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Ahlfors-Weill extensions of conformai mappings and critical points of
the Poincaré metric

M. Chuaqui and B. Osgood

1. Introduction

Nehari showed in [10] that if/ is analytic in the unit disk D, and if its
Schwarzian derivative S/=(/&quot;//&apos;) - (1/2) (/&quot;//&apos;)2 satisfies

then / is univalent in the disk. Ahlfors and Weill showed in [1] that if the

Schwarzian satisfies the stronger inequality

2t _ _

for some 0 &lt; t &lt; 1 then, in addition,/has a quasiconformal extension to the sphère.

They gave an explicit formula for the extension. The class of analytic functions

satisfying either of thèse conditions is qui te large. It was shown by Paatero in [13]
that any convex univalent function satisfies (1.1). This was later established in a
différent way by Nehari in [11], and he went on to prove that a bounded convex
function satisfies the Ahlfors-Weill condition.

In [6], Gehring and Pommerenke made a careful study of Nehari&apos;s original
univalence criterion and showed, among other things, that the condition (1.1)
implies that/(D) is a Jordan domain except when/is a Môbius conjugation of the

logarithm,

(1.3)

By this we mean that/= T o Fo ° t, where T and t are Môbius transformations and

t(D) D. The function Fo has SF0(z) 2/(1 - z2)2, and F0(D) is an infinité parallel
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660 M CHUAQUI AND B OSGOOD

strip. For topological reasons, it then follows from the Gehring-Pommerenke
theorem that other than in the exceptional case/has a homeomorphic extension to
the sphère. See also [4]. The main resuit in this paper is that the same Ahlfors-
Weill formula defines a homeomorphic extension of/, though it will not in gênerai
be a quasiconformal extension. We discuss this phenomenon via a relationship
between the Ahlfors-Weill extension and the Poincaré metric of the image of/.
This may be of independent interest.

For economy of notation, though at the risk of sinking a crowded ship, we
introduce explicitly several subclasses of univalent functions associated with Nehari
type bounds. Thus we let N dénote the set of analytic functions in the disk
satisfying (1.1), N* the éléments of N other than Môbius conjugations of the
function Fo, and N&apos; those functions satisfying (1.2). We use the notation
No, JVJ, Nq to indicate that a function/in any of the classes has the normalization
/(0) 0, /&apos;(0) 1, /&quot;(0) 0. Iff(z) z + a2z2 + • • • is in any of the classes, then

//( 1 + &lt;*if) is in the corresponding class of normalized functions, the point being
that the normalized function is still analytic, [2]. The function Fo is normalized in
this way. Furthermore, according to [3], Lemma 4, functions in iVJ are bounded.
The family of normalized extremals for the Ahlfors-Weill condition (1.2) is

We thank the référée for his thoughtful and helpful remarks.

2. Preliminary estimâtes

Several distortion theorems for the classes No and N&apos;o were proved in [2] using
comparison theorems for the second order, ordinary differential équation associated
with the Schwarzian. We continue somewhat in the same vein hère for a few basic
estimâtes. We refer to our earlier paper for further background.

LEMMA 1. IffeNothen

f&quot;,

r,v~, -, ,_,2. (2.D

Equality holds at a single z ^ 0 if and only iffis a rotation of F0(z). Iffe N&apos;o then

(2.2)
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The inequality (2.2) is not sharp. The proof will show how one may obtain a
sharp estimate, but it is not as convenient and explicit as the one given hère.

Proof. Let y =f&quot;lff. Then

/ -&gt;&gt;2 + 2/7,

with 2p(z) Sf(z). We consider the real équation

on — 1,1), whose solution is w(x) =2x/(l — x2). We want to show that
\y(z)\ £ w(|z|).

Fix z0, |zo| 1, and let

Unless f(z) z identically the zéros of q&gt; are isolated. Away from thèse zéros q&gt; is

differentiable and cp\x) ^ |j&gt;&apos;(TZo)|« Since |/?(tzo)| £ 1/(1 — t2)2 we obtain

£ \y&apos;(zzo)\ - w&apos;(t) £ l-
(\y(xzo)\2 - w\r))

This, together with &lt;p(0) - w(0) 0, implies that &lt;p{x) - w(z) can never become

positive.
Now suppose that equality holds in (2.1) at zx # 0. Let z0 zxl\zx\ and let (p(%)

be defined as above. Then q&gt;(\zx\) w(\zx\) which, by the previous analysis, can
happen only if &lt;p(t) w(t), first on [0, \zx\], and then for ail t e [0,1) since both
functions are analytic. Hence y(TzQ) is of the form et0(x)w(x). Since ail inequalities
above must be equalities, it follows easily that 0(t) must be constant. From this, it
follows in turn that y(z) cw(zoz) for ail \z\ &lt; 1, with |c| l. Integrating this

équation and appealing to the normalizations on/shows that/(z) =e~ieF0(ei6z).
This proves the first part of the lemma.

Next, suppose that/e N&apos;o. The proof that |/&quot;//&apos;| has the bound in (2.2) proceeds

exactly as above with the single différence that the comparison équation is
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The solution is given by

2x 2a2()A()
where At(x) is defined in (1.4). It can be checked that At(x) is convex on [0, 1], and
hence

max 4^-^(0) «1.
0&lt;Lx&lt;L 1 X

Therefore

l-x2 \-&lt;x2 t,
2x v

which proves (2.2).

3. Bounds for the Poincaré metric

The Poincaré metric Afl|rfw| of a simply connected domain Q is defined by

-M2&apos;

where / : D -? Q is a conformai mapping of the unit disk onto Q. From Schwarz&apos;s

lemma and the Koebe 1/4-theorem one has the sharp inequalities

* A() £QKJ d(z9d0)9

where d(z9 dQ) dénotes the Euclidean distance from z to the boundary.
Writing w =f(z) and taking the dz d/dz derivative of the logarithm of (3.1)

gives

Observe for a normalized function feN0 that the Poincaré metric XQ of the image
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Q has a critical point at w 0, and, by Lemma 1, that this must be the unique
critical point if/is not a rotation of the logarithm Fo. (In the latter case Q is a

parallel strip and the critical points of kQ are ail the points of the axis of symmetry
of Q.) Assuming that / e TV is bounded, we can drop the normalization and reach
the same conclusion:

LEMMA 2. Iff e N is bounded, then kQ has a unique critical point.

Proof. Since Q =/(D) is bounded and kQ(w) -+ oo as w -+ÔQ, kQ must hâve at
least one critical point. By replacing / by / o Tx where Tx is a Môbius transformation

of the disk to itself, and then by T2°f°Tl, where T2 is a complex affine

transformation, we may assume that one such critical point is w — 0 =/(0), and
furthermore that/(O) 0 and/&apos;(0) 1. The identity (3.2) then forces/&quot;(0) 0, i.e.

that/g N$. Hence, as above, w 0 is the unique critical point for kQ since/cannot
be a rotation of the log.

REMARK. Thèse are sharp results in the sensé that for any 0 &lt; e &lt; 2 there is

a bounded, univalent function / with Sf(z) — 2(1 + é)/(1 — z2)2 such that
kQ, Q =/(D), has more than one critical point. In fact, consider the (normalized)
functions A_t(z) for 1 ^ t &lt; 3, where At(z) is defined in (1.4). For each t the

function A_t has SA_t(z) -2t/(\ - z2)2 and maps D onto the quasidisk Qt

consisting of the interior of the union of the circles through the points 1/a, — 1/a
and ± /(1/a) tan (na/4), where a ^/l -h t. One can check directly that when t &gt; 1

the Poincaré metric for Qt has exactly three critical points, one at 0 and two on the

imaginary axis which are conjugate.

In [7] Kim and Minda showed that log kn is a convex function if and only if Q

is a convex domain. See also the papers [9] and [14]. Using the fact that iVcontains
the convex conformai mappings we can add:

COROLLARY 1. IfQisa bounded, convex domain, then XQ has a unique critical
point.

In [12] it was shown that

\V\o%lQ\^*XQ (3.3)

as a conséquence of (3.2) and the classical bound for |/7/&apos;| that holds for any
univalent function in the disk. The inequality (3.3) is équivalent to the coefficient

inequality \a2\ ^ 2. We now give some lower bounds for \V logkQ\.
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LEMMA 3. Iff e iVJ, then there exists a constant c &gt; 0 such that

\V logXq{w)\ * c\w\kQ{w)li\ (3.4)

IffeN&apos;o, then

\V log XQ(w)\ * 2(1 - 03/&gt;|Afi(w). (3.5)

Recall that a function/e N$ is bounded. The constant in (3.4) dépends on the

bound for/. In an appendix we will give an example to show that the exponent 1/2
is essentially best possible in (3.4).

Proof. The estimate (3.4) is implicit in [6]. We show how it can be deduced,

adopting the notation used there. Let h be the inverse of Fo and let g =/° h. For

t € R we hâve 2\g&apos;(r)\ (1 - |A(t)|2)|/&apos;(A(t))| ^(^(t))&quot;1. It was shown in [6] that
v |g&apos;|~1/2 is convex, with v(0) 1, v&apos;(0) 0. It is not constant when/is not equal
to Fo. Now,

2 7(T) Itlog Ao(^T)) s IF log AoU(T))| |g&apos;(T)| |r log ^«!
hence

Since v is not constant and / is bounded, it follows that there exists a constant a

such that v&apos;(t) ^ a|g(t)| for t ^ 0. The estimâtes can be made uniformly on différent

rays from the origin by considering/(el0/i). This proves (3.4).
Now suppose that/eiVo and write w =/(z). Using (3.2),

From Lemma 1, (2.2) we then obtain

^j)! 2( * &quot;

with w =/(z). But from [2], a function in N&apos;o is subject to the sharp bound
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|/(z)| ^ ^4,(|z|), where At was defined in (1.4). This can be réarrangée! to

The function \j/(s) is concave on [0, 1] with ^(0) 0 and \j/(l) 1. Hence \//(s) ^ s

and (3.5) follows.

4. Homeomorphic extensions

Let/e N with/(z) z + a2z2 + • • •. It was shown in [2] that - \ja2 £/(D), and
it follows from Lemma 4 in [3] that unless/is conjugate to Fo the point — \/a2 will
actually lie outside/(D). For a fîxed (eD renormalize in the usual way to

f&quot;

which is again in N, and which has g(0)=0 and g&apos;(0) 1. To say that
— 2/g&quot;(0) £#(D) is équivalent to saying that

Ef{Q =/(0 + (1lC|)/(^, #/(D), (4.1

c-^i-lcl2)^©
and, again, if/is not conjugate to FQ then

^ (4.2)

In terms of the Poincaré metric, Ef has the expression

by (3.2).

THEOREM 1. IffeN* then

îs a homeomorphic extension off to the sphère.
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The extension Ef has the important property that it commutes with Môbius
transformations of/ If ris a Môbius transformation, then

ETof=T(Ef). (4.5)

This can be checked directly from the définition, first for complex affine transformations

and then, less obviously, for an inversion. It is also true that Efo T(z) Ef(x{z))
for ail Môbius transformations t of the disk onto itself, but we will not make any
use of this fact.

Proof of Theorem 1. We first show that F is continuous at ail points of the

sphère. If \z\ &lt; 1 this is obvious. Next, using (4.5) we may normalize further and

assume that / e N$. It is then clear from

that F is continuous outside D; from Lemma 1 the denominator vanishes only at
z 0, which corresponds to oo under the reflection in \z\ 1. Finally, recall by the

Gehring-Pommerenke theorem that / has a homeomorphic extension to D. Thus

since/(D) Q is a Jordan domain, to show that Fis continuous on \z\ 1 we must
see that ^matches with/there. Because we hâve normalized to get/e N$ we know
that Q is bounded, and so it suffices to show that Ef(z) —f(z) -&gt;0 as \z\ -? 1. This
is équivalent to \V log ^(w)! -&gt; oo as w -+dQ, which foliows from the first part of
Lemma 3. We also now conclude that the range of F is ail of C.

Since / is a homeomorphism of D, it remains to show that Ef is injective.
Suppose that Ef(zx) Ef(z2). Appealing again to (4.5) we may change/to T °/by
an appropriate Môbius transformation Tand assume that this common value is oo.

But (4.2) now implies that/must be bounded, while on the other hand (4.3) shows

that an infinité value of Ef must be a critical point of log kQ. By Lemma 2 such a

critical point is unique, hence zx =z2 because/is univalent.
We hâve proved that the mapping F is continuous and injective, and is therefore

a homeomorphism onto its range, C. This complètes the proof of the theorem.

The function Ef is precisely the Ahlfors-Weill extension. For / satisfying
\Sf(z)\ £2t(l- \z\2)~2 the function F defined by (4.4) is a (1 -h r/1 — r)-quasicon-
formal mapping which extends/ In [5] Epstein made an enlightening differential-
geometric study of this extension. Independent of the Gehring-Pommerenke
results, a function in N&apos;Q is already y/l — f-Hôlder continuous in D, and so, in
particular, it can be extended to D; see [2].
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The complex dilatation iiF ô2F/ôzF of the Ahlfors-Weill extension at a point
in the exterior of the disk is

where z l/(~. It will therefore not define a quasiconformal mapping at points
where \Sf(z)\ is at least 2/(1 - |z|2)2. There are, however, functions in N*\Ui&lt; 1

#&apos;

which do hâve quasiconformal extensions. For example, take / to be a solution of
Sf= 2 in D. The function has \Sf(z)\ £ tn2/2 for / 4/n2 &lt; 1, and so by [10] and [6]
its image is a quasidisk. But the formula (4.4) will not provide a global quasiconformal

extension. Also, recall from the remark following Lemma 2 that the functions
A_t(z), 1 ^ / &lt; 3, with Sf(z) -2t/(\-z2)2 (too big to be in N when t &gt; 1) ail
hâve quasiconformal extensions, but again not via the Ahlfors-Weill extension.

Appendix: An example

We return to the first part of Lemma 3. We want to construct a function/e N$
showing that the exponent 1/2 in the bound \V log kQ{w)\ £ a|w|Ao(w)1/2, Q =/(D),
is, in gênerai, best possible. As the proof of Lemma 3 shows, this will be the case

provided the convex function v9 introduced in the proof, has bounded derivative.
The extremal Fo maps the disk onto the strip — n/4 &lt; Im w &lt; te/4. We want to

construct g, analytic in this strip, so that f goF0 will be in iVJ, and

v(x) Ig&apos;Cr)!&quot;1^ will be convex with bounded derivative for t on the real axis.

Let a &gt; 0, to be chosen, and let

If a &gt; y/n/2 then g&apos; will be regular in the strip and v(x), t e R, will be a convex
function with bounded derivative. We compute the Schwarzian of g to be

Then f=g°Fois normalized and

Sf(z) Sg(F0(z)) (F&apos;0(z))2 + SF0(z) —^ i 1 -—^ \, C F0(z).
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It is not hard to show that if a is sufficiently large then

4a

(a+Ç2)2

so that/6NJ.
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