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The genus of the Barnes-Wall lattice

Rudolf Scharlau and Boris B. Venkov

1. Introduction

In this paper, we combine the gênerai concept of the root System of a Euclidean
lattice as studied in [B-S] with the &quot;main lemma&quot; Proposition 1 of [Ve] to obtain
the full classification of ail 2-elementary totally even 16-dimensional lattices of
déterminant 28. It turns out that this genus of lattices consists of 24 isometry
classes. Like in the case of 24-dimensional, even unimodular lattices, 23 of them are
reflective in the sensé that the root System has maximal rank 16. We dérive a list of
&apos;possible&apos; root Systems, which are subject to two essential restrictions. It turns out
that for each root System in our list, there exists a unique lattice.

2. Results

By &apos;Euclidean lattice&apos;, or &apos;lattice&apos; for short, we mean as usual a Z-lattice of full
rank in a rational vector space with a positive definite scalar product (x, y). The
lattice is called intégral if (x, y) e Z for ail x,yeL, and p-elementary, for some

prime number p, ifpL* ç L. Hère L* {y e QL | (x, }^)eZ for ail x e L} dénotes

the dual lattice of L.
By a left upper index a e Q+, we dénote scaling: aL equals L as a lattice, but the

form is multiplied by a. If L is /&gt;-elementary, then P(L*) is again (intégral and)
/?-elementary. In this paper, we specialize to the case/? 2, and we write 2(L*) L*
for short. We say that L is totally even if both L and U are even, i.e. (x9 x) e 22.

for ail x e L and (y, y) e Z for ail y e L *.
For a given dimension n and déterminant det L \L*/L\ 2r, ail 2-elementary

totally even lattices form one genus. They exist if and only if either r e {0, n} and

n s 0(8), or 0 &lt; r &lt;; n, r 0(2), n 0(4). If n 4m and r 2m, the mapping
L-&gt;L$ is an involution on (the isometry classes of) this genus. A %-invariant
représentative is mD4 D4± • • • 1 £&gt;4, where D4 as usual denoted the D4-root
lattice. Another, prominent, lattice in the genus of 4D4 is the Barnes-Wall lattice
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BW BWl6 which has no vector of norm 2 and again satisfies BW ^ BW*. From
[B-S] we recall the définition

R(L) := {v g L | v primitive, 2(v, L)/{v, v) ç Z}

of the root system of an arbitrary lattice L. The quadratic form is part of the

structure of such root Systems R. Therefore, scaling aR makes sensé, and the

irreducible ones are aAh pBh yCh The lattice generated by a root System

A, Bf C, R is denoted by A, B, C,. R. Specializing again to 2-elementary
lattices, we observe, that

R(L) {v e L | (v, v) 2} O {i; g 2L * \ (v9 v) 4} R^ ù Rto

(&apos;short&apos; and &apos;long&apos; roots). Thus, the possible irreducible components of R(L) are

A;, 2Ah 2Br Ch Dh 2Dh F4, E6,2E6, E7,2E7, E8,2E8.

By &quot;Niemeier lattice&quot; we mean a 24-dimensional even unimodular lattice. A full
classification of this genus of lattices into 24 isometry classes has been given by
Niemeier in [Nie], and was simplified in [Ve]. The purpose of this note is to

announce and partially prove a classification resuit for the genus of 4D4 which is

completely analogous to the classification of Niemeier lattices in the form presented
in [Ve]. There are, again, precisely 24 isometry classes. We do not know if this

happens incidentally. There is a natural map from our genus into the genus of
Niemeier lattices which we shall introduce below, after Proposition 2. But it will
become clear after the proof of Theorem 1 that this map is not bijective. In the

following, h dénotes the Coxeter number of an irreducible root System R. It is

characterized by the following formula:

*.(*, x) for ail x g QR. (1)

See e.g. [Bou], Chap. V, §6.2, p. 121. By ^ we dénote the genus consisting of
ail intégral, 2-elementary, totally even lattices of dimensions 16 and déterminant
28.

THEOREM 1. Let L be a lattice in &lt;0 and R R(L) its root system. Then the

following properties hold:

(a) R 0 or rank R 16.

(b) If R # 0, then
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(i) the Coxeter number h is the same for ail irreducible components of R,

(ii) |R^| |R/O|,

(iii) The déterminant det R is a square.

THEOREM 2. Let R be a \6-dimensional root System consisting of roots ofnorm
2 and 4 only. Ifproperties (i), (ii) and (iii) of Theorem 1, part (b) hold9 then there

exists a lattice L in &lt;&amp; with R(L) R. For a given R, the lattice L is determined

uniquely up to isometry.

The explicit classification of ^ follows immediately from Theorems 1 and 2 and
the following elementary proposition which is obtained simply by inspecting ail
16-dimensional combinations of irreducible roots Systems with fixed Coxeter number

h 2, 3, 4,..., 16,18, 30.

PROPOSITION 1. The complète list of ail root Systems in dimension 16,

consisting of roots only of norm 2 and 4, and satisfying properties (i) and (ii) is the

following:

8A,82A,
D442B3

Ag A8

D82D8

4A242A2

2D44C3

D622B5

Cg B8

8C2

A52A5C32B3

2D62C5

C92E7

2A322A32C2

2C422B4

4F4

2B9E7

2A422A4

A72D52B4

C62B6F4

E82E8

2D422D4

2A7D5C4

E62E6F4

A32A35C2.

We observe that the additional property \Rsh \ Sh holds for ail reflective lattices in
Proposition 1. This is readily derived from properties (i) and (ii).

Now recall that the Barnes-Wall lattice is the unique lattice in ^ with minimum
4 (for a proof, see [Que], Theorem 4), and observe that only the root System
A32A35C2 in the proposition above has a non-square déterminant. The next
theorem combines the results stated so far.

THEOREM 3. The class number of the genus &lt;g of 4D4 is equal to 24.

Représentatives of^ are the Barnes-Wall lattice and 23 lattices having thefirst 23 root
Systems listed in Proposition 1.

The orthogonal group O(L) of a reflective lattice L (i.e. rank R(L) dim L) is

of the form O(L) W(L) x A(L), where W(L) is the Weyl group of (the root System

of) L, and A(L) can be identified with a subgroup of the outer automorphism group
(group of diagram automorphisms) of the root System. In the following table, we
list ail our lattices together with the Coxeter number h and the order of O(L).
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lattice

LX=BW
L2

L,
L4

L5

L6
L7

Ls
L9 Ll
L10

Lu
Ll2
Ln Ln
Ll4
Ll5
Ll6 L\5
L17

L18

L19

^20

L21

L22

^23 ^22
z,24

_
2

3

4

4

5

6

6

6

6

8

8

8

9

10

10

12

12

12

14

16

18

18

30

root System

empty
8A, 82A,

4A242A2

8C2

2A322A32C2

2A422A4

2D422D4

D442B3

2D44C3

A52A5C32B3

2C422B4

A72D52B4

2A7D5C4

A82A8

D622B5

2D62C5

4F4

C62B6F4

E62E6F4

D82D8

P 2d

C92E7

2B9E7

E82E8

order of O(L)

221 • 35 • 52 • 7

225 • 3 • 7

2I4 39

230 • 3 • 7

222 34

215 34 54

227 35

225 36

225 36

2I7 36 52

23O 34

222 .34.52.7
222 34 52 7

215 38 52 72

226 34 53

226 34 53

23. 39

227 36 52

222-3&apos;°-52

228 34 52 72

23O 34 52 72

226 38 52 72

226 38 52 72

228 • 310 • 54 • 1

Using the orders of the orthogonal groups, one can readily conflrm our enumera-
tion by the mass formula. The mass of ^ is equal to

31-43 127.

The first factor is the mass of even unimodular 16-dimensional lattices which can be

looked up for instance in [Se], Chap. V, §2. The second factor is a correction factor

coming from the déterminant times the quotient of the 2-adic densities of the gênera
in question. It is readily derived e.g. from [Pf], Satz 1, Hilfssatz 8. The mass can
also be obtained from [C-S2]. In the notation of that paper, our genus reads
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3. Some proofs

If L is any intégral lattice, we dénote by T(L)--=L*jL its discriminant group. It
carries a Q/Z-valued symmetric bilinear form, the so-called discriminant (bilinear)
form (x + L,y +L)i= (x,y) + Z, where x,y e L#. If L is even, we also hâve the
discriminant quadratic form q(y -j- L) \(y, y) +Z. The intégral even over-lattices
M of L correspond bijectively to the subgroups M (»=Af/L) of T(L) which are
totally isotropic with respect to q. The discriminant group (and form) of M can be

identified with (the Q/Z-valued quadratic form induced by qL on) JiL\Ji. Hère,
ML dénotes the orthogonal complément of Jl with respect to qL (or rather its
associated bilinear form). The following proposition is an immédiate conséquence
of the remarks made so far.

PROPOSITION 2. Let LX,L2 be even, intégral lattices, and

&lt;p:(T(Lx),qx)^(T(L2),-q2)

be an isometry. Then

Lx x9L2&apos;.= {(xux2) eLfl.Lt \cpxx=x2}

is an intégral, even, unimodular lattice. Conversely, any even unimodular over-lattice

of Lx L L2 can be obtained in this way.

Indeed, &amp;--={(x, &lt;px)\xe T(LX)} s T(L} ±L2) is obviously totally isotropic,
and for reasons of group orders, it must coincide with if1. The converse is also

easy.
We shall use Proposition 2 in the following spécial case: Lx L is a arbitrary

lattice in the genus ^, and L2 2ES. Then, q&gt; as above actually exists (take for
instance L E% _L 2ES). We shall, by the way, not use the fact that the discriminant
form détermines the genus (see e.g. [Nik]), but only the trivial fact that it dépends

only on the genus. In our particular case, the &quot;glueing map&quot; cp is essentially unique
(Le., two possible &lt;p&apos;s can be transformed into each other by an automorphism of
L, x L2 preserving che components). This is a trivial conséquence of the well-known
fact that the orthogonal group O(E^) maps surjectively onto the orthogonal group
of the F2-valued quadratic form {-(x, x) + 2Z on E%/2ES. Thus, we hâve a mapping
L\^L-=L x y

2ES from ^ to the Niemeier lattices which is well defined on isometry
classes.

Proof of Theorem 1. We begin with the equality |R5/,| |Rfo|. It is readily
derived from the basic observation that the long roots are in one-to-one correspon-
dence with the short roots of L#, taking into account the following fact: the thêta
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séries &amp;L and SL$ are modular forms for To(2) of weight 8; the corresponding space
of cusp forms is one-dimensional (see e.g. [Ra] Chap. 1.5, 7.1); the transformation
formula for thêta séries gives a linear transformation mapping coefficients of SL

onto those of QL$. (Using a slightly more refined argument, Quebbemann shows
that 9L=SL* for any L in ^.)

Now assume that R R(L) ^ 0. Then also Rsh / 0, and thus R i= R(L) ^ 0.
Let us describe R {v e L \ (v, v) 2} explicitly in terms of L. The vectors v in L
of norm 2 are of two kinds: either v e L, or v is of the form v (t;, -h t;2),

17, eI#,P2€52£g,(lli,t;,) =(t;2,t;2) 1,^ V2.

We now hâve to recall the foliowing well-known property of the is8-root-lattice:
for any élément in ES/2E8 which is anisotropic with respect to the quadratic form
\(x, x) -f 2Z, there exists a représentative in E8 of norm \(x, x) 1. It is unique up
to sign. It follows that the roots of L of the second kind are of the shape vx ± v2,
where 2vx runs through the long roots of L, and v2 q&gt;vx is a function of vx (and
a root of Es). We see that

|R| |R,,| + 2|R/O| 3|R5,|. (2)

Now we use the following formula from [Ve], Proposition 1:

I (v, x)2 -i- (x, jc)|R| for ail x e L (3)

The above description of R gives

(^)2 2X^ forallxer. (4)
Pv)

Now specify an irreducible component R, of R and choose x non-zero in R,.

Substituting (4) into (3) and comparing with (1) gives

for the Coxeter number ht of R,. This proves (i). (In view of (2), it also proves the

additional property \Hsh\ $h.)

We observe that the Coxeter number h is equal to the Coxeter number of any
component of R. This in particular shows that the above map from ^ to the

Niemeier lattices is not bijective. For instance, the Niemeier lattices with root
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Systems 4A6, 2A12, 2D12, A24, D24 are not in the image, since their Coxeter numbers
do not occur in our table, whereas the unique Niemeier lattice with Coxeter number
8 (its roots System is 2A72D5) contains 3 différent lattices from (ê.

SOME CASES OF THEOREM 2. The lattice L with R(L) 2C22A322A3.

The root lattice is Lo 4Al2A322A3. Its discriminant group is of the form

ZÎ *Z24X Zg,

where g,,... ,g4 are generators of the four copies of 7XA,), and g59... ,g8 are

generators of the four copies of 7&quot;(A3), and Zw:=Z/mZ By a gênerai resuit of
[B-S], the desired code if is contained in the subgroup of T(L0) which is obtained

by forgetting the scaling (observe that aM# =\M\ and hence T(M)&lt;^T(*M), for

any M and a):

Since det Lo 218, we look for an &lt;£ with \$£\ 25. The discriminant form on T is

the diagonal form

1 1 1 1.3 3.3 3\

where the entries are actually the values of £{gt) of the length function on T which
is defined as

t(x + Lo) min{(&gt;&gt;, y) \ y e x + Lo} where xeL0#.

We shall also use the values

t(2g5) S(2g6) 1, S(2g7) f(2gs) 2.

We now observe the following conditions on if, where L =L(J?) dénotes the

inverse image of if in L$ :

the length function t takes intégral, even values on ^£,

and l(è) &gt; 2 for ail e e if\{0}. (5)

This is the condition that L should be even, and ail vectors of norm 2 in L should
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be contamed in Lo Since \t mod Z gives back the discriminant quadratic form q,
the previous gênerai condition that $£ should be totally isotropic with respect to q,

îs mcluded in condition (5)

the transpositions (12) and (34) préserve JS?, but (13), (14), (23) do not (6)

This cornes from the fact that we want to root System 4At= {±al9 ±a29

±a3, ±a4} to be enlarged to 2C2 4A, u{±a, ±a2, ±a3±a4}
If we furthermore arrange JSf in such a way that L becomes 2-elementary and

2-even, ît follows from Theorem 1 (b) (n) that L not only has no &quot;new roots&quot; of
norm 2, but also no &quot;new roots&quot; of norm 4 In this connection observe that

L*\L^ &lt;£L\&lt;£ For the actual calculation of L#, spht Lo as

L0 L01±L02±L03 4A-L 2A3122A3

Compute 5£L with respect to the bihnear form

on T Then

L* {y, +h + b3b, e &amp;%n y{ +y2

and L îs 2-elementary if and only if 2yx + 2y2 4- y3 e 5£ for ail .y ji + .y2 +
y3 e S£L In particular, pr3(J£L) ç if (projection onto the third factor)

Havmg collected ail thèse conditions, ît îs now relatively easy to see that the

following 5£ îs a solution to our problem, and îs unique up to outer automorphisms
of the root System 2C22A322A3

&amp; Oi, e2, é?3&gt;, where ex =g{ +g2 + g5 +g6 +g1

We finally calculate the orthogonal group O(L) W(L) xi A(L) Recall that A(L)
can be identified with either the subgroup of Aut T( R(L)) preservmg if, or a

certain subgroup of the diagram automorphisms of R(L) The latter description
shows that

A(L) c+ Z2x Dis x Dis,
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where Di8 is the dihedral group of order 8. We represent the automorphisms of
T s Z\ x Z\ x Z\ by triples of 2 x 2-matrices; then the diagram automorphisms
correspond to the monomial matrices with entries ± 1. We use the notation

0 1\ (\ 0

°»~\\ or T°~lo -î/
and if n is a matrix in &lt;&lt;r0, to&gt; ^ Dig9 then nt9 (i 1, 2, 3) dénotes the correspond-
ing élément acting on the /-th factor of T. Direct vérification shows that the

following éléments préserve ££\

a =id! &lt;T27r3, t axx2a39 p &lt;71(—id)2id3.

They clearly generate a group isomorphic to Di% x Z2. In order to show that this is

ail of A =A(L), it suffices to show that the projection pi2 onto the first two
components of Z2 x Dis x Z)/8 is injective. Its kernel H {(id, id, —)}nA maps
under p3 onto a normal subgroup of p3A =Dis. Assuming H nontrivial, we hâve

(id, id, —id) =.neH. This is not the case, since nex —ex$ï£.

The lattice L with R(L) A72D52B4

We start with the necessary information about the discriminant group of A7. It
is cyclic of order 8; in the standard coordinates A7 {(x,,..., x%) eZ81 £ xl 0} it
consists of the residue classes

gl s i( -7, 1, 1, 1, 1, 1, 1, 1), 2gl ee i( -6, -6, 2, 2, 2, 2, 2, 2),

3g,=è(-5, -5, -5,3,3,3,3,3), 4^=|(-4, -4, -4, -4,4,4,4,4)

and their négatives. Thèse vectors are in fact shortest coset représentatives, thus the

length function has the values

The generator g, is by the way equal to the fundamental highest weight usually
called cô,; in a root basis, it equals |(7, 6, 5,4, 3, 2, 1). Writing our complète root
lattice as LQ 472D54i41, its discriminant group is

^Zs x Z8 x Z429
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(where g2 is the canomcal generator of T(D5) ^Z4) As above, the desired group
5£ is contamed in

T &lt;gX, g2, £3, #4, g5,g6&gt; Z8 X Z4 X Z\

Notice that &lt;?(g2) f, /(2g2) 2 Since det Lo 214, we want |i?| 23 Smce we
want 4A, to be enlarged to 2B4, the group if must be invariant under arbitrary
permutations of g3,g4,g5,g6 Having in mind this fact and the fundamental
restriction £{g) 0 mod 2, £{g) &gt; 2 for ail gej£f\{0}, we easily arrive at the group

Arguing as above, one sees that T{L) consists of ail {&gt;&gt;,#, -f &gt;&gt;2y + y^g* + +
y6gô}&gt; where yx — y2 0 mod 4 and ^2 + ^3 + + J^ 0 mod 2 It readily follows
that (y, t;)eZ for ail veL*, and 2L# ç L Thus L is 2-elementary and 2-even

The détermination of the orthogonal group is trivial in this case, since W(L) is

only of index 4 in Aut R(L), and -îd $ W{L) We must hâve

:&lt;-id&gt;x W(L)

Indeed 0(L) cannot be ail of Aut R(X), since in this case 3D5 would enlarge to 2B5

4. Further results

A remarkable property of the genus ^ is that, for any possible root System, the

correspondmg lattice does exist, and is unique (Theorem 2) This phenomenon is not
completely understood This is so even in the widely studied case of the genus of
24-dimensional unimodular lattices In view of the fact that the proof of Theorem
2 goes case by case, we find it necessary to présent, in a continuation of this paper,
the exphcit construction of each lattice, and a sketch of each umqueness proof We
shall also présent a différent proof of the existence (and umqueness) of each lattice
L m &amp; making further use of the associated Niemeier lattice L 3 L If we define an
involution a on QL by C\L îd, O\ll — id, then a is an isometry of L We shall
descnbe ail (conjugacy classes of) mvolutions on Niemeier lattices such that the fixed
lattice La is 16-dimensional, 2-elementary, totally even, and (L*)1 contains no roots

We shall also list ail other 2-elementary totally even lattices of dimensions
n &lt; 16 and déterminant 22k, k &lt; n\A It is known from the work of Esselmann [Es],

though not exphcitly stated there, that ail thèse gênera except for the one treated
hère, are totally reflective (i e, consist of reflective lattices only)
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For n &lt; 12, the lattices can be easily obtained in an ad hoc way, starting from
the smallest possible fc(=0or 1), without paying much attention to the possible
root Systems. The class numbers h(n, k) are:

1)=2 h(\2,2)=2 A(12,3)=3.

In the last case, the root Systems are 3F4,2B6C6, E62E6.

Of course, this classification can also be derived as an immédiate corollary of
Theorem 3, simply by adding an orthogonal summand D4 (with root System F4). It
is, by the way, a gênerai fact that a root System aF4 in an arbitrary lattice always
splits off; see [B-S]. This allows us to reduce the existence and uniqueness proof for
those root Systems in Proposition 1 containing an F4-component to the 12-dimen-
sional case.

Results completely analogous to Theorems 1 and 2 hold for the 12-dimensional

genus of 6^2» or of the Coxeter-Todd lattice. The number of short roots equals 6h

(in the reflective case), the root Systems are 6Ai63Aj, 3A233A2, 2A323A3, D43D42G2,

6G2, A53A5G2, A63A6, E63E6, the class number is 10.

We unify and extend our results by treating the other gênera of &apos;extremal

modular&apos; lattices considered by Quebbemann in [Que]. In that paper, a lattice L is

called modular (of level p) if it is isometric to its /?-scaled dual: L ^P(L#). Such a

lattice is in particular p-elementary of déterminant pn/2.

THEOREM 4. Let p be one of the prime numbers 1, 2, 3, 5, 7, 11, 23 (Le.,

p + l\ 24), let the dimension be equal to n ^ 24, 16, 12, 8, 6, 4, 2. For each of
thèse pairs (/?, n)9 there exist a unique p-elementary even lattice of déterminant at
most pnl2 and with minimum 4. AH other lattices in the respective gênera are reflective.
For p &gt; 3, ail thèse lattices are modular.

The 8-dimensional lattice with déterminant 54 and minimum 4 is the lattice
(?8(1) described in [C-Sl]. The 6-dimensional lattice with déterminant 73 and
minimum 4 is the lattice Q6(l) P6 first found by Barnes. The class numbers for
/? 5,7, 11,23 are 5,3,3,2, respectively. AH &apos;possible&apos; root Systems (i.e.,
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