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Stability of compact actions of R” of codimensional one

NicoLAU C. SALDANHA

Abstract. In this paper we study the C” stability of locally free compact actions of R" with compact
orbits over manifolds of dimension n + 1. More precisely, we show that in many cases a C' perturbation
of an action with all orbits compact must also have all orbits compact and a C° perturbation usually has
many compact orbits.

0. Introduction

In this paper we study the C” stability of locally free compact actions of R” over
a manifold of dimension n + 1. More precisely, let 6 be locally free smooth action
of R” over a manifold of dimension n + 1 such that all orbits are compact; 6 is a
family of » commuting linearly independent vector fields. Let § be another such
nearby family. We want to know if @ also has compact orbits only: with the C°
topology for corresponding vector fields, this is not necessarily the case. With the
C! topology, however, the situation is much more interesting: in most cases (which
we characterize) we can guarantee that all orbits of § are compact. All actions and
vector fields are assumed to be smooth.

Let 8 be a smooth action of R” over M =T" x (—¢, €) given by commuting
vector fields X, ..., X,. Using T" = R"/Z", we give coordinates (y;,..., ¥,, 2) to
M;letY,,...,Y,, Z be the corresponding vector fields. Assume that 8 is such that
X (y1,.. sV, 2) =Z%;a;(2)Y;; we call such an action homogeneous horizontal
(actually, as we shall see, this is really a matter of choosing the appropriate
coordinates) and let 4(z) be the matrix with entries a,;; the j-th column of A4 gives
the coordinates of X; in the Y,,..., Y, basis. We assume of course A(z) invertible
so that the action is locally free. For homogeneous horizontal actions our main
result is the following (but the reader is invited to read examples 1.4, 1.5, 1.8 and
2.5 right now):

THEOREM:
(a) If rank (47(0)) > 1, the orbit T" x {0} is C'-stable in the following sense: for
all sufficiently C'-close families of commuting vector fields 8, the orbits of §
intersecting T" x {0} are all compact.
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(b) If rank (4°(0)) < 1, the orbit T" x {0} is C'-unstable in the following sense:
for all 5 > 0 there exists a family of commuting vector fields 0, coinciding with
0 outside T" x (=9, 8), at a distance less than & (in the C' metric) from 0,
such that all orbits of 0 intersecting T" x {0} are non-compact.

Although actions of R” over manifolds have been studied by several authors
([AS], [CRW]), the questions raised in this paper appear to be new.

In the first section we restate this theorem somewhat more carefully, discuss the
exact relationship of this result to the questions of the previous paragraph, give
examples of applications of the theorem, and describe the situation concerning the
C° topology (propositions 1.6 and 1.7). In the second section we give the proof of
the main theorem and a few auxiliary results, including proposition 2.2, a result
about foliations, and lemma 2.4, which shows that our most important tool, the
linear transformation t, is constant on orbits. In the third section we discuss
possible generalizations of these results: this amounts mostly to stating unanswered
questions.

1. Statement of the theorem and applications

Let 0:R"x M"*™— M"*™ be a locally free action. All actions are assumed to
be smooth (i.e., C*). We shall call n the dimension and m the codimension of the
action; in this paper we are almost exclusively concerned with the case m = 1. We
call R" the domain of the action and sometimes denote it by D. For a basis of D,
the action @ is defined by a family of commuting vector fields X;, 1 <i < n, which
are linearly independent at every point. On an open manifold, such a family of
vectors in general defines what we call a local action.

Given p € M, define Iso, = {x € R" | (p, x) = p}, the isotropy group of p: Iso, is
a discrete subgroup of R". If the rank of Iso, is k, the orbit of p is isomorphic to
T* x R"~* An action all of whose orbits are compact will be called a compact
action.

If M is compact and has a smooth Riemannian metric, the space of actions over
M has a metric given by the corresponding C" metric over families of vector fields.
More exactly, for this metric, a perturbation § of 6 is such that the partial
derivatives up to order r of (X,) and (X;) are close to each other. If M is not
compact, we have to allow for infinite distances.

Important examples of manifolds of dimension n + m are T” x B and T" x N™
where T” is an n-dimensional torus, B” is the open ball of radius ¢ around the
origin in R” and N™ is a compact manifold of dimension m. We shall often think
of T" as R*/Z". In any case, T” will have coordinates y,, ..., y, and B will have
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coordinates z,, .. ., z,. We shall call the directions corresponding to T” horizontal
and the directions corresponding to B” or N™ vertical. We shall consider vector
spaces H = R" and V' = R™ with coordinates y; and z;, respectively: the spaces H
and ¥ can be thought of as two components in the tangent space to the manifold;
the space H can also be thought of as H,(T"; R).

The coordinates of the domain D = R” of an action will be called x,, ..., x,.
Consider an action 0 of R” on T" x N™; 0 is defined by » vector fields X, ..., X,.
If 0 is such that we can write

X= Y Y.+ Y g,ZzZ

1<i<n l1<ksm

for all j, 1 <j < n, we call 6 homogeneous; if the g,; above all are identically zero we
call  horizontal (notice the somewhat unusual indexes). A homogeneous horizontal
action 0 is obviously compact and can be naturally identified with a map 4 from
N™ to GL(n, R) given by

M@ ... fi.D
A(2) = : . :

@) e S

The j-th column of 4 gives the coordinates of X in the Y,,..., Y, basis. The
matrix A4 thus represents (in the canonical basis) an invertible linear transformation
from D to H. Thus, the columns of 4~' form a natural basis for Iso, (with the
canonical basis in D). Our interest in homogeneous actions is justified by the
following proposition:

PROPOSITION 1.0. Let 0 be a compact action of R* on M"*! and U be a
compact orbit of 0. Then there are arbitrarily small open neighbourhoods B of U in M
such that B is invariant by 0. Furthermore, if U has trivial holonomy, then B can be
chosen so that there exists a smooth bijection Y between B and T" x ( —¢, €) such that
if Y is used to define an action 0 on T" x (—¢, €) then @ is horizontal homogeneous.

This proposition says that if we want to look only at the neighbourhood of one
compact orbit then, if the orbit has trivial holonomy, we may just as well assume
that we are dealing with a horizontal homogeneous action on T" x (—¢, €). This
kind of assumption shall be made from now on without explicit mention of this
proposition. Notice that if our action has codimension one and M is orientable,
then all orbits have trivial holonomy.
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Proof. The first statement has nothing to do with actions: it is a known fact
about foliations. Notice that it does not hold in general for larger values of m (see
[Su)).

The second statement is proved by constructing one such . Choose a smooth
line in B, transverse to the action at every point. Take this line to {0} x (—¢, €) by
a smooth bijection. This bijection can now be extended to define our ¥ in a unique
way. It is straightforward to check that y is smooth. Notice that all homogeniza-
tions are constructed as above. O

Let us define when we will call an orbit C'-stable. More than one definition is
plausible; we may perturb the action globally or locally, and this second possibility
is open to more than one interpretation. Also, we may restrict ourselves to
homogeneous perturbations. We shall now give two rather extreme definitions: so
extreme that any ‘plausible’ definition of C'-stability must imply one and be implied
by the other. In fact, they are so extreme that the surprise may come when we see
that, at least in our context, they are equivalent!

DEFINITION 1.1. Let 6 be an action of R” on M"*! and U be a compact
orbit contained in an open set of compact orbits.

(a) The orbit U is said to be C' totally stable, or C'-T-stable, if for any
neighbourhood B of U there exists 6 > 0 such that any local action defined
on B which is a distance less than é away from 6 restricted to B (in the C!
metric for families of vector fields) has the property that all orbits intersect-
ing U are contained in B and compact. Otherwise, U is said to be
C'-T-unstable.

(b) The orbit U is said to be C! homogeneously locally unstable, or C'-HL-un-
stable, if for any homogenization of the action near U, any neighbourhood
B of U and any ¢ > 0 there is an action § which coincides with @ outside B,
is homogeneous for the given homogenization inside B, is at a distance less
than ¢ from 60 (again, in the C' metric for families of vector fields) and such
that the orbits of § intersecting U are not compact. Otherwise, U is said to
be C!-HL-stable.

Clearly, the freedom to choose the homogenization in item (b) above is totally
superfluous given the strong relationship between different homogenizations.

DEFINITION 1.2. Let 8 be an action of R” on M**!, U be a compact orbit
contained in an open set of compact orbits and y : (—¢, €) - M be a smooth regular
path transversal to orbits with y(0) € U. Let 4 : (—¢, €) > GL(n, R) be a smooth



Stability of compact actions of R” of codimensional one 435

function such that the columns of 4~ !(¢) form a basis for Iso,, in some fixed basis
in D. We define the rank of U, or rank (U), to be rank (4°(0)).

The reader can easily verify that the choice of y and 4 does not affect rank (U);
it is also clear that A(z) as in the introduction is a special case of this construction.
We are now ready to state our theorem in full generality.

THEOREM. Consider a compact action 0 of R" on M"* ! and let U be any orbit
with trivial holonomy. The following conditions are equivalent:

(a) rank (U) 2 1.

(b) The orbit U is C'-T-stable.

(c) The orbit U is C'-HL-stable.

It should be clear from previous considerations that this last theorem is indeed
equivalent to the only apparently less general version given in the introduction.

Now that we have stated a very general result let us move in the opposite
direction and see what this theorem boils down to in simple cases. For homoge-
neous horizontal actions on T”, we assume that the z-coordinate of y(¢) is ¢, so that
z =t and we can dispense with y and talk about 4°(z).

COROLLARY 1.3. Consider a homogeneous horizontal action 0 on T>. Then the
following conditions are equivalent.

(a) For any z, det(4'(z)) #0.

(b) Any C' perturbation of 0 is compact.

(c) Any homogeneous C' perturbation of 0 is compact.

EXAMPLE 1.4. All sufficiently small perturbations (in the C' metric for
corresponding vector fields) of the action of R? on T? given by

X, =cos (2nz)Y, + sin (2nz)Y,
X2 = “‘“Sin (21!:2) Yl + COS (27[2) Y2

are compact.

Indeed, from the above results, it suffices to show that det(4'(z)) #0, a
straightforward computation.

Notice that a generic compact action of R* on T? does not necessarily satisfy
item (a) of Corollary 1.3: we can thus easily construct open sets of examples for
which C' perturbations may create bands of non-compact orbits. Indeed, each
point where the determinant changes sign corresponds to a C' unstable orbit where
we can destroy the compactness.
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EXAMPLE 1.5. If 6 is a generic compact action of R” on T”*! n > 2, then all
sufficiently small perturbations of 8 (in the C' metic for corresponding vector fields)
are compact.

The argument is similar to the previous example if we notice that generically the
rank of A’ is always greater than or equal to n — 1: this follows from a transversal-
ity argument since the set of matrices with rank strictly less than #» — 1 has
codimension greater than one.

We conclude this section by taking a look at C° perturbations.

PROPOSITION 1.6. Suppose M compact. Given any compact action 0 of
codimension 1 there exist actions 0, arbitrarily near 0 in the C° metric for correspond-
ing vector fields, such that 0 has only a finite number of compact orbits.

If this says that C°® perturbations are never guaranteed to preserve compact
actions, the next position says that usually there are still going to be plenty of
compact orbits left.

PROPOSITION 1.7. Let 0 be a compact homogeneous action of R" over
T" x (—¢, €) defined by matrices A(z) as above. Suppose z, and z, are such that
rank (A(z,) — A(z,)) > 1. Then any sufficiently C°-close family of commuting vector
fields has a compact orbit contained between z, and z,.

The proof of proposition 1.7 depends on the same techniques as the proof of the
theorem,; it is therefore postponed to the end of section 2. The much easier proof
of proposition 1.6 is given at the end of this section. The following example follows
immediately from proposition 1.7.

EXAMPLE 1.8. Given ¢ > 0, for any sufficiently small pertubation 8 (in the C°
metric for corresponding vector fields) of the action 8 of R? on T> in example 1.4
above and for any open ball B in T of radius ¢ there exists a compact orbit of §
intersecting B.

Proof of Proposition 1.6. Let N be the quotient of M by the action. If M is
orientable and connected, we must have N = S!; in the general case, N will be a
1-dimensional orbifold. The reader may keep in mind the situation N = S' during
the proof if he wishes to, the general case being analogous. We have that M is a
torus bundle over N. The action is given by a function A4 that takes each point of
N to some point in the space of invertible linear transformations from R” to the
tangent space to the corresponding fiber.
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Let us now consider the case M = T” x N. The function 4 is now simply a
function from N to GL(n, R). This function can be thought of as a function from
N to n-tuples of vectors in R”. By a small perturbation of 8, we can suppose that
N is divided into a finite number of disjoint intervals such that inside each interval
all but one of the vectors in R” given by A4 is constant. We can now, using bump
functions, introduce a small vertical component to the changing vector in the
interior of each interval. (Remember that by ‘vertical’ we mean the N direction.) It
is now straightforward to check that the resulting vector fields commute and that
the corresponding action only has compact orbits at points separating two intervals.

The general case is similar, except that we have to give a meaning to the phrase
“all but one of the vectors. . .is constant. This, however, is no serious problem
since we can find local trivializations for the bundle. We can assume that the
trivializations cover M with a finite number of sets and that the trivializations
coincide in the intersections up to a fixed linear transformation. O

2. Proof of the theorem

This section is devoted to the proof of our main theorem and of proposition 1.7,
together with a few auxiliary results. We turn back to the formulation given in the
introduction, beginning with the easier proof of item (b).

Proof of item (b) of the Theorem. The hypothesis rank (4’(0)) < 1 allows us to
change the basis of R” (the domain of the action) so that we have X;(0) =0 for
i=1,...,n—1 (the derivative is of course with respect to z: X; depnds on z only).
For all 6 > 0 it is now easy to construct (using bump functions) another horizontal
homogeneous action # given by vectors X; such that:

@ 0 and 6 coincide outside of T” x (=34, d),

e the C'-distance between 6 and 6 is smaller than /2,

e there exits ¢, >0 such that X;(z) = X;(0) for all i=1,...,n—1 and all

ze(—¢€,€).

We can now define 6 by the vector fields X=X,i=1,...,n—1 and
X, =X, + y(2)Z where  is a small bump function with ¥(0) >0 and support
contained in (—¢, ¢,). It is easy to check that X, indeed commute but that no orbit
of @ intersecting T” x {0} is compact. If ¥ is small enough, the C'-distance between
g and @ is less than /2. This concludes the proof of item (b). The reader will have
noticed the similarity between this proof and that of proposition 1.6. a

We give a brief informal sketch of the proof of (a). From now on, let D = R"
stand for the domain of the action, H = R” for the tangent plane to T” generated



438 NICOLAU C. SALDANHA

by Y;,...,Y, and V=R for the line generated by Z. Any locally free smooth
(local) action thus defines at each point a linear injective map, which we also denote
by 6, from Dto H® V.

Consider the perturbed actions constructed in the above proof: for them, there
is clearly some interesting structure which we may want to take into account.
Namely, the action defines a linear bijection between D’'=R"~!< D and the
subspace H’ of H generated by X,(0), ..., X, _,(0). Such subspaces clearly have a
lot of geometric meaning: you can walk in T” x ( —¢, €) horizontally and on an orbit
if you follow a direction in H’. Furthermore, the isotropy group (if non-trivial) is
contained in D’; it generates D’ if the non-compact orbit is homeomorphic to
RxTr 1

We want to extend these notions to more general perturbed actions. More
precisely, for 8 a good perturbation (to be defined) and any point (y,, . . ., ¥,, 2) of
M =T" x (—¢, €) with |z| < ¢ /2 on a non-compact orbit of 8 (e, is to be defined in
the next paragraph) we shall define subspaces D’ = D and H’ < H of codimension
1 and a linear bijection t : H'— D’. We prove that D', H’ and t are constant on
orbits; these concepts are closely related with that of asymptotic cycles (see [Sc]).
Only then we use the hypothesis rank (4°(0)) > 1 in order to derive a contradiction
with the existence of perturbations with non-compact orbits. By the way, it clearly
suffices to show that the point (0, ..., 0, 0) cannot be on a non-compact orbit: this
observation leads us to a slight simplification in the notation. This concludes our
sketch of the proof of (a).

We first of all make precise the notion of an action being close enough to 6. It
is interesting to define the related concepts for foliations. Let % be the codimension
1 foliation of T” x ( —¢, ¢) defined by projection onto the second coordinate, so that
%, is the foliation corresponding to 6. By the C” metric for foliations we mean the
C" metric for plane fields.

DEFINITION 2.0. A foliation # of M is called acceptable if its leaves are
always transversal to vertical lines; an action is acceptable if its corresponding
foliation is acceptable.

It is clear that any % (resp., §) sufficiently C°close to % (resp., 0) is acceptable.
An acceptable perturbation @ of 8 naturally defines at each point a linear bijection
§: H - D, the inverse of the projection of § onto H; of course, for 6 =0, 3§ is given
(in the canonical basis) by (4(z)) ~!. Also, given a path y : [a, b)] - H and a point
(y(a@), z,) there exists, for sufficiently small é, a unique path § : [a,a + §) = M with
j(a) = (y(a), z,) whose image is contained in an orbit of 0; we say 7 is obtained by
lifting y; in other words, 7 must remain inside the same leaf of the foliation. The
reason we may not be able to define 7 on all of [a, ] is that it may “fall out” of M
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if z becomes too large or too small. Going back to 4 for a moment, there clearly
exists r, >0 such that the open ball of radius r, around (A4(0)) ~'! consists of
invertible matrices only. Let ¢, > 0, ¢, < ¢, be such that |z| <¢, implies |(A(z)) ~' —
A)~'| <n/2.

DEFINITION 2.1. We say an acceptable & is good if the following condition
holds:

e For all y of length less than 4n” and |z,| <€/2, y can be lifted on its entire
domain and the resulting curve is entirely contained in the region |z| <e.
We say an acceptable § is good if the following conditions hold:

o If |z| <¢, then [§(y, ..., ynr 2) — (A(0) "} < 1y.

e For all y of length less than 4n* and |z,| <¢,/2, y can be lifted on its entire
domain and the resulting curve is entirely contained in the region |z| <¢,.

The term 4n? in this definition is actually a bit arbitrary. Again, it is clear that
any % (res., 0) which is sufficiently C%-close to % (resp., 6) is good.
We now state and prove an auxiliary result about perturbations of foliations.

PROPOSITION 2.2. Let # be a good perturbation of %, and p, =
(P15« - s Yn» 2) With |z| < €/2 be such that the leaf passing through p, is non-compact.
Then there exists a unique hyperplane H' = R" with the following properties:
® The natural projection H — T" taking 0 to (y,,...,y,) can be globally lifted
to a function H - T" X (—¢, €) in such a way that 0 is taken to p,.

e If H’ is irrational (i.e., does not admit an equation with rational coefficients)
then the closure of the image is a topological n-torus T, and its projection onto
T" is a homeomorphism; T, is contained in a union of non-compact leaves.

e If H' is rational then the supremum and infimum of the intersection of the image
with each vertical line form two ( possibly identical) smooth (n — 1)-tori T{ and
T{ contained in non-compact leaves and such that their projections onto
H'|Z" < T" are diffeomorphisms.

Furthermore, H' does not change if we substitute p, for another point on the same
leaf.

Proof. We adopt all the terminology defined for actions; assume without loss
that p, = (0, ..., 0,0). Given a good %, we now define smooth strictly increasing
functions

f?.ifl_Qf;”fn— :(_—6/2’6/2)—)(696)'

Lift the path y5(®) =(0,...,st,....,0),s=+1,0<¢ <1, where the only non-
zero coordinate is in the i-th position starting from the point (0, ..., 0, 2): call the



440 NICOLAU C. SALDANHA

end-point (0, ..., 0, f7(z)). The above claims about our functions are trivial, as is
the fact that f;* and f; are inverses of each other and that all these f’s commute.
The f’s decribe the holonomy of the foliation % . If f3(0) =0 for all s and i, the
orbit of § through (0, . . ., 0, 0) is compact, contradicting the hypothesis. Assume,
therefore, without loss of generality, f, (0) <0</} (0) and £, (0) <f; (0) <0<
fi(0) <fr(0) for all ,0<i<n. It will be useful to consider an open subset
NcMcT”x(—e € inside which our constructions happen: lift the cube
(—3n, 3n)" around (0, .. ., 0, 0) (which we can do because # is good) and let N be
the set of points p of M such that, if we draw a vertical line through p, we see points
of the lifted square both above and below p.

We can now build a copy of S' by taking a quotient of the interval
(f,7 (0), £,;F(0)): identify z with f;} (z). The functions f7,f5,...,f;_, naturally
induce smooth functions g;,g,,...,g,_, from this S! to itself: the formula
g:(z) =[f (2)] is unambiguous (f,; and f;* commute). Let h; be the rotation
number of g;, with 0<h, <1,h, =0 iff f;*(z) =z for some z and A, =1 iff
[ (2) =f; (2) for some z; for consistency in notation, let 4, = 1. We define H’ as
the space generated by Y, —h,Y,, 1 <i<n; equivalently, H’ is orthogonal to
(hy, hy, ..., h,). Since conjugate functions have the same rotation number, this
hyperplane is constant on orbits; we have to prove that it satisfies all the properties
in the statement of the proposition.

We now prove that we can lift all of H’ and that the resulting set is contained
in N. In fact, consider the subset of H defined by the following inequality:
—n—1<ZX,h|y; |<1, where | y_| denotes the largest integer not larger than y.
This set is a union of unit cubes (defined by the lattice Z”); in order to show that
this can be lifted inside N we can proceed by induction on the distance of the cube
from the origin. By connectivity of the set, it suffices at each step to prove that the
next desired cube has gone neither above nor below N. This, however, follows easily
from properties of rotation numbers. More precisely, let G,,...,G,_,,G, be
liftings of g,,...,8,_1,8, to R, with G,(¢) = ¢ + 1. These functions correspond to
the f; up to a fixed change of coordinates but, unlike the f;, are defined on all of R.
Suppose we want to reach a cube of coordinates y,, ..., y, (these are now integers)
contained in the above set. We clearly have —n —2 < (GJto---o GI)(0) <n + 2.
Furthermore, the order of the composition can be changed so that intermediate
expressions also satisfy the same inequalities (remember that these functions
commute). This not only shows that the desired cube lifts in N but also exhibits a
path of cubes, also with lifts in N, which takes us there. Finally, since H’ is
contained in the above set, H’ lifts to a subset of N.

Let us consider this lifting of H’ to N and its projection to T". If at least one
of the h, is irrational (case (i)), this projection is dense in T on the other hand, if
all h; are rational (case (ii)), this projection is a (n — 1)-torus contained in T”. This
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classification will be useful in order to study the lifting of H” to N (and later in
order to define D’ and 7).

In case (i), assume without loss of generality that A, is irrational. Using
Denjoy’s theorem (see [D]), there exists a continuous conjugation between g, and
the corresponding irrational rotation (the conjugation need not be smooth, or
even C'). By lifting the conjugation we have an increasing homeomorphism
¢ : (f2 (0), £, (0) > (—1,1) with ¢(f7 (2)) =(z) +1 and ¢(f{ (2)) = ¢(2) + h,.
Since all f°s commute, we have ¢(f;" (2)) = ¢(z) + h;. Clearly, ¢ can be naturally
extended to, say, ((f,7)>"(0), (f;F)>**(0)). With the help of ¢, we shall now define a
(C® n-dimensional torus T, = N which plays a role similar to that of the torus
z =0 for the simple examples of item (b). We first define ® : N - R, a continuous
function which is strictly increasing on vertical straight lines. Consider p =
(Jis- s Vm2) €N, 0<y,<1, and let y:[0, 1] > H be the straight line joining
(715-..,¥,) to 0. Lift y starting from p, which takes us to a point of the form
o,....,0,z"): define ®(p) =¢(z') —hyy,—*-*—h,y,. The continuity of ® fol-
lows from the identities ¢( f;" (2)) = ¢(z) + h;. Let To = ®~'({0}); T, is the closure
of the lifting of H’ to N.

In case (ii), we define two (n — 1)-dimensional tori 7} and7;. For each
(»1,...,y,) in the projection to T” of the lifting of H’ to N, consider the set of
corresponding z in the lifting and set z* and z~ to be the supremum and infimum
of this set, respectively. Let T; be the set of points of the form (y,,..., ¥y, 27)
and similarly for T'; . Clearly, these tori are contained in non-compact orbits.

In any case, the uniqueness of H’ is easy to verify. Indeed, any other hyperplane
contains elements not in H’: following such a direction, again by rotation numbers,
we are “‘going up” and must eventually either leave M or accumulate on a compact
orbit, in any case contradicting the conditions. O

We are ready to give the definition of one of our main tools. On each point p
of T,, Tifor Ty, the action # induces a linear map T, : H' - D. The torus T,
naturally receives a unit measure by lifting the unit Lebesgue measure on T" via the
projection. In case (ii), the Lebesgue (n — 1)-dimensional measure on the vertical
projection of T can be multiplied by a constant and lifted by the projection in
order to give unit measures on T} and T; . Whenever, from now on, we integrate
over these tori, we do it with respect to these measures.

DEFINITION 2.3. Let t = [ %, dp in case (i) and t = | T, dp in case (ii); D’
is the image of .

In order to prove that t behaves well we need a more geometric interpretation
for it. We introduce an auxiliary function &. In case (i), the lifting of H’ (which is
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contained in Ty) is contained in an orbit and can therefore be brought back to D.
In other words, this defines a continuous map ¢ : H'— D whose image is the
pre-image of T, by the action f. In case (ii), consider the lifting of H’ starting from
the point (0,...,0,z*%) e T and do the same as above in order to define £. The
next lemma relates ¢ and &.

LEMMA 2.4. Assume 0 good. The linear transformation t is injective, constant
on orbits and satisfies 1(v) = lim, _, ,, (1/6)&(t).

Proof. Since @ is good, & can be extended to the neighbourhood of H’ of radius
1. The compactness of the closure of N (as in proposition 2.2) implies that ¢ is
uniformly continuous even on this larger domain.

We first prove the formula for z. Notice that &(t) = [§ T, (v) ds where p(s)
is obtained by lifting sv to T, or T;. Let us start by proving the formula for
t if v is such that the line v is dense in the vertical projection to T, or T, .
Indeed, consider the vector field given by v on T, or T : it is uniquely ergodic,
with our measure on 7T, or T; being the only invariant measure (see [M]);
from Birkhoff’s theorem, the above limit exists and its value is 7(v). For general
v, a similar argument shows that the limit also exists and is equal to the average
of 7,(v) where p ranges over the closure of the line v, a sub-torus. Furthermore,
the average over the original torus is the average of averages over parallel
sub-tori; if the averages over such tori are equal, we have the formula for arbitrary
v. It suffices therefore to show that lim,_, , (1/9)&(w) =1lim,_, ,, (1/9)&(tv + w) for
any w: these other limits correspond to the averages of 7,(v) over the parallel
sub-tori and are thus known to exist. The equality of the two limits follows from
the uniform continuity of £: the disance between v and fv + w is fixed, that between
&(tv) and &(tv + w) is bounded and that between (1/£)&(tv) and (1/1)E(tv + w) tends
to zero.

Consider now two points on the same orbit; we want to prove that 7 is the same
for these two points. Without loss of generality, they are at a distance smaller than
1 from each other. Take one of these to be the base point 0 in the above discussion
and let w € H be a vector taking 0 to the other point in consideration; call the 1
map for this second point t,. We already saw that H’ is the same for both points.
Let v e H' be arbitrary. As we saw above, t(v) =lim,_, , (1/)&(tv). Similarly,
1,(v) =lim,_, ,, (1/9)&(tv + w). As before, the uniform continuity of £ tells us that
these limits are equal. The injectivity of t follows directly from its definition and the
hypothesis that dis good: 7 is an average of 7,, 7, is the restriction of 3 to H’ and,
again since § is good, § must always lie inside a convex ball of invertible linear
transformations. O
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We now have all the necessary tools to handle item (a) of the theorem and
proposition 1.7. The two proofs are somewhat similar: they are in a sense the finite
and differential versions of the same fact. We begin with the easier proof.

Proof of Proposition 1.7. Notice first that if A4, and A4, are invertible,
rank (4, — 4,) =rank (A;7' — A5;"'). Thus rank (A(z;) — 4A(z;)) >1 implies
rank (4 ~'(z,) — 4 "!(z;)) > 1. Assume without loss z, < z,; since having high rank
is an open property of matrices let z; <z, be such that z,<zy<z,<z, and
rank (4 ~!(z;) — 4 '(z4)) > 1. It is clearly enough to prove that any § sufficiently
C° close to 6 has a compact orbit touching some point with z coordinate between
zy and z,, since being nearly horizontal this compact orbit will then be contained
between z, and z,.

Assume by contradiction that this is not the case and take any point with z
coordinate z;. The orbit passing through it must be non-compact and must cross
the z, level: otherwise, the supremum of that orbit would be a compact orbit
between z; and z,. There are therefore two points on the same non-compact orbit,
one with z coordinate z; and the other with z coordinate z,. On these two points 1
must therefore be identical. But 7, being an average of ©,’s, is close to the restriction
of A~! to H’. Perturbations of 4 ~!(z;) and 4 ~!(z,) can be assumed, however, to
have difference of rank greater than 1 and, when restricted to a hyperplane, would
still be different. O

Proof of item (a) of the Theorem. Up to this point we never bothered about the
rank of A4’(0). Notice that the rank of 4’(0) equals that of (4 ~')’(0). From now on
we suppose rank (4°(0)) > 1 and that there exist arbitrarily good C'-perturbations
of 6 such that the orbit through (0, ..., 0, 0) is non-compact — and get a contradic-
tion.

Let U < H be a subspace of dimension 2 such that (4 ~')’(0) is injective when
restricted to U. For any f such that (0,...,0,0) is on a non-compact orbit we can
define H' as above and L = U n H’ of dimension 1. By compactness of S!, consider
a sequence 0, of perturbations of 6 such that their C' distances to 0 tend to zero
and such that their versions L, of L tend to a fixed line L,. Let v, € L, be a fixed
non-zero vector, wy = (4 ~!)’(0)(v,) and v, € L, be non-zero vectors tending to v,.
Let 7, be t (as defined above) for 6,. We can compute t,(v,) starting from
0,...,0,0) or from (0, ...,0,f (0), which, according to lemma 2.4, should give
us the exact same answer: call these two (equal?) vectors ¢, and ¢, (i is any index,
1 <i<n, with ;¥ (0) > 0).

We now show that, for sufficiently large k, (¢ —¢gx ) - wo >0, which is of
course the desired contradiction. Let T~ and T* be the tori as described above for
0,...,0,0)and (0,...,0,f;" (0)), respectively (we sometimes omit the index k for
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brevity). We have g = [r. ©,(v) dp, whence g - wy= [+ £,(v) - w, dp. Subtract-
ing, we have

I

@& —qc) wo=| @+ —1,-)©) - wodp
T

= ] (J. i3—.9(1),2)(1'2)(0)'Wodp
r \Jr 0z

[ 0
= f@; 9(p, 2)(v) - wo dz dp.

o

For our good C! perturbations, however, (0/0z)9 is close to (4 ~!)’(0) and v is close
to vy,. In other words, the expression inside the last integral is close to
(4 =1(0)(vy) - wo = w, - w, and therefore strictly positive. This concludes the proof
of the inequality, which, as we have seen, contradicts previous results. This finishes
the proof of item (a) and of the theorem. O

We finish this section by returning to our favorite action, as introduced in
example 1.4.

EXAMPLE 2.5. Let 0 be as in example 1.4; there exists ¢ > 0 such that any real
analytic  which is at a distance less than ¢ from 0 in the C° topology for vector
field is a compact action.

If there are non-isolated compact orbits, our claim follows from analyticity of .
Furthermore, § can be assumed to be globally good. Thus, H’ is defined almost
everywhere and is locally constant. Its definition makes it clear that it varies
analytically when restricted to a vertical circle, i.e., is the same on both sides of a
compact orbit. Thus, H’ can be extended so as to be constant on T>. The same kind
of considerations show that 7 is the same on both sides of a compact orbit, thus
constant. But this contradicts the fact that 7 is near 4!,

3. Generalizations

There are two natural directions along which our theorem could be generalized.
One of them is by considering other kinds of perturbation, more precisely, by
considering C” perturbations for other values of r. Another one is by considering
higher codimensions. We shall briefly consider such questions in this final section.

The first obvious thing to notice about C” perturbations, r > 1, is that they are
special cases of C! perturbations. It is therefore clear that things are more stable for
higher values of r. If there exists a codimension 1 subspace of D on which the action
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is constant up to order r the construction for item (b) of the theorem can be applied
and there is no stability of compact orbits. If this is not the case, the question on
whether some sort of stability phenomenon occurs is unanswered: it is easy to
construct T and other objects as in Section 2 but it is not clear what to do about the
proof of item (a), which is in fact a monotonicity argument. In this case, however,
the compact orbit is homogeneously stable, i.e., there are no nearby homogeneous
actions with non-compact orbits. Indeed, for homogeneous actions the tori T, or
T are horizontal and 7 is computed as an average of a constant function: the
perturbation of the action gives us therefore a perturbation of 4 which is constant
on a small interval. In particular, a generic horizontal homogeneous action of R? on
T2 is C? homogeneously stable; is it C? stable?

The higher codimension case seems to be much more complicated. Indeed, if we
believe that homogeneous perturbations are representative, there exist stability
phenomena even in high codimension, as the following considerations show.

Consider a homogeneous horizontal action of dimension » and codimension m.
Let X;,=2,f,Y; and let H',I=1,...,n be matrices with h; = df;/0y,. If it is
possible to homogeneously perturb this action in order to destroy compact orbits we
can consider a perturbation of the form

X = Zﬁ, Y+ guZs.
F X

A straightforward computation shows that

t

>

(X, X.] =§;(g,-kf7£,u — g ki)Y,
1,

For the perturbed matrices A’ therefore, there exists a non-zero n x m matrix G

such that all of the matrices GH' are symmetric. Since this is a closed property,

there must exist a non-zero G such that the matrices GH' are symmetric for all /.
As an example, an action of R* on T* x B!} with matrices given by

(1 0 0 0 (0 =1 0 0)
0100 1 00 0
Ho=10 01 0 Hi=10 0 0 -1
(0 0 0 1 o o1 0]
(0 0 —1 0 (000 0 —1)
0 0 01 00 —1 0
H=11 0o o0 o0 H=101 0o o
0 -1 00 10 0 O
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is C' homogeneously stable, since a straightforward computation will show that the
only G such that GH' is symmetric for all four matrices is the zero matrix.
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