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Manifolds of even dimension with amenable fondamental group

Beno Eckmann

0. Introduction

0.1. If the fundamental group G of a closed (orientable) 4-manifold A&quot;is infinité
and amenable then the Euler characteristic x(X) is ^ 0. This has been proved in a

previous paper [E] using the F0lner criterion for amenability [F], in a geometrical
version. If X is aspherical, Le., an Eilenberg-MacLane space K(G, 1) (whence G a

Poincaré duality group of dimension 4, in short a /)D4-group) then %{X) x{G) 0

by [E], Corollary 2.3.

The main purpose of the présent paper is to examine, conversely, 4-manifolds X
as above assuming x(X) 0. We recall (see [E], Section 0.3) that infinité amenable

groups G hâve one or two ends, i.e., H1 (G; ZG) 0 or Z. It is easily seen that the
universai cover 1 of I has intégral homology Hx(Jt) H4(j£) =0 and

H3(X) s H\G\ ZG). We will prove (Theorem 3.4):

(A) // x(JO=0 then H2(X) s H2(G; ZG), the &quot;second end-group&quot; of G.

From this we get the resuit

(B) IfH\G\ ZG) H\G\ ZG) 0 then x(X) 0 implies that t is contractée,
whence X K(G, 1) and G is a PD4-group.

Thèse statements can be expressed in terms of the Hausmann-Weinberger
invariant q(G), see [H-W], for finitely presented groups G (Corollaries 2.5 and 3.6):

(C) If G is infinité amenable then q(G) is ^0. // H\G\ ZG) H\G\ ZG) 0

then q(G) 0 implies that G is a PD4-group.
In the context of thèse results it is of interest to look at 2-knot groups G since

for thèse q{G) is always =0; see Section 4 below.

0.2. The proofs make use of (reduced and non-reduced) /2-cohomology of the

infinité cell-complex X combined with the free cocompact action of G on %. The

main tool then is a lemma of Cheeger-Gromov [Ch-G], see Section 2.2. We apply
it not only to get the results for %{X) 0 but also to give a new proof of the

statement x(X) ^ 0 above. This is done in the more gênerai context of a closed

manifold of even dimension n 2k ^ 4 which, if k &gt; 2, is aspherical up to the

middle dimension k; for n =4 there is no asphericity assumption.
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Thèse 2A&gt;manifolds can be used to define a new invariant yk(G) for groups G of
type Fk9 k ^ 2, generalizing the Hausmann-Weinberger invariant q(G). For G of
type F2 (i.e., finitely presented) one has y2(G) q(G).

0.3. Section 1 contains various facts concerning /2-cohomology of Â&quot;, ordinary
cohomology of %, and G-cohomology of X for G-module coefficients such as 12G

and ZG. They go a little beyond the minimum necessary for the following sections
in view of later use.

0.4. Section 2 deals with x(Jf) ^ 0 for the 2A&gt;manifolds as above and with
yk(G), Section 3 with the vanishing of %{X) and the main results. Section 5 is an
appendix on the &quot;partial Euler characteristic&quot; of groups G fulfilling certain finite-
ness conditions; the results appear already in [E] but are given new proofs by the

/2-cohomology methods of the présent paper.

0.5. Our results on 4-manifolds should be compared with some of those given
by Hillman [H] for the case of &quot;elementary amenable&quot; groups, which constitute a

spécial, but important class of amenable groups. The results of [H] are, however,
more gênerai in another sensé, namely that G need only hâve a non-trivial normal
subgroup which is elementary amenable.

0.6. Although this paper deals with amenable groups we want to emphasize that
the results above on 4-manifolds and the invariant q(G) are valid for other types of
groups, in particular for ail finitely presented groups with vanishing first /2-Betti
number; see Section 6 below (Addendum).

1. Infinité cell-complexes and /2-cohomology

1.1. For a cell-complex X with nxX G and a G-module A we consider

cohomology with local coefficients Hl(X; A); i.e., G-cohomology HlG(X; A) of the
universai cover, relative to the G-module A (G opérâtes on the cell complex X and

on A). A spécial situation occurs if X is a finite complex and G an infinité group,
with regard to the coefficient modules ZG and /2G (the Hilbert space of linear
combinations 2,xeGcxx, cx e R, with l,x cl &lt; oo); G opérâtes on ZG and on /2G by
left translations.

Namely, one has for the cochains Cl(ï; ZG) =//owG(Cï(^), ZG) and

\ 12G) HomG(Ct(%), 12G) the isomorphisms
(1)
(2)
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Cfin is the group oifinite cochains of %, and C{2) the group of l2-cochains (functions
f{ot) of the cells at of X with Eff//(&lt;r,)2 &lt; oo). The corresponding cohomology

groups are respectively Hlcomp(%; Z), cohomology with compact support; and

H[2)(X; (R), /2-cohomology of X.

1.2. For the convenience of the reader we recall the proof of (1) an (2).
We choose a (finite) ZG-basis {tJ of the chain group Ct(Jt) corresponding to

the cells of X (one cell in each G-orbit). Given/e O(X\ ZG) HomG(Ct{%\ ZG)
we put g(xxt) =mx-xe1 where/CrJ yLxmxx\ clearly g is a finite cochain in %.

Conversely, given g e ClûnX; Z) we put/(i,) I,xg(x~lTt)x e ZG. The correspon-
dence/Wg yields the isomorphism 1). Note that it is independent of the choice of
basis {tJ: Indeed if we replace xi by yrny e G, then g(xxt) g(xy~lyxt) =m&apos;yx-\

where/C^r,) T,xmxyx 2 m&apos;xx, i.e., m&apos;x my-\x\ thus g(xxt) m&apos;yx-\ =mx-i as

before.

Similarly, given fe Cl(X; /2G) we put g(xxt) =cx-\ where f(xt) Ex cxx with
&quot;L^cl &lt;oo. Then

ail a

so g is an /2-cochain. This yields the isomorphism (2). We summarize:

PROPOSITION 1.1. For a finite cell complex X (with infinité fundamental group
G) the cohomology groups with local coefficients H&apos;(X; ZG) and H\X\ 12G) are

isomorphic respectively to Hlcomp(X; Z) and H[2)(X; U) of the universai cover Â*of X.

Remark. Everything above holds if instead of X we take any free cocompact
G-space (=cell complex) Y with Y/G X; G is a factor group of nxX. The

isomorphisms are of interest only if G is infinité.

1.3. We will also consider reduced /2-cohomology of ^f, denoted by /?&apos;t?). It
differs from H{2)(X; U) by ôC{2)\ï\ U) being replaced by its /2-closure ôC{2)\ It
imbeds equivariantly and isometrically in Z&apos;, the kernel of ô : C[2) -? C{^l, and its

von Neumann dimension relative to G is denoted by /^(JF rel. G), cf. [Ch-G].
There is an obvious map 0 of H[2)0C\ R), i.e. the G-cohomology group

HlG(X; 12G) based on G-homomorphisms Ct(%) -*liG, into the ordinary cohomology

group Hl(%; 12G) disregarding the G-action on X and /2G. Under that map 0
the closure of ôCl~x{%\ 12G) goes to 0. Indeed, the /2-limit / of a séquence of
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i-coboundaries is =0 on the /-cycles; it thus defines &lt;p : 3C,(J?) -&gt;/2G which can be

extended to ail of Ct_ (since 12G is divisible, i.e. Z-injective), and ôq&gt; =/.

PROPOSITION 1.2. The natural map HlG0t\ 12G) -&gt; H&apos;(X\ 12G) factors through
the reduced /2-cohomology group Hl0£).

Of course Hf(J?; /2G) can be regarded as a ZG-module through the action of G

on % and on /2G. The image of 0 lies in the invariant part Hl(%\ 12G)G.

1.4. The map &lt;P : HG(%; 12G)-*Hn(%; 12G)G occurs in a well-known exact

séquence, available if 2 is (n — l)-connected, i.e., if nt(X) 0 for 1 &lt; i &lt; n (de-
duced from the spectral séquence of the covering 2-+ X):

0-+Hn(G; l2G)-+HnG(X&apos;, 12G) ^Hn(î; 12G)G -+Hn+l(G; 12G) -*HnG+l{î&apos;, 12G).

There is, of course, an analogous exact séquence for ZG -coefficients. The coefficient

map ZG-»/2G by inclusion yields, in combination with Proposition 1.1, the
commutative diagram

0 &gt; Hn(G; ZG) Hncomv(Z; Z) -^-&gt; Hn(X; ZG)G &gt; Hn + \G; ZG)

I i !&quot; I &lt;«

0 Hn(G; 12G) &gt; Hfatf; R) &gt; H»(î; 12G)G Hn +l(G; 12G)

1.5. There is a further natural map W : H{2)0C\ M) -+Hl(X; R); it clearly factors

through R&apos;iX) since the limit of a séquence of /2-coboundaries is an ordinary
coboundary.

1.6. There is an l2-homology analogue of the above statements for /2-cohomol-

ogy; we leave it to the reader. We just remark that it is based on the boundary
operator d : C{2) -* C{2) l instead of the coboundary ô : C\2) -? C$l ; and that the

reduced homology groups Ht(%) are isometrically isomorphic to the H\î) - in-
deed, they are both isomorphic to the intersection Zl{X) n Zt 0C) in C[2)9 where Zl
dénotes the cocycle subspace, Z, the cycle subspace of C{2}, and Zl(X)r\Zt(J?) is

(a) the orthogonal complément of èC{2)
x in Z\ (b) the orthogonal complément of

dCfâl in Z, (Hodge-de Rham décomposition of C(2)). We further remark that this

yields a simple proof of lrPoincarè duality for a closed «-manifold X by using (2)
and ordinary Poincaré duality of X; one gets Rl(ï)^Hn_l(X)^Hn~l(ï) as

Hilbert G-modules.
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2. Closed manifolds of dimension n=2k and an invariant for groups of type Fk

2.1. We take for X a closed orientable (differentiable) n-manifold, n 2k ^ 4

which if k &gt; 2 is (k — l)-aspherical; i.e., with nt(X) 0 for 1 &lt; i &lt; k. We assume

again G nx{X) infinité.
We note that Ht (X) 0 for 1 £ i &lt; k, and that Hlk(ï) 0 since G is infinité (if

in ordinary homology coefficients are not indicated they are meant to be Z).

PROPOSITION 2.1. Fork&lt;i&lt;&gt; 2k one has Ht($) S H2* &quot;(G; TG).

Proof. HA%) S ^lV(^) H2k-&apos;(X; ZG) by Poincaré duality. But since X is

(k - l)-aspherical H&apos;(X; TG) s H%G\ ZG) for 0 &lt;: i &lt; k. If n 2* 4, there are no
asphericity assumptions, and one simply has H3(X) s Hl(X\ ZG) ^ Hl(G; ZG).

If the &quot;end-groups&quot; H&apos;(G;ZG) are 0 for 0&lt;£/&lt;/r then #*(A*) is the only
homology group of 2 which is possibly non-zero. If moreover Hk{%) — 0 then X is

contractible, A&quot; is a K(G, 1), and G is a PD2k-group.

2.2. We now consider the Euler characteristic %{X) =E&quot;=0( —1)^
E?=o( —1)&apos;/?,(JJO; af is the number of /-cells of a cell-decomposition of X, and

^(X) dimQ Ht(X\ Q) the i-th Betti number. We recall ([Ch-G] and [E]) that x(^)
can also be expressed by the reduced Betti numbers jSz(^f rel. G) as

G).

l. G) is the von Neumann dimension of /r(^) considered as a Hilbert
G-module.

A lemma of Cheeger-Gromov [Ch-G] tells that if G is amenable then the natural

map H\X) -*&gt; Hl(%\ U) is injective. From our assumptions it follows that

Hl(X; R) 0 for 0 &lt; i &lt; k whence H&apos;(X) 0 and ^(^ rel. G) 0 for 0 £ i &lt; k
(j50 0 since G is infinité). By Poincaré duality for the j8, (cf. 1.6, or [L-L],
Proposition 4.2) it follows that pt(^ rel. G) 0 for k &lt; i £ 2k. The Euler characteristic

can thus be expressed by $k alone:

THEOREM 2.2. LetXbea closed orientable n-manifold, n 2k, which for k&gt;2

is (k — \)-asphericaU and with infinité amenable fundamental group G. Then

X(X) =(-!)%(%rel G).

COROLLARY 2.3. For X as in Theorem 2.2 one has

This is due to the fact that pk is a non-negative real number.
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In the case n 4 there are no asphericity assumptions and we get the resuit

proved by a différent method (&quot;Folner séquence&quot;) in [E]:

THEOREM 2.4. Let X be a closed orientable 4-manifold with infinité amenable

fondamental group G. Then %(X) is ^ 0.

Or in terms of the Hausmann-Weinberger invariant q{G):

COROLLARY 2.5. For a finitely presented infinité amenable group G the

invariant q(G) is ^ 0.

2.3. For manifolds X as considered in 2.1 the fundamental group G — nx(X) is

of type Fk (finitely presented and of type FPk). Indeed, the (finite) A&gt;skeleton of a

cell-decomposition of X can be extended to a K{G, 1) by attaching cells of
dimensions &gt;k.

Conversely there exists for any group G of type Fk, k ^ 2, a closed orientable
2A:-manifold with nx(X) G and nt(X) 0 for 1 &lt; i &lt; k. To find Xone starts with

any closed orientable differentiable 2A:-manifold M with nx{M) =G. For k&gt;2,

type FPk of G guarantees that n2(M) H2(M) is finitely generated as a J.G-mod¬

ule. Thus n2(M) can be annihilated by a finite number of surgeries in M (see [M]),
and there results a closed manifold M&apos; with nx(M&apos;) G, n2(M&apos;) =0. If k &gt; 3 then
tc3(M&apos;) is finitely generated over ZG, and the procédure can be repeated until one
has a manifold X as required.

Now we define for a group G of type Fk, k ^ 2, the invariant yk(G) to be the

minimum of — 1)*#PQ for ail 2k-manifolds as above with ttj (X) — G, nl (X) 0

for 1 &lt; j &lt; k. The minimum exists since

+ 2 £
0

and Pk(X)
Clearly y2(G)

COROLLARY 2.6. For an infinité amenable group G of type Fk,k^29 the

invariant yk(G) is ^0.
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3. The vanishing of %(X)

3.1. We return to a closed orientable manifold X of even dimension n 2k as

in Section 2, aspherical up to the middle dimension k (if k &gt; 2) and with infinité
amenable fundamental group.

If X(X) 0 then by Theorem 2.2 pk(X rel G) 0, whence Hk(î) 0. We will
show that this implies, in addition to Proposition 2.1, Hk0l) ^ Hk(G; ZG).

Since X is (k — l)-connected we can use (part of) diagram (4) with exact rows

0 &gt; Hk(G; ZG) &gt; Hkcomp(X; Z) -^ Hk(X; ZG)G

Jjktri. ] r^\ rrk (V. [m v H^/v. / r*\GH \KJ,i2^J) &gt; H (2)\A M) &gt; M \A,l2^J)

Since &lt;P factors through Hk(X) (see Proposition 1.2) which is 0 if %(X) 0 the map

rjk (V. 17\ ^. ljk(\r- Uf\G R Uk(V&apos; 1 f^\

is =0. The coefficient map Q is injective since Hk~l(%; —) 0. Thus $&apos; 0 and

Hk(G; ZG) s ff^nptf; Z) s /

THEOREM 3.1. Let X be a compact orientable n-manifold, n =2k, which for
k &gt; 2 is (k — 1)-aspherical, and with infinité amenable fundamental group G. If
X(X) 0 then

We recall that Ht(X) =0 for 0&lt;i&lt;k, and that //,(.?) ^H2k~l(G; ZG) for
A: &lt; i &lt; 2k (by Proposition 2.1); whence

COROLLARY 3.2. Let X be as in Theorem 3.1. Ifx{X) 0 and Hl(G; ZG) 0

for 0&lt;i&lt;k then X is contractée, X a K(G, 1), and G is a PD2k-group.

In terms of the invariant yk(G) defined in 2.3:

COROLLARY 3.3. If G is an infinité amenable group of type Fk9 k^2, with

Hl(G; ZG) =0for0£i£k, then yk(G) 0 implies that G is a PD^-group.
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3.2. Again n 2k 4 does not require any asphericity assumptions:

THEOREM 3.4. Let X be a closed orientable 4-manifold with infinité amenable

fondamental group G. If x(X) 0 then H2(î) s H2(G; ZG).

COROLLARY 3.5. If for X as in Theorem 3.3, H\G\ZG) H2(G;ZG) 0

and x(X) 0 then X is a PD4-group.

We recall that H\G; ZG) must be 0 or Z; it is Z if and only if G is virtually
infinité cyclic; whence

COROLLARY 3.6. If G is a finitely presented infinité amenable group, not

virtually infinité cyclic, with H2(G; ZG) =0, then q(G)=0 implies that G is PD4-

group.

4. Amenable 2-knot groups

4.1. A 2-knot, or a knot in dimension 4, is a differentiable embedding

f:S2-+S4of the 2-sphere into the 4-sphere. The group G is called a 2-knot group
if there is a 2-knot such that the fundamental group nx (S4 —f(S2)) of the complément

is For such a group one has HX{G) =Z and H2(G) =0 (cf. Kervaire
[K]).

Let C be the closed complément of/(S2) in S4, obtained by removing an open
tubular neighborhood of f(S2). Clearly nxC G, and dC is homeomorphic to
f(S2) x S1. Attaching a handle F3 x S1 to dC (&quot;surgery along /(S2)&quot;) yields a

closed 4-manifolds X, with nxX G, HxX #,G Z, and ^^ 0. The invariant
«(G) is £ 2 - 20,(G) + j?2(G) 0, and ?(G) £ *(*) 0.

Thus one has quite generally q(G) 0 for ail 2-knot groups.

4.2. If the 2-knot group G is amenable then Theorem 3.3 can be applied,
whence

THEOREM 4.1. Let G be an amenable 2-knot group, not virtually Z, and X the

closed A-manifold obtained by surgery from a 2-knot with fundamental group G. Then

COROLLARY 4.2. If G is an amenable 2-knot group with

Hl(G; ZG) H2(G; ZG) 0 then ï is contractible, and G is a PD4-group.
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4.3. Remark. Since HX(G) / for a 2-knot group (actually for any knot group)
one can write G as an HNN extension over a finitely generated group; if G is

amenable the HNN extension must be ascending, i.e. G H^Hp (cf. [E], p. 389).
Hère H also being amenable is either finite or has one or two ends.

If H is finite then G is virtually infinité cyclic, i.e. G has two ends. If H has one
end, and if we assume that H is almost finitely presented, then

H\G; ZG) H2(G; ZG) 0 by [B-G], thus G is a PZ&gt;4-group. If H has 2 ends it
must be infinité cyclic =&lt;a&gt;; this yields G {a,p \pap~l =ak} where HX{G) Z
forces k to be =2.

4.4. Remark. Ail 2-knot groups with 2 ends are determined by Hillman in [H2],
Chapter 4. Ail elementary amenable 2-knot groups which are PD4-groups are

virtually solvable (cf. [H-L]) and thus torsion-free virtually polycyclic; ail such

2-knot groups hâve been determined in [H2], Chapter 6.

5. Partial Euler characteristic of groups

5.1. In this appendix we use the method of /2-cohomology to prove results

concerning the &quot;partial Euler characteristic&quot; of an amenable group G which were

already established earlier [E], partly by an entirely différent method.
We assume that G is of type Fm; i.e., G admits a K(G, 1) which has a finite

m-skeleton (G is of type FPm and finitely presented if m ^ 2). We dénote by X the

m-skeleton of K(G9 1) and consider its Euler characteristic x(X). The minimum
value of - \)mx(X) for ail such K{G, 1) is written qm{G). The minimum exists since

fiXX) PAG) for ï^&lt; m and pm(X) * fim(G).
5.2. Since //,(.?) =0 for 0&lt;i&lt;m the Cheeger-Gromov lemma yields, for

amenable G, Hl(X) 0 for 0 ^ i &lt; m, whence j8,(JP rel. G) 0 for thèse i. Thus

tfJ0=(-l)miU*rel. G).

THEOREM 5.1. For an infinité amenable group G of type Fm the group invariant

qm{G)is *0.

We recall that this yields explicit results of the following type: If G is a finitely
presented infinité amenable group then the defect d{G) is ^ 1, cf. [E].

5.3. The vanishing of qm(G) is of spécial interest. It means that there is a certain

K(G, 1) - with finite m-skeleton X - such that x(X) 0.
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From 5.2 it follows that this implies fîm(X rel. G) 0, whence Hm(X) 0. The

map Y :H?2)(Z;U)-+Hm(Z;n), see (5) in 1.5, factors through Hm{ï) and is

therefore =0.
We now consider an arbitrary finite subcomplex S of X. The restriction of X to

S yields the commutative diagram

/i(2)(A H) &gt; H (A, H)

I i
tint /ç». rn^ w um/p. rn&gt;\

The vertical maps are surjective due to exactness of the relative séquence of X
modulo S, and to the fact that there are no (m + l)-cells.

Thus Hm(S; U) Hom(Hm(S), U) 0. As Hm(S) is Z-free, it must be 0. Thus
Hm(X) 0, and ï is contractible; i.e., we can take X K(G, 1).

THEOREM 5.2. If for an infinité amenable group G of type Fm the group
invariant qm(G) =0 then G admits a finite K(G, l)-complex of dimension &lt;&gt;m; in

particular the cohomology dimension cdG is

5.4. We finally remark that results such as Theorems 2.2 and 5.1 hold in the

more gênerai setting of [E], Section 5: namely for a group G of the appropriate type
which need not be amenable, but is an extension G/N A of an infinité amenable

group A by a normal subgroup N with Pt(N) finite for the respective /. Thèse results

can be established by the /2-cohomology methods of the présent paper. One takes,
instead of ^P, the covering space Y corresponding to the subgroup N of G, which is

a free cocompact A -space. Since Hl{Y; U) Hl(N; U) has finite (R-dimension and

H\Y) -&gt;Hl(Y; U) is injective, Hl(Y) must be 0 (Hl(Y) is an invariant subspace of
C[2y(Y; U) and cannot be of finite IR-dimension unless it is 0). Thus ^(7 rel. A) 0

and the arguments are as before. - Thèse remarks, of course, do not apply to the
&quot;converse&quot; statements concerning the vanishing of the Euler characteristic.

6. Addendum*) on groups with vanishing first /2-Betti number

6.1. For any finite complex X with fundamental group G, i.e., for any finitely
presented group, /?j(Zrel. G) dépends on G only; it can be written Pi(G). If
X is a closed orientable 4-manifold with nx(X) G, and if ^(G)=0, then

*&gt;January 1994
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X(X) P2(X rel. G). Thus ail arguments of Sections 2 and 3 concerning 4-manifolds
can be carried through. Moreover, via the /2-signature theorem, one can obtain
statements concerning the signature of X. We plan to return to thèse aspects in a

separate paper.

6.2. Hère we only note as an immédiate conséquence of Proposition 1.1 that
finitely presented groups G with the Kazhdan (T) property hâve Pi(G) 0. Indeed,

(T) împhes H\G;l2G)=0; but H\GJ2G) H\X;12G) H\2)(X\ and since

H\2)(X) maps onto H\X) ît follows that px(X rel G) px(G) 0.
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