To show that/and/ are nof concordant ît suffices (see (II 3 3) and (III 1 1)) to
show that no spécial subvanety can contain the entire middle segment / of Zx — Z2

Suppose &lt;j&gt;(x, y)eZ[Z2] satisfies &lt;^(1,1) ±1 and ^(/)=0 (see the discussion
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—¦—--.

-1 U

V

1

0

-1

Figure 2

precedmg (II 3 1)) We may assume (j) îs symmetnc î e

$(x, y~l) - e g replace 4&gt; by the product

y)4&gt;(x ~ \ y)4&gt;(x, y ~ x)(f){x ~\y~l)

y)

Then we can wnte &lt;t&gt;(x, y) \j/(x + x ~x, y + y ~l) The intégral polynomial
ij/(2u9 2v) \l/&apos;(u9 v) vanishes on J\ the middle segment of I\ and satisfies

^&apos;(1, l) ± l But, since \l/&apos;(q/2p,v) =0 for a non-trivial interval of v, we hâve

il/&apos;(q/2p, v) =0 for ail v, and so \jf\u,v) (2pu - q)\j/&quot;(u,v), for some rational

polynomial i//&quot; If 2p and # are assumed relatively prime, then i//&quot; îs intégral But

now we hâve

This îs impossible if \2p - q\ &gt; 1

Puttmg ail the conditions on /?, ^r, A^o, Nx together we hâve q odd, 2p &lt; q 4-1, p
relatively prime to q, NO*NU and 4Nl&gt;2p/(2p-q) There are certainly many
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possibilities (an infinité number). It is also easy to see that Ix contains no points
whose components are both roots of unity and so the /^-signatures of SMOLIN-
SKY [S] will not detect the différence between/and/&apos;. If Nt &gt; 2p2/(2p -q)2, one

can check that J does not intersect the diagonal of T2 and so the TRISTRAM
signatures [T] cannot detect the différence.

5. We now construct examples of links of every odd dimension which are
sublinks of homology boundary links but not concordant to a boundary link. Such

examples were first constructed by COCHRAN-ORR in [C-O]. We use Theorem
(3.1).

Let G be the group with présentation: {jc,, x29 y : y xlx2yxly~lx2lxl~2}, and
consider the following three matrices over J.G:

-i y-y
Thèse matrices satisfy conditions (ii) and (iii) - for X when q 1, 3, 7, for X&apos; when

q is odd but not 1, 3 or 7 and for X&quot; when q is even. By Theorem (3.1) there exists

a two-component link / of dimension (2q — 1) with G-structure a on M{f) and

p(M(/), a) given by (1), substituting À, À&apos; or X&quot; for X in that formula, correspond-
ing to the values of q given above (using xt =gt).

Note that G contains the free group Fgenerated by xux2 and, by [Ll; Prop. 5],

the inclusion F^G extends to an isomorphism F =G. Thus a defines an F-struc-
ture â : 7c1(Af(/)) -&gt;F with â(jit) jc, for some choice of meridians {fil9 fi2}.

Let n be a cyclic group of prime-power order with generator t. We can define a

map F -? Z§7r Zn x n by xY i—? t e n and x2i-&gt;1g Ztt. Since Z§rc s Q§n, by Theorem

(1.4.1), this map extends to 4&gt; &apos;- G -&gt;Q§ti; so &lt;t&gt;{xx) f, &lt;t&gt;(x2) 1 and it is not
hard to explicitly solve for &lt;p(y) - e.g. 4&gt;{y) \{t - 1) if \n\ 2 and &lt;t&gt;(y) \{t - 1)

if |tt| 3.

Now recall the analytic imbedding ï : fi*-+Rk(R§n)-*Rk(Z§n) from (I.l.(f))
and (1.4). In fact we can simply use i : U-+Rk(Z§n) defined by i(t) ï(t, t,...,t).
Consider the function t(/) : U-+M defined as the composite:

R -^-&gt; RkW) -^ Rk(G) -&gt; ^(F)^ R.

Suppose that this F-structure on / is induced by an F-structure; then, from the

discussion in (I.l(f)), we conclude that t(/) is the lift of a function S1 -&gt; R, i.e. t(/)
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is periodic: t(/) • (s -f 1) t(/) • s, for any s s M. If/is F-concordant to an F-link,
then t(/) is periodic except perhaps on i~l(E) for some spécial subvariety of
Rk(Z§n); this follows from Corollary (II.3.3) and Proposition (III.l.l). Now i~l(Z)
is an analytic subvariety of R and so is either discrète or ail of R. But î(0) is the

trivial représentation, which belongs to no spécial subvariety, and so i~l(I) must be

a discrète set. This shows that if / is F-concordant to an F-link, then t(/) is

periodic of period one except on some discrète subset of R.

We now compute x(f) in the cases of q odd, |tt| 2 and q even, |te| 3. First
note that

if |a|

if kl 3.

This uses the solutions for (f)(y) mentioned above. Set:

exp

exp(

f— 2nis

0

— nis)
0

0
exp

0

0

(nis)
0

3

Then it is immédiate that:

3/
37

2(AS-I)J

for \n\ 2

for |w| 2

for kl 3

and so t(/) • j is given by the signature of thèse matrices, respectively, in the cases
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(i) q 1, 3, 7 and |tc| 2; (ii) q odd ^ 1, 3, or 7 and \n\ 2; (iii) q even and |n| 3.

Moreover t(/) -s is locally constant with jumps at the values of s for which the

respective matrices are singular. Thus, if t(/) • s0 ¥&quot; t(/) • (s0 + 1) and the matrices

are non-singular when s =s0 and s0 -h 1, we conclude that t(/) • s # t(/) • (s + 1)

for ail s sufficiently close to s0. It is therefore impossible for t(/) to be periodic of
period one except on a discrète set and we conclude that/is not /-concordant to
an F-link. But it is a straightforward computation that this is the case for (i) and

(ii) with s0 0, and for (iii) with s0 \.
To show that / is not concordant to a boundary link, it now suffices by Prop.

1.2), to show that changing the F-structure on / does not change t(/) - and so

t(/) represents a concordance invariant of/. This will follow immediately from:

PROPOSITION (5.1). Let \j/ : F-&gt;Q§rc be a homomorphism with \^(x) t e n
Ç Q§7r and ij/(x) X e 7Ln Ç Orc c Q§n. Ifnisa p-group and t is in the center of n,
then for any spécial automorphism a of F, there exists an inner automorphism a&apos; of
Q§tt so that a&apos; ° \j/ ^ ° a.

Proof Suppose a(^) =gxxg~\ ol{x2) hx2h~l and \//(g) &lt;Jn, \j/(h)=vrj,
where u,v en and &lt;!;, ?/ e Qti. Set y £y; then we hâve:

lÇ~~l Ç +v - À — ^ =v • rj e Qn

\l/(hx2h ~l) vrjÀrj ~lv~l =v • (r\ + X —r\) =v • X
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Figure 4

Thus the inner automorphism a&apos; defined by conjugation by y satisfies the équation
a&apos; o\l/ =\j/ o (xonxx and x2 Since i//(F) ^ Z§7r, we hâve ij/(F) £ Z§7t and i/f(g) e Z§tc

Thus y ^(^)m ~ lv also belongs to Z§tt As a resuit we see that a&apos; o ^ and ^ o a are

homomorphisms F-+Z§n which agrée on F But then they induce the same

homomorphisms on the mlpotent complétions F-+Z§n Since F^F and

Z§tt £ Z§7i, we conclude that a&apos; o ^ \j/ o a on ail of F
When ^ 1, we can draw a picture of a hnk corresponding to this example

First note that the nbbon hnk f0 of Figure 3 admits an epimorphism a from îts

group to G The mendians in Figure 3, which generate the group of/0, map to G

as follows fix \—? Xi, fi2 *-* *2&gt; M |-* ^i Now a H- 1-surgery on the complément of/0,
along the curve y m Figure 3 will produce a new hnk / such that, according to the

proof of Theorem 3 1 and preceding discussion

s-T(f0) s=sign(2As-I)

Since f0 îs slice, t(/0) is penodic of penod one (except on a discrète set) and so t(/)
cannot be The hnk / is given in Figure 4
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