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On complex affine surfaces with C*-action

KARL-HEINZ FIESELER

0. Introduction

The subject of this paper is the classification of normal complex affine surfaces
endowed with a nontrivial action of the additive group C* as well as certain aspects
of their topology. Such surfaces have already been studied by Miyanishi in [6] and
[7]; on the one hand from an algebraic point of view by looking at iterative systems
of higher order derivations (in arbitrary characteritic) and on the other side by
investigating “cylinderlike” affine surfaces, i.e. surfaces which admit non-empty
open subsets of the form Z x C.

One goal here is to complete that picture in the complex case: As a cylinderlike
surface a normal affine C*-surface can be constructed from a product Z x C, Z a
smooth affine curve, and C* acting by translation on the second factor, by
replacing in the fibration pr, : Z x C — Z a finite number of orbits by “exceptional
fibres”. Since there is no twisting over the affine curve Z, the resulting surface V is
uniquely determined by the germs of C*-invariant neighbourhoods of the glued in
exceptional fibres.

But in contrast to the reductive group C* ¥, those fibres may be non-connected.
In order to deal with non-connected fibres we replace the base curve Z with a
nonseparated ‘“‘connected” quotient X, i.e. the quotient morphism has connected
fibres. Over X there is nontrivial twisting, and in fact we obtain already non-trivial
affine C*-principal bundles over X, cf. Prop. 1.4: they are affine whenever they are
separated. Surfaces of this type have been used by W. Danielewski, to construct his
counterexample to the Zariski cancellation problem, cf. [1] and Remark 1.5. The
next step is to investigate the structure near connected exceptional fibres of the
connected quotient = : ¥ — X. A first distinction between such fibres n ~!(x,) uses
two numerical invariants: the multiplicity m = 1 of n~(x,) as fibre of the mor-
phism =, and its “fixed point order” p > 0, i.e. the vanishing order of the velocity

7

" The situation for the multiplicative group C* has been studied in the papers [2] and [3].
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vector field associated to the C*-action along that fibre. For m =1 the morphism
n is near " '(x,) a projection, i.e. there is a neighbourhood U of x, such that
n ' (U)= U x C, and u =0 means that this isomorphism is even equivariant.

For m > 2 we describe explicitly invariant neighbourhoods = ~'(U) as quotients
W/C,, where W is a smooth affine surface without multiple fibres over a Galois
cover Y of U with cyclic Galois group C,, and a ramification point y, of order m
over x,. The neighbourhoods = ~!(U) are determined up to isomorphism by
C,,-orbits in Q(Oy, )/h~#0Oy,,, such that the fixed point order u is coprime to the
order of the isotropy subgroup along that orbit, and the smooth case corresponds
to principal orbits, i.e. those with m elements, while otherwise there is exactly one
singular point. Here 4 denotes a generator of the maximal ideal m, < O, , .

In particular for the description of invariant neighbourhoods of connected fibres
one needs infinite-dimensional “moduli”’, another feature that distinguishes the
additive group C* from the multiplicative group C*.

Finally the case of nonconnected fibres is as simple as that of C™*-principal
bundles: different models V; of invariant neighbourhoods 7 ~!'(U) of connected
fibres can rather arbitrarily be patched together.

In the second section we construct a minimal equivariant compactification ¥ for
a smooth affine C*-surface V and use the information about the divisor at infinity
D:=V\V to compute the singular homology of ¥V, as well as the first homology
group at infinity in the case that no multiple fibres occur. This allows us to
distinguish the topological types of the Danielewski surfaces.

For useful comments and remarks my thanks go to Hanspeter Kraft.

1. Free C*-actions on normal affine surfaces
Let ¥V =Sp (A4) be a connected normal affine surface. Algebraic C*-actions
CxV-V, (tL,v)y>txv

on V are in one-to-one correspondence with locally nilpotent derivations
D : A — A: The comorphisms u : A - A[T] associated to a C*-action are exactly
those of the form

Ax na

ula) =

n—=0 n!

Tn

with D as above, cf. [7]. The kernel of D is the subalgebra A,:=A®" of invariant
regular functions, while D? kills exactly those functions f, which are affine linear on
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every orbit, i.e. f(t xv) =f,(v)t + f,(v) for every ve V and teC* with f, = D"f,
n=0,1.

A normal affine surface together with a nontrivial algebraic C*-action we shall
also call an affine C*-surface. Note that each orbit is either a fixed point or the
complex line; the latter being maximal affine it follows that all orbits are closed.

1.1. LEMMA. For an affine C*-surface V = Sp (A) the algebra A, of invariant
functions is finitely generated, and the natural “‘quotient” morphism g : V = Sp (4) —
Z :=Sp (A,) is a surjection onto a smooth curve; furthermore over a nonempty open
subset Z* c Z there is an equivariant isomorphism q~'(Z*) = Z* x C, where C*
acts by translation on the second factor.

Proof. Since the action is nontrivial, we can find a function
feKer (D*\Ker (D). Let V*:=V,, be the (invariant) special open set where Df
does not vanish; set S:={ve V* f(v) =0}. Consider the map C x §— V'*,
(¢, v) — t * v. It 1s obviously bijective and even an isomorphism, since V'* is normal.
In particular S is smooth; so we may consider the smooth projective closure S < P,
of S and interpret the projection prg : V* — S as rational map from g : V> §. We
want to show that it is in fact a morphism: Otherwise it lifts to a morphism ¥ - §
with a suitable modification ¥ of ¥ with centre in ¥\ V*; and this lifting restricts
on some irreducible component E of the exceptional fibres to a finite surjective map
E-S.

Every orbit C x v, v € S, is closed in ¥ and V. Consequently the generic point in
E lies isolated in its fibre, which is impossible.

Now let Z:=¢q(V). Suppose Z = S. Then 4, = O(Z) = C; in particular Df is a
constant, whence V =V* =2 x C, a contradiction. Consequently Z as proper
subset of § is affine and A4, = 0(Z) finitely generated. Finally set Z*:=Sc Z. O

Denote by z,,...,z, the points z;€ Z near which the map g : ¥V —Z is not
equivariantly locally trivial. By replacing each point z;, by as many points
Xijs + o5 Xy ;88 there are connected components in ¢ ~'(z;), we obtain an (in general
non-separated) smooth prevariety X as well as a factorization g =p o n, where
n .V —-X is C*-invariant with connected fibres and the “‘separation morphism”
P : X — Z is induced by the isomorphism (Z) =~ O(X). We shall call = : V — X also
the connected quotient morphism of ¥ and Z resp. q : V — Z the separated quotient
(morphism). :

More precisely, X is constructed in the following manner: denote by Z, = Z an
open neighbourhood of z; containing none of the remaining points z,, k # j,

consider then copies X;; = Z,, 1 <i <r;, and glue them together along X} > Z¥ :=
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Z\{z;}. The resulting spaces X, project onto Z; via the map p;, say; now identify
p;7(Z;nZ,) and p;(Z,nZ,) in the obvious manner.

1.2. LEMMA. If the fibre n ~'(x,) of x, € X is reduced and h € m, isa generator
of the maximal ideal m, < Oy, , then there exists a peN and an affine open
neighbourhood U of x,, such that h € O(U) and n ~'(U) is equivariantly isomorphic to
U x C with C* acting by t * (x, u) :=(x, u + th(x)*).

1.3. DEFINITION. For a normal surface V' with nontrivial algebraic C*-ac-
tion C x ¥ — V and an invariant irreducible curve C ¢ V we define the “fixed point
order” u:=pu(C) as the maximal number » € N such that, over the regular part of
V, the velocity vectorfield associated to the C*-action determines a section in #%-0,
where 4. denotes the ideal sheaf of C and @ the sheaf of algebraic vectorfields.

Proof. Let us use the notation of the proof of 1.1, set X*:=p ~!1(Z*). We choose
an affine neighbourhood U = X* U {x,} of x, such that A € O(U) and x, is the only
zero of h in U and consider its inverse image n ~'(U) = Sp (B).

We use for the induced derivation on B also the symbol D: Let u be the biggest
natural number n such that D(B) = h”"B, where we identify A and hom.
Obviously the derivation D:=h~#D : B B is also locally nilpotent and thus has
an associated C*-action C* x n = '(U) »n~'(U), (t,v) > t ov — note that tov =
(th(n(v)) ~*) * v for v ¢ = ~'(x,). Since = ~'(U) is normal and = ~'(x,) reduced, 4 (or
rather h o ) generates the ideal of the fibre m~'(x,). Consequently D(B) contains
functions which do not vanish identically on the fibre = ~!(x,). Hence it contains or,
being connected, rather equals a nontrivial orbit. In particular, the action o is free
and = ~!(U) thus is smooth.

It remains to prove that there is an equivariant isomorphism n ~!'(U) = U x C,
where on the left hand side we consider the action “o” and on the right hand side
translation on the second factor.

This is a well known fact, but because of lack of a good reference we sketch the
argument: We may assume that X = U. It suffices to construct a section of n. Over
X* a section ¢ is defined by S o V*:=n"'(X*). Now choose a function
ae A =0(V) which restricts to a coordinate function on n~!(x,) =@ C with
Yo€m '(x,) as origin, let Y o V denote its set of zeros on V. The condition
g(y) o a(n(y)) =y defines a regular function g € O(Y*) with Y*:= Y n V*. Since the
fiore n~'(xo,) is reduced, =|, is étale at y,, and we have a surjection
QO0y..,) = 00y, )0y, =0, /0y, . Wemay assume that a preimage b of
the residue class of g e Q(@ vy,) 18 regular in X*; then the section X* - V'*,
x — b(x) o g(x) extends to a section on the whole of X. O
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Let us now consider the case that W =V is a smooth affine C*-surface such
that the morphism n : W — X is a submersion. Lemma 1.2 tells us what W looks
like locally over X, and it remains the question, which equivariant gluing proce-
dures of the local models yield an affine surface. This is a local problem with respect
to Z; hence we may assume s = 1. We write x;, = x;,, | i <r:=r,. Let he O(Z) be
a regular function which vanishes of first order at z, and nowhere else. Furthermore
let C* act on X; x C=Z x C by ¢ » (x, u) = (x, u + th(p(x))*) with natural num-
bers p, € N. Fix functions f;; € O(Z*) such that the cocycle relations

.f;'i =0, fik = ht ~H ij +f}k

are satisfied. Consider then

r

®
W= X, xC/~

i=1

with the identification
XixColx,) ~(x,u)eX; xC < x=x" and u’ = h(p(x))¥ ~*u + f,,( p(x)).

1.4. PROPOSITION. For a surface W as above the following statements are
equivalent:

(1) W is affine.

(i1) W is separated.

(i) n;:=—ord, (f;;) >0 fori+j1<i,j<r.

REMARK. The third condition is equivalent to the fact that none of the maps
it X x CoXF x C, (x, u) = (x, h(p(x)* ~*iu + f,;(p(x))) can be extended to a
morphism X; x C-X; x C.

Proof. (i) = (ii): Obvious.

(i) = (iii): Suppose W is separated and ord, (f;) =0 for some indices i and j.
Then the point (0,f;(0)) e X; x C lies in the closure Y:=X; x {0}; this is a
contradiction, since g|y : Y — Z as a birational morphism onto a smooth curve is an
isomorphism.

(ii1) = (i): In order to prove that W is affine we use induction on r. The
case r =1 being trivial we may assume r>1 as well as p, 2 pu,>---pu,. Let
n:=max {n;;2 < i <r}. Consider the regular funcion g € O(W) with

8(x, u) = h(p(x))"(h(p(x))* ~*u + fu(p(x)))  for (x,u) € X; x C.
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We have g|,,_1(xl) =0, and g, 1) =4 for some a € C*, if we choose i, such that
n =n, . It suffices to show that g : W — C is an affine morphism. But this is clear,
since by induction hypothesis the union of at most » —1 open subspaces
X; x C < W is affine and

e =( () xxc)

g

as well as

g—‘(«:\{a})=<0 Xi><¢:> B -

i=1
isig
Let us for a moment assume that in addition the C*-action is even free. In that
case m: W —X is a C*-principal bundle, and C*-principal bundles over X are
classified by elements of the cohomology group H'(X, 0); so for an affine base
X =Z we find W= X x C. But for a nonseparated base space the condition given
in 1.4 provides us with a lot of nontrivial C*-surfaces. Danielewski used surfaces of
this type to construct his counterexample to the Zariski-cancellation problem, i.e.
he found non-isomorphic varieties W, W’, such that forming their cartesian product
with the complex affine line C one gets isomorphic varieties, cf. [1]. The following
remark is basic for his examples:

1.5. REMARK. Let n: WX, n": W —>X be C*-principal bundles with
affine total spaces W, W’. Then we have an isomorphism

WxCxW xC.
Proof. In the cartesian square

W x W W
|? L"
w’ — X
all occuring maps are bundle projections of C*-principal bundles; since W, W’ are
affine, we have H'(W, 0) =0=H'(W’,0) and thus W x C= W’ x , W~ W’ x C.
d

So it remains to find an invariant by means of which we can distinguish between
surfaces W and W’ of the above type. That invariant will be the first homology
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group at infinity

HY (W)= lim H,(W\K)

Kcac W

which we compute in the second section, cf. Th. 2.4 and 2.5.

Our next aim is to describe C-invariant neighbourhoods of a connected fibre
1~ '(x,) of multiplicity m =2 and fixed point order u =0 of the quotient map
n .V — X. Let us first introduce the local models:

1.6. EXAMPLE. Let X be a smooth connected affine curve — so in particular X
is separated here —, x,€ X and ¥ : Y - X with Y smooth a finite cyclic Galois
covering of order m = 2 which is unramified over X*:= X\{x,} and has a ramifica-
tion point y, of order m over x,. After removing finitely many poins #x, from X
we may assume that Y is of the form Y = {(x, z) € X x C; z™ = b(x)} with a regular
function b € ¢(X) which generates the maximal ideal m, < Oy, and has no other
zeros than x,, set h:=prc|y € O(Y). The Galois group of Y over X is the group C,,
of m-th roots of unity, which acts by multiplication on the second factor, and on
Q(O(Y)) by &f(y):=f(e'y).

For Y*:=y ~'(X*) choose a regular function fe O(Y*) of trace Tr (f) =0 in
the field extension Q(O(Y)) = @(O(X)). Denote by n the order of the orbit C,,f of
the residue class of fin Q(Oy, )/h 0Oy, . For Y « X x C as described above, we
see, using the isomorphism

m— 1

001, = @ QO "

that for f =27 " f,h" this means nothing but: f, =0 and n = m/I for I:=I(f, u):=
ged (m,v:mord, (f,)+v<—np).

Let ¥ be the smooth prevariety obtained from Y by replacing the point y, by n
points y, ..., y,, set Y;:=Y*U{y;} = ¥ with Y*:= ¥\{y,} and ¢ = e2*/",

We define W% () to be the C-principal bundle over ¥ defined by the transition
functions

j=1 ‘
Ji(y)=—he"'»)* ¥ fe™%y)
for1<i<j<randyeY,uY¥,=7Y*ie.

s@) = ) ¥, x C/~

i=1
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with Y* x Ca(y,u) ~(y,u+f,;(y) € Y} x C. The fact that the C,,-orbit of the
residue class of fin Q(Oy, )/h ~#0Oy,, has n elements implies that for j > i, the
function f;; has a pole at y,. So, by 1.4, the variety W% () is affine.

We endow W () with the C*-action ¢ * (y, u)==(y, u + th(y)*) € Y; x C for
(y,uye?, xC.

Denote by ¢: W%(y) > Y the separated, by §: Wk (y) —» ¥ the connected
quotient morphism. Now consider the automorphism

0 WEW) = ) Y, x Co WEW)

i=1
such that for (y,u) € ¥; x C, 1 <i <n with the identification ¥, =Y =7
o(y,u) =(ey,e"u) €Y, x C,

while for (y,u) € Y, x C we have

n—1

o(y, u) ==(ey, ehu + h(y)* AZOf(e‘ y)) €Y, xC.

We remark that A*ZI”)e*feO(Y), since 0=Tr(f)=I1Zi_le’f in
0y,,)/h#0y,,. Furthermore note that for (y,u) e Y* x C < Y; x C one has

o(y, u) = (ey, e*u + h(Y)*f(y)) € Y, x C,

and
k—1
o (y,u) = (8"y, eku + h(e*~y)r Y, f(S‘y))
A=0

Thus, since Tr (f) =0, ¢ has order m, such that we obtain an action of C,, on
W% (): let € € C,, act via the automorphism ¢. This action is C*-equivariant, hence

Vi) =w;W)/C,

is an affine C*-surface as well, and its quotient morphism is
n: Vi) X
[y, ul; = ¥(y),

where [y, u]; denotes the orbit C,,(y, u) for (y,u) e Y, x C.
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Now suppose that / and p are relatively prime. In that case C,, acts freely on
WEWI\Cr(y1, a(0)X(1 —e™) "), where a:=¢' ~"h*Zi”_ge *feO(Y); hence the
residue map W% () — V# () is étale outside a finite set, and we can conclude, that
the fibre n ~'(x,) has fixed point order u and multiplicity m: the former is obvious,
since the fibres § ~'( ;) have fixed point order u, while for the multiplicity consider
the coordinate function bem, near x,€ X. Obviously the function boy g
vanishes of order m along {y,} xC for 1<i<n; now, the residue map
Wt () — V# () being étale outside a finite set, it follows that b o has order m
along © ~'(x,).

Note that under the assumption (u, /) =1 the surface V# () is smooth iff / = 1;
and this is in particular the case for u e mZ. On the other hand, for / > 1 there is
exactly one singular pont in V¥ (), cf. also [6].

1.7. THEOREM. Let V be a connected normal affine C*-surface with connected
quotient morphism n : V — X, and xy€ X a point, such that the fibre n~'(x,) has
multiplicity m = 2 and fixed point order p = 0. Fix a neighbourhood U of x,, such
that there is an equivariant isomorphism n~'(U*) = U* x C with U*:=U\{x,},
together with a finite cyclic Galois covering y . Y — U of order m as in 1.6. Then there
is a regular function f € O(Y*), where Y*:=y ~'(U*), of trace Tr (f) =0, such that
n~'(U) = V¥ () and p is coprime to the order I( f, p) of the isotropy group of the
residue class f of f in Q(Oy, )/m;* (where m, *:=h~*0Oy , for a generator h of the
maximal ideal m, < Oy, ).

Furthermore we have V() = V() if and only if the residue classes of f and f”
in Q(Oy, )/m;* are conjugate under the action of C,,.

Proof. We may assume U = X and fix bem, and h em, with 4 =b asin 1.6.

Consider the fibre product Y x , V. At a generic point of {y,} x 7~ '(x,) it
decomposes into m analytic branches. The projection pr, restricts to a submersion
on each of these branches, and the group C,, acts transitively on them. Conse-
quently the normalization W of the reduction of Y x , ¥ is a normal affine
C*-surface with a connected quotient ¥, which is obtained from Y by replacing y,
by n points y,, ..., y,, and these points, with respect to the induced action of C,,
on Y, form one orbit. Thus | m, and we may assume ey, =y, for 1 <i <n with
Yn+1:=y;. From the above considerations we can also conclude, that there are only
finitely many non-principal orbits, i.e., orbits with less than m elements; so the
quotient morphism W — W/C,, =~ V is outside a finite set étale; in particular, if
¢ : W — Y denotes the connected quotient morphism, the fibres ¢ ~'(y;) have fixed
point order u. On the other hand ¢ has only reduced fibres; so, if we set
Y;:=Y*U{y,} = 7, there is by Lemma 1.2, for # € O(Y) as in 1.6, a trivialization
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7:Y;, xC=x=Y x C-g~!(Y;), which is C*-equivariant if we consider on Y x C the
action ¢ * (y, u):=(y, u + th(»)*). Since ¢ ~(Y¥) is C,, -invariant, we obtain via the
trivialization 7 on Y* x C a C,,-action commuting with the C*-action, which thus
is necessarily of the form e(y, u) = (gy, e*u + h(y)*f(»)) =:0(y, u) with a regular
function fe O(Y*).

Now consider the trivializations 1;,: Y, x C— g~ '(Y;) defined by t;(y, u):=
g~ 1(e! ~iy, e~ Dy), Using these trivializations we find

W= O Y, xC/~,

i=1
where Y* x Ca(y,u) ~(y,u+f,;(»)) € Y} x C with

j—1

fy9)==he='D* T [

for 1 <i<j<n Now by a reasoning as in 1.6 we find that Tr (f) =0 and the
C,,-orbit of the residue class of fin Q(Oy,, )/h ~#0y,  has n elements. Note that the
fact that the natural map W — V is étale outside a finite set implies (u, /) = 1. Thus
we finally arrive at an isomorphism V = V().

Now assume that the residue classes of f and f” in Q(Oy, )/h "0y, are
conjugate under the action of C,,. Evidently it suffices to discuss the two cases
S —feh™#0y,, and f' =¢f. In the first case, since Tr(f" —f) =0, we find a
function g e h " #O(Y) with f'(y) — f(y) = g(ey) — g(») for y € Y*. Then the map

W) = U YixCo @) = U ¥ixC

WeW) oY, xCa(y,u) —(y,u+he "y)gle' ~y) e Y, x Cc Wi(Y)

induces an isomorphism V#(y) = V£(¥).
Secondly, if f” = ¢f, then we can apply the map with

W;(d’) -~ Yi X Ca(ya u) H(Sya Buu) € Yi xCc W}l'(lll)a

for 1 <i <n, which again provides an isomorphism V% () = Vi ().
On the other side every isomorphism V#(y) = V() lifts to an isomorphism

§: WEW) S WE®WY)
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by the naturality of the normalization of the reduction of the fibre product with Y.
Now it is not difficult to see that 3 is a composition of a morphims of the above
type and the action of a suitable power of ¢ either on W% () or on W% (y¥); and this
yields easily the reverse direction of the equivalence. d

The next step in order to achieve a global classification of normal affine
C*-surfaces is to describe the germs of invariant neighbourhoods of a fibre q7'(z)
of the separated quotient morphism g:=p on : ¥V —Z. For this it is enough to
consider the case where the separation morphism p : X - Z has only one fibre
p '(z0) ={xi,...,x,} of order r > 1. Again we use the notation Z* = Z\{z,},
X*=p~Y(Z*) and X; = X*U{x;}. A generalization of 1.4 is the following

1.8. THEOREM. Let V, be affine C™*-surfaces with connected quotient
morphisms 7;:V, > X, = Z, such that there are equivariant isomorphisms
Y. V¥=n;71(X* S5X*xC (with C* acting by translation on the second factor)
and V be the result of gluing the V;, 1<i<r, over X* via the maps
Y 'oW,: V¥—>V¥. Then V is affine if and only if for no two different indices i, j the
transition isomorphism ¥; ' o W, : V¥ - V¥ extends to a morphism V;— V.

REMARK. Note that, if the fixed point orders u; and y; of the central fibres
n; '(zo) resp. m; '(zo) coincide, then every extension of ¥ ! o ¥, is necessarily an
isomorphism. Hence our condition is satisfied if the V; are pairwise non-isomorphic
with the same fixed point orders y; of n;7'(z,).

Proof. As in 1.4 the nontrivial part is to show that the condition is sufficient:
Denote by m;, the multiplicity of the fibre 77 '(z,) and by ; its fixed point order. As
above choose a function b € O(Z) which generates the maximal ideal in the local
ring O, and has no other zeros than zy; let Y:={(z,{) e Z x C; {" = b(z) } with
m:=lem(m,,...,m,) and Y':={(z,{) e Z x C; ("™ =b(z)}, denote by ¢ : Y >Z
and y, : Y'— Z the morphisms (z, {) = z resp. Y, (z, {) = z. Then according to Th.
1.7 there is a representation V; = W;/C,, where W, is an affine C*-surface lying
submersively over its separated quotient Y. We shall construct a global representa-
tion V' =~ W/C,,, where W is an affine C*-surface with separated quotient Y. We
have

Wz Wi = U ¥ixc,
=1

where the Yi,1<k <wn, are copies of Y, n, is the order of the orbit
Cn fi € QO ) [h7#0Oy.,, for the regular function f; on (Y*)* and h;:=prc|y:.
Denote by 9, : Y — Y’ the covering 9;(z, {) = (z, {*) with A,:=m/m,.
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Consider now W,:=9*(W,):==Y x ,: W, ={Ji', Y. xC with copies Y,
1<k <n; of Y. In this situation the group C,, acts on W, such that &:=e2/™
induces on W, the fibre product of the maps Y- Y, y ¢y and ¢,: W, > W,
which both cover the transformation Y'— Y’, y > g%y, In local coordinates it is
given by

Ye x C3(y,u) = (ey, e"*u) € ¥,y x C,

for 1 <k <n; and

’li—l

Y, xCa(y,u) — (Sy, gl + (8 (V)" Y fi(9,-(8”y))> €Y, xC,
A=0

while on W* = Y* x C = Y* x C this action is nothing but
Y x Ca(p,u) = (ep, ¥ u + h(8;(»)“£(%:(») e YT x C.

Then we have V,~ W,/C,. Now let us try to cover the trivializations
Y,: V¥ X*x CxZ*xC by C,-equivariant trivializations &,: W* - Y* x C
where C,, acts only on Y* To that end choose g;e@(Y'*) such that
fi(») = g:(¢*y) — g;(y) for y € Y* — this is possible (at least after shrinking Z a
little bit) with an argument analogous to that in the proof of Theorem 1.7. Then the
map

D, Y¥IxC-o>Y*xC
(ysu) = (p, b (3;(p)) ~Hu — g,(3;(»)

intertwines the two actions of C,,.

Now since g; € O(Y'*) is determined only up to a pull back of a regular function
on Z*, we can choose the @, in order to cover the given trivializations ..

Then patch together the W, 1 <i <r, to W via the respective ®, and &;:

~

-~ P; @ a5 -
WioWk=YIxC— Y*xC—Y¥xC=WrcW,

We want to show that W is affine. As a consequence of 1.4 and the remark
thereafter it is enough to show that no map

b7 od, W W?
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extends to a morphism
W,oY, xCoY, xCcW,

for some k,/ with 1 <k <n,and 1 </<n,

Using the action of C,, and the fact that C,, - ¥, x C = W, we may extend it once
more to a morphism W, ¢ Wj Obviously this extension respects both the action of
C and C,, and thus induces a morphism V; —» V; contrary to our hypothesis. [J

As a consequence of the vanishing of the cohomology group H'(Z, 0) we have
eventually:

1.9. THEOREM. Let V be a normal affine C*-surface, denote by q : V — Z the
separated quotient morphism, let z,, . ..,z be the points in Z, near which q is not
equivariantly locally trivial. Then V is determined up to equivariant isomorphism over
Z by the germs V,,...,V, of invariant neighbourhoods of the exceptional fibres
nz), 1<j<s.

On the other hand for every finite set of points z,,...,z, € Z and prescribed
germs V,;, 1 < j <, of invariant neighbourhoods, there is an affine C*-surface realiz-
ing these data and being locally trivial elsewhere. O

2. Equivariant compactification and homology for smooth surfaces

Let Z denote the smooth projective closure of the smooth affine curve Z, fix a
line bundle L on Z together with a nontrivial section ¢ : Z — L.
We use ¢ in order to define a C*-action on L:

CtrxLa(t,x)>t+x:=x+ta(pr.(x)€eL;

and this action extends to the projectivization M :=P(L x C) of the line bundle L,
which is obtained from L ~P(L x C*) by adding the section at infinity
P(L* x {0}), where L* is L with the zero section removed. The fixed point set M€*
is the union of the section at infinity and f ~'(N,), where f': M — Z is the projection
of the P,-bundle M over Z and N, denotes the zero set of 6. Note that the invariant
curve f~'(z) has fixed point order ord, (o).

Now an algebraic C*-action on a complex algebraic surface carries over to its
blow up in a fixed point. Let M be the result of successively applying this procedure
to M, with the restriction, that the “modified points™ (i.e. which have a positive
dimensional fibre with respect to the modification map M — M) are contained in
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L% = Lnf~Y(N,). In order to control the above process consider a C*-equivari-
ant modification ¢ : M, —» M of the above type. To each irreducible component D,
of (fo¢@) '(N,) we can associate three numbers: its self intersection number
a;»=D? e Z ,, the multiplicity m, e N, of D, as irreducible component of a fibre
of the morphism f o ¢ : My— Z, and the fixed point order y; € N.

Suppose that M, contains no isolated fixed points and consider the blow up
@o: M,— M, of M, in a fixed point x,. It is contained in an irreducible component
D, of (f- @)~ '(N,) with fixed point order u, > 0. If x, is not a crossing point of
irreducible components of (f o ¢) ~'(N,), then for D,:= ¢4 '(x,) we have a, = —1,
m,=m, and u, =y, — 1. Note that for u, =1 and the strict transform D, of D,
the difference D,\D, is one orbit. As data for D, we find 4, =a, — 1, #, =m, as
well as i, = py,.

If x, is contained in two irreducible components, say D, and D,, of
(feo@) '(N,) and D;= @5 '(xo), then ay= —1, my=m;+m, and p; = p; + p,,
while for the strict transforms D, of the D,, i =1, 2, we have again 4, =a; — 1,
m; = m; and fi; = u;. Note that no isolated fixed points have been created in M/, so
we may go on with M, instead of M,.

2.1. THEOREM. Let V be a smooth affine C*-surface and Z :=Sp (O(V)®") its
separated quotient. Then V admits a smooth C*-equivariant compactification V = M,
where M is an equivariant modification of a C*-surface M = P(L x C) of the above
type, and the divisor at infinity D:=V\V contains all irreducible components of
o ~'(P(L x {0}) uf ~'(N,)), which are not terminal in the dual graph of that system
of curves.

Proof. Choose a function f € Ker (D?)\Ker (D) as in the proof of Lemma 1.1,
and define a € O(Z) to be the regular function on Z with a o ¢ = Df. Then the zero
set N, includes the points z,, . . ., z, € Z with exceptional fibre ¢ ~'(z;), i.e. ¢ '(z;)
is either unconnected or has multiplicity >1 or consists entirely of fixed points.

Now consider the line bundle L:= @, over Z for the divisor D:=3;_, ord, (a)z
together with the section ¢ € O, (Z) = #(Z) corresponding to the rational func-
tion =1. Then the equivariant map Vp,—Lnf~Y(Z),v — f(v)(e(q(v))/a(qg(v)))
extends to Vy:=q~'(Z,), where Zy:==Z,u{z,,...,z}; and as a consequence
of the vanishing of H'(Z, 0) there is a function b e (O(Z,) such that v+
(b(q(v)) + f(v))(o(q(v))/a(q(v))) extends even to an equivariant morphism
g:V - L cM, which restricts to an isomorphism g~!'(Z*) S5Ln f~YZ* for
Z*=2Z\{z\,...,z}.

Let us now turn to the construction of an equivariant modification ¢ : M — M,
such that g factors through M via an open embedding g : ¥ — M. The centres of the
sequence of blow ups ¢ is composed of will lic over L nf ~'(N,); so we may replace
M with f~!(Z) n L and since the problem then is local with respect to the separated
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quotient Z, we may assume that there is only one exceptional fibre ¢ ~'(z,) and V
has a representation V =~ W/C,, as in the proof of Th. 1.8, where W is a smooth
affine C*-surface without multiple fibres and with a separated quotient ¥ which can
be realized as an m-sheeted cyclic Galois cover  : Y — Z having only one ramifica-
tion point y,, situated above z, and of order m.

Let us first consider the case m =1, i.e. V= W. We have W = U,f:, X, xC/~
as in the discussion preceding Prop. 1.4 and may assume f~'(Z)NL=Z xC
where teC* acts by ¢x(z,u):=(z,u+th(z)”). Then we have g(x,u) =
(p(x), h(p(x))" ~ *u + b;( p(x))) for (x, u) € X; x C and functions b; € O(Z) satisfying
the relations

bi=h""bf,+b,

where of course y; < n for 1 < j <r. We have the following two possibilities: Either
n = p; for some j, in which case f;; = b, — b; € O(Z) implies r = 1, cf. Prop. 1.4, and
g already is an isomorphism, or n > y, for every j: Then g(qg ~'(z,)) is finite and we
have g({x;} x C) = g({x;} x C) if and only if n — u; — n;; > 0 with n;;:= —ord, (f;).
Denote by f, : B, = By:=Z x C the blow up of B, in all the points of g(g ~'(z,)), let
F be the strict transform of {z,} x C in B, and E;=B7"'(g({x;} x C)), the excep-
tional fibre over g({x;} x C), set Bi:==B\FUE,u---UE,u---UE,. Since the pull
back of the reduced ideal sheaf of g(g ~'(z,)) is an invertible sheaf, the morphism
g2o:=8: W - B,=Z x C lifts to a morphism g, : W — B, with g,(X; x C) < B/ for
1<i<r.

Now an easy computation shows Bj =~ Z x C equivariantly with the action
tx(z,u) =(z,u+th(z)"~') on Z x C, so we come across the same alternative:
either g, |grl(811) ;g7 "(BiY) > B} is an isomorphism or we may apply the same
procedure as previously. Doing this where ever it is possible we obtain a second blow
up B, — B, such that g, factors through a morphism g, : W — B,. After at least n
steps this process becomes stationary, and g, : W — B, is an open embedding.

Let us mention some details we will need later:

The images g,({x;} x C) and g,({x;} x C) are either equal (iff k <n — y; — n;)
or disjoint (iff k 2 n — y; —n,)); and g, ({x,} x C)isacurve iff k > n — p,iff g, |5 « ¢
is an open embedding. Consequently the dual graph of the system of irreducible
curves lying over {z,} x C is a tree emanating from e,, the vertex corresponding to
F, the strict transform of {z,} x C, and having the vertices e;, 1 <i < r, correspond-
ing to the closures g,({x;} x C) as terminal points. Note that the path from e, to e,
consists of n — y; edges and after exactly n; = n; — u; + u; edges it joins the path
from e; to ¢,.

Let us now deal with the general case: The morphism g : V' —» Z x C induces
a C,-equivariant morphism g: W —>Y xC, which is the composition of
Y*(g): V=Y x, VoY xCxY x,(ZxC) and the reduction-normalization
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morphism W — V. Now let us carry out the above construction for g : W — Y x C.
We obtain modifications f, : B, » Y x C and liftings g, : W — B,. The blow ups B,
inherit a natural C,, -action, and the morphisms g, are necessarily C,,-equivariant.
Now take the quotient mod C,, of the final step g, : W — B, and obtain thus an
open embedding g, : ¥ = W/C,, - B,:=B,/C,,, where B, in every case is a normal
analytic or rather algebraic space. Since V is smooth, the singular points of B, lie
outside g, (V) and being isolated they are fixed point of the C*-action. Now choose
B as the minimal C*-equivariant resolution of B,, and take g: ¥ — B to be the
lifting of g,. The composed morphism B— B, —»Z x C is as a modification of
smooth surfaces a sequence of blow ups, and from the construction it is clear that
B\g(V) consists of all non-terminal irreducible curves lying over {z,} x C together
with the terminal curves in the linear subchains of the dual graph of that system of
curves which result from resolving the singularities of B,. O

Let us return to the general situation we started with in the beginning of this
section. Denote by ¥ = M an equivariant compactification of the above type and let
B,,1<i<r,1<j<sdenote the closures in ¥ of the irreducible curves in ¥ above
z;€Z,1<j <s. Let S be the strict transform with respect to ¢ : ¥ = M - P(L x C)
of the section at infinity P(L x {0}), F,, ..., F, the fibres of points in Z\Z with
respect to the map fo ¢ : ¥V — Z, while F, is the strict transform of /~'(z;) in V.

Let us denote by E,, k € I, the irreducible components of (f > ¢) ~'(z;) different
from F; and the B, 1 <i <r,.

The following diagram shows the weighted dual graph of (V\V)ul ), B, for a
surface ¥V with one exceptional fibre ¢~ '(z;) = (B,nV)u(B,nV), B;:=B; and
separated quotient Z = C*. The triples (m, y, a) indicate the multiplicity, fixed point
order and self intersection number of the corresponding curve.

Fl(l9 09 0) FZ(I’ 05 0) B](I,O, —l) B2(2, 0, —1) EI(I,O, “‘2)

Fi,1,-3) E) (2,1, -2)
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Let us now as a first application compute the singular homology of V: Denote
by my; resp. n,, the multiplicity of B, resp. E,; in the fibre (fo¢)~'(z), set
m;:=ged (my, . . ., m,Jj).

2.2. THEOREM. With the above notation the integral singular homology groups
of a connected smooth affine C*-surface V are given by

Z, q=0;
HZ)o®;.,Z g=1
H,(V)x{ 1\“ j=15mp ;
q( ) Z’w1thr=2j—=1(rj—1), q=2’
0, q>2.

The following corollary is a generalization of a result of Rentschler, which
describes algebraic C*-actions on the affine plane, cf. [5]:

2.3. COROLLARY. Every acyclic affine C*-surface V is equivariantly iso-
morphic to C? endowed with an action t x (z, w) = (z, w + p(z)t) for some nonzero
polynomial p(z) e Cl[z].

Proof. The vanishing of H,(V) yields that g : V' — Z has connected fibres, while
H,(V) = 0 means that they all have multiplicity 1. On the other hand, H,(Z) =0
implies Z =~ C. Thus, by 1.2 and 1.9, V' is determined up to equivariant isomor-
phism by the fixed point orders y; of the fibres ¢ ~'(z;), 1 <j <s. Hence V is as
given with p(z):=11;_, (z — z;)". O

Proof of 2.3. Since V is Stein, we have H, (V) ={0} for ¢ >2. Denote by
D :=V\V the divisor at infinity.

Relative Poincaré duality applied to the pair (¥, D) yields H (V) = H*~%(V, D);
so we have to consider the following part of the long exact cohomology sequence
of (V, D):

HXV,D) o H(V)—- H*D) - H*V,D)—- H*V)-0,

where we have used H'(V) = H'(D) and H*(D) = {0}.

Furthermore H*(V) =~ H,(V)* as well as H*(D) =~ H,(D)*; and H,(V) is freely
generated by the homology classes of the curves S, F,, E;;,kel, B, 1<i<r,
1 <j<s, while H,(D) has as a base the homology classes of S, F,,...,F,
Fi,....,F,E, kel,1<j<s.

Now replace [F;] € Hy(D) with & :=[F;] — [F\] + Zy 1, ni;[E;] in order to obtain
a new base of H,(D). Then for the image a* € H,(D)* of a linear form a € H,(V)*
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we find
*(S) = a@SD,  o*(E]) = o(F]),
a*E) = — 3 mya((B),  a*(Ey)) = a(Ex)),

i=1

where the third row is a consequence of the fact that the fibre F, is homologous in
Since H3 (V) > H,(V) @ H,(2Z) is free, we thus obtain

Hs(VaD) ;—HI(Z)®ZI-I®® ijng(Z)&)@ ij>

ji=1 J=1
and HX(V, D) is free of rank tk H*(V) —(tk H¥(D) =1+ 1) =Zi_,r, —s. O

For the computation of the first homology group at infinity we recall some
general facts: For a “good” neighbourhood (with respect to the complex topology)
U of the divisor at infinity D = | J; _, D, we have H{*(V) = H,(U\D), and D is a
strong deformation retract of U.

Thus the exact sequence

H,(U) — H,(U, U\D) — H,(U\D) — H,(U) — H,(U, U\D)

~/ ~ ~ ~s

HD)  H.7, P\D) H(D)  H\(7, P\D)
H(D) HZ)  HD) =0
H,(D)*

together with the fact, that the first homomorphism identifies elements of H,(D)
with linear forms on it using the intersection product on V, leads to the isomor-
phism

HY(V) = H(Z) @ 2"{(Dy - D)),

where for a matrix 4 € Z™™ we denote by (4 ) the submodule of Z” generated
by the row vectors of the matrix 4. Let A; denote the intersection matrix of
[F);[Ei,) keI, and arrange a base of H,(D) in the form [S], [F],...,[F],
[F~l]9 [Ek1]9 k GI], R [F~s]a [Eks]’ k EIs‘
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With respect to that base the intersection matrix {((D, - D,)) takes the form

N\

where a =8 8= —-X;_, ordzj (0) is the self-intersection number of S.
Now we can easily prove

2.4. THEOREM. Every connected affine C*surface V is connected at infinity
and its first homology group at infinity is of the form

He(V)=H(2)® ® T,

Jj=1

with a torsion module T; associated to every fibre q~'(z;), 1 <j <'s, near which the
separated quotient q : V — Z is not an equivariant product.

Proof. V is connected at infinity, since the divisor at infinity D = ¥\ V for an
equivariant compactification as above is connected.
An easy exercise in linear algebra using the shape of the intersection matrix

given above shows that

2D, - D)y =71 @ @ T[4, ;

J=1

since H(Z) ~ H\(Z) ®Z'"", it remains to show that T;:==Z" /{4, is a torsion
module for 1 <j <.
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Consider for fixed j the submodule M < H,(V) generated by the (linearly
independent) homology classes of F;E,;,kel;B;,1<i<r;. We have M =
ZE @ M,, where & = [F} + Zpe g, s B + X7_,m;B;] and M, is generated by the
[El, kel and [B;], 1 <i<r,.

The intersection form is negative definite on M, and £ - M = 0. So the intersec-
tion form is negative definite on every submodule M, of M, which does not contain
a non-zero multiple of £. That applies in particular to the submodule M, generated
by [F]; [Ey;], k € I,. Since A, is the associated intersection matrix, the claim follows
immediately. O

Finally we want to compute the torsion module T = T; more explicitly in case
that all the components B;NV, 1 <i < r:=r,, of the fibre ¢ ~'(z;) have multiplicity
m;=1. Let B;==B; and p~'(z;) = {x;==x,;; 1 <i <r}.

For a first discussion of T we deal with the general case of arbitrary multiplic-
ities and consider the tree in the dual graph of D U B, U" - - U B, emanating from
F=F.

Let (fop) '(z)=FUB,u---UB,UE,,,u--"UE, and denote by
€0, €15-..,€,€,,1,...,e, the corresponding vertices in that tree.

As in the introduction denote by a; the self-intersection number of the curve
represented by e; (so a; is the weight of the vertex e; in the weighted dual graph of
the fibre (f - ¢) ~'(z;) o V), by m; its multiplicity as irreducible component of the
fibre (f° @) ~'(z;) » V and by y; its fixed point order. For ke l:={0, ..., q} let
I, ={i e I\{k}; e; and e, are the common end points of an edge}, and set

q
L‘=® Zeia
i=0
Ui =qQué; + Z e,-EL
iely

for k e I. Then T =~ L/L, with the submodule

q9

L=@ Ze,®@Zv,® @ 2v,.

i=1 i=r+1
Furthermore, the fact that [F,] - [C] =0 for every irreducible component C of the
fibre (f - @)~ '(z;) together with the homology F, ~ F+%_ ,mB,+X!_,, mE,
yields the following relation for the self intersection numbers a;:

mea, + ). m;=0.

iElk

We turn now to the special situation that the fibres n ~'(x;) = B,nV,1<i <r, are
reduced. Then by the construction of M according to the proof of Th. 2.1 all
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multiplicities m; equal 1, so the weight a, of ¢, is up to sign the valency of the vertex
e, in the dual graph.

Let us write i = j for i, j € I, iff ¢; lies on the (unique) path from e; to e,, and for
i e I\{0} denote by i(1) the unique index such that e, is the immediate successor
of e; on that path; define i(v) by induction: i(v + 1) = i(v)(1) so far as it makes
sense. Denote by a;; € N the number of edges in the path from e; to e, one has to
pass before reaching the junction point with the path from e, to e,.

If V=W is of the form

with the identification
X, xCoa(x,u)~(x,u)eX; xC < x=x" and u’ = h(p(x))* ~*u + f,;,(p(x))
as in Prop. 1.4, then, according to the proof of Th. 2.1, we have
=N, =N, — W + I
for i #j. Using that notation we arrive eventually at

2.5. THEOREM. If z; is a regular value of q, then the torsion module T = T, is
of the form T =Z"+'|{A) with the matrix

in particular, if a,, = a € N | for every pair (k, 1) with k # I, there is an isomorphism
T=Z7,®7,~2
Proof. We consider the homomorphism

Yz SLL,,

r
(Cos---5C) > coeg+ Y. cv;+ Ly

i=1

since Y obviously is onto, it suffices to prove Ker () = (4).
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For Ly:={Z,.,c;e;; Z;c;c; =0} we have L = Ze,® Ly and L, = Z, . ; Zv,, where
the only relation for the generators v, is X,.,v,=0. So we find
(0, 1,...,1) eKer (). Furthermore for i € I\{0} we have

€y — € = Z Uk

such that for ie {1,...,r} one finds with » as in the proof of Th. 2.1:

n—yu; —1

€ —€; = Z €iv+1) — i)
v=0

n—yu —1
= ) (Z ”k)
v=0 k Zi(v)

= Z (n —p; —ay)v, mod L,
k=1

r
— Y ayv, modL;

k=1

since ¢; € L, for 1 <i <r, this gives (1, a;,...,a;,) € Ker ().
Now let us turn to the other inclusion Ker () = (4 ): For (¢, - . . , ¢,) € Ker ()
there exist o, ..., a, € Z with

r r q
Coot+ Y. Chlp =0olo+ Y. o+ ). 04y

k=1 i=1 k=r+1

or equivalently

r r q
Co€o — Z o;e; = Ooglg — Z CrUx + Z Oy U
i=1 k=1 k=r+1
where the coefficients oy, —¢,, ..., —¢,, %, ,,,...,a, are determined by the left
hand side up to a common summand. On the other hand, since the right hand side
is in Ly, we have ¢, — X/_, o, = 0; so we can write

r .

,
Co€o — Z o = Z o;(eo—e;)

i=1 i=1

r r q
=Y “i( Y. (n —.ui_aik)vk>+&000+ Y G,
i<

k=1 i=r+1

(I Ng R

r q
<Z “i(n“#i“aik)vk)+°~‘ovo+ Z &;v;,
1 \i=1

k i=r+1
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so by comparing coefficients one finds

r

Cp = Z o (ay +p; —n) +o

i=1
for some a € Z and 1 <k <r. In the whole

r

(cor---se) =) a(lay,...,a,)+20,1,...,1)e{4)

i=1

with A =a +Z/_, o;(u; —n). The explicit formula for the case a,, =a for
every k,le{l,...,r}, k #1 now follows easily with elementary methods of linear
algebra. O

Addendum: While proofreading I learnt about the papers of J. Bertin, which are
closely related to our subject; they are listed in the references without numbering.
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