
Codimension one foliations without compact
leaves.

Autor(en): Schweitzer, Paul S.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 70 (1995)

Persistenter Link: https://doi.org/10.5169/seals-52994

PDF erstellt am: 17.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-52994


Comment. Math. Helvetici 70 (1995) 171-209 0010-2571/95/020171 -39$1.50 + 0.20/0
© 1995 Birkhâuser Verlag, Basel

Codimension one foliations without compact leaves

Paul A. Schweitzer, S.J.*

Abstract. A smooth closed connectée! manifold with Euler characteristic zéro and dimension greater
than three has a C1 codimension one foliation with no compact leaf.

Novikov&apos;s celebrated compact leaf theorem ([N], see also [HH], [G] or [CL])
states that every foliation of certain three-dimensional manifolds, including S3, by
surfaces, has a compact leaf. Various authors hâve shown that many closed
three-dimensional manifolds hâve the property that every codimension one foliation
(of differentiability class C°, C1, or C2, depending on the manifold) must hâve a

compact leaf (Rosenberg, [PI], p. 352; Plante [PI], Cor. 7.4 and [P2]; Thurston
[Thl]; Levitt [Lev]). Kneser [Kn] has shown the same resuit for C° foliations of the
Klein bottle. We show that there is no such theorem for C1 codimension one
foliations in dimensions greater than three.

THEOREM. Let M be a smooth (C00) closed manifold of dimension n £ 4 with

a C™ codimension one foliation Fo. Then M has a codimension one foliation Fx with

no compact leaves, locally defined by a C1 differential l-form and such that ail the

leaves are C00 submanifolds of M. Furthermore, Fx can be chosen Cx-concordant to
Fo and such that their tangent plane fields TF0 and TFX are homotopic as subbundles

of the tangent bundle TM.

The Theorem also holds for manifolds with boundary provided that the

foliations are taken to be transverse to the boundary of M. The concordance of Fo

and Fx implies that the underlying (C1, codimension one) Haefliger F\ -structures
[H2] are homotopic. In view of Thurston&apos;s existence theorem for codimension one
foliations [Th3], the Theorem immediately implies the following Corollary.

* Partially supported by FINEP, CNPq, NSF, IHES, and the Univ. of Lyon I in various stages of
this work.
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172 PAUL A. SCHWEITZER, S.J.

COROLLARY. Every smooth closed connected manifold of dimension n ^ 4 with
vanishing Euler characteristic has a codimension one foliation with no compact leaves

locally defined by a Cl-form and with ail leaves smooth. Such a foliation exists in

every homotopy class of tangent plane fields and of Haefliger F \-structures.

A weaker version of this resuit, a C° construction on manifolds of dimension
five or more, was announced in [Sch2] and [Sch3]. B. Raymond [Ray] has also

constructed C° codimension one foliations of sphères of odd dimension greater than
four with no compact leaves with a Lipschitz tangent bundle and ail leaves smooth.

Solodov [So] and Hector and Hirsch [HH] hâve proven Novikov&apos;s compact leaf
theorem for C° foliations, and some of Plante&apos;s compact leaf theorems also hold for
C° foliations. While for every r, 0 ^ r &lt; oo, there exist Cr foliations that are not
homeomorphic to Cr+l foliations in codimension two [Harl] and even in codimension

one ([CC], [CCI], [Ts]), the most significant qualitative différence seems to
occur between codimension one foliations of classes C1 and C2. Since our construction

is C1 but définitely not C2 (see Remark 4.5), the following interesting question
remains open.

Question 1. Does there exist a closed connected smooth manifold of dimension

greater than three that admits a codimension one foliation - for example S5 or
S1 x S3 - on which every codimension one foliation of class C2 (or C00) has a

compact leaf?

On a compact manifold any foliation must hâve a minimal set, that is, a closed

nonempty union of leaves which contains no other such set. This follows from
Zorn&apos;s lemma and the fact that the intersection of a nested family of nonempty
compact sets is nonempty. (On the other hand, there are foliations on noncompact
manifolds with no minimal sets, such as foliation (la) of [Hec].) A minimal set of
a codimension one foliation can be a closed leaf, the whole manifold (when every
leaf is dense), or an exceptional minimal set, characterized by meeting closed

transversal curves in Cantor sets. Thus the preceding question is related to the

following one.

Question 2. Which compact manifolds hâve minimal codimension one foliations
of class C (for example, r 0, 2, or oo)? Does S5 or S1 x S3 hâve such a foliation?

One can construct many minimal codimension one foliations, such as linear
foliations of the torus T2 with irrational slope, or foliations of a T2 fiber bundle
transverse to the fiber and inducing such a foliation on each fiber.
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Plante has shown an important connection between compact leaves and transverse

invariant measures for transversely orientée C° codimension one foliations of
a compact manifold M. If HX(M\ R) has dimension 0 or 1, then every leaf in the

support of such a measure is compact ([PI], Th. 6.3). Such a measure exists if any
leaf has nonexponential growth ([PI], Th. 4.1). It follows that if dim HX{M\ R) £ 1,

then either every leaf has exponential growth (as in our construction) or there exists

a compact leaf. Sullivan [Sul] has reformulated and extended Plante&apos;s work in terms
of foliation cycles.

For Cr foliations of codimension greater than one there are local constructions
which produce a foliation with the given differentiability and no compact leaves,
0 ^ r &lt;&gt; oo. The case of codimension greater than two has been known for some
time [Schl]. In codimension two the original C1 plug [Schl], which gave a négative

response to Seifert&apos;s question about the existence of flows on S3 with no periodic
orbit, was improved to a C2 plug by Jenny Harrison, using a délicate C2 construction

of a diffeomorphism of the plane preserving a fractal circle [Har2]. Recently K.
Kuperberg found a remarkable C00 plug [Ku] (also see [KK], [KuG]), thus giving
a local C°° construction for opening compact leaves of any smooth codimension

two foliation.
The key idea of our construction is to insert an exceptional minimal set and

another noncompact leaf which together form a compact set C which séparâtes the

manifold. Then nearby leaves are made to spiral in towards C from opposite
&quot;sides&quot; in différent directions, by analogy to the Reeb foliation of S3, in which two
solid tori foliated as Reeb components (see Figure 1) are glued together using a

diffeomorphism of the bounding tori which interchanges meridians and longitudes,
so that the noncompact leaves spiral in towards the torus in one direction on one

side, and in the orthogonal direction on the other side. This phenomenon of leaves

Figure 1. A Reeb component.
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spiralling in towards a two-sided compact leaf in différent directions on opposite
sides of the leaf occurs frequently in explicit constructions of codimension one
foliations (see [L]). The process which produces such spiralling around an excep-
tional minimal set - a process which we call tilting - is described in §4 and is
shown to be C1 in §5. The construction of the exceptional minimal set, described in
§3, dépends essentially on B. Raymond&apos;s remarkable construction of a C00 foliation
of S3 with an exceptional minimal set [Ray], modified by using an exceptional
minimal set derived from a différent group of diffeomorphisms of S1 due to Hector
[Hec].

To begin the construction modifying the given foliation Fo, in §1 we exploit the
two-sided holonomy of an isolated compact leaf to obtain a &quot;tube&quot; S1 x Dn~l with
convenient properties. Then in §2 we modify Fo inside the tube to a new C°°
foliation Fx on the tube minus a certain number of &quot;holes&quot;, each diffeomorphic to
S1 x Int D2 x Sn~3. The proof of the Theorem is completed in §4 by filling in the
holes by using Propositions 4.1 and 4.2. At the end of §4 we also give a direct
construction of foliations without compact leaves on S1 xSn~l (n ^ 4) using
Proposition 4.1 but not using the constructions of §1 and §2.

It is a pleasure to thank Prof. G. Hector and the University of Lyon I for
hospitality and support during the préparation of the final version of this paper.

§1. Tubes with convenient holonomy

Notation and conventions. Throughout this paper Mn will be a smooth compact
connected manifold of dimension n ^ 4, possibly with boundary ôM. We shall

assume that ail foliations and plane fields hâve codimension one, unless the context
clearly indicates the contrary (as in the case of a transverse one dimensional

foliation). In the first three sections ail structures will be smooth (which means of
class C°°). Let Dk(r) dénote the closed bail with center 0 and radius r in Euclidean
fc-dimensional space Uk, and Sk~l(r) or dD\r) its boundary (k — 1)-sphère; when

r 1 we write Dk and dDk Sk~K The interior and boundary of a manifold
(possibly with corners) N are denoted by Int N and ôN. By a tube we mean compact
manifold (with boundary and possibly with corners) whose interior is diffeomorphic
to S1 x lntDn~\ On the torus T2 U2/Z2 let F(t) dénote the linear foliation
obtained as the quotient of the foliation of the plane by parallel lines of slope t g IR.

Recall that a smooth mapping of manifolds /: M -+N which is transverse to a

foliation F on N induces a foliation/&quot;1^) on M, the puUback of F, whose leaves

are the components off~l(L) for each leaf L of F. Let n : A S1 x D2 x Sn~3 -&gt;

S1 x D2 be the obvious projection. We can now state the main resuit of the first two
sections.
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PROPOSITION 1.1. Let Fo be a (smooth, codimension one) foliation of M
transverse to dM, dim M ^ 4. Then there exist finitely many disjoint embeddings

gl:A=SlxD2x Sn-3-+M, i 1,..., k,

and a (smooth) foliation Fx of

transverse to dMx such that

(i) Every compact leaf of Fx meets some boundary component gt(dA);
(ii) For each i there exists tteU- {0} such that

Furthermore there are finitely many disjoint tubes T3 c Int M,j 1,..., /, such that

and Fo and Fx coïncide on M — \JjTJ9 and there non-singular vector fields Xo and Xx

on [JjTJ9 respectively transverse to Fo on (Jy 7} and to Fx on \JjTj — \JtgXA), such

that:

(iii) Xo is homotopic to Xx by a homotopy through non-singular vector fields with

support in (J7 Int T} ;

(iv) For each 1,^1^^) =gt*(d/ds) where d/ds is the vector field that générâtes
the action of S1 on the first factor of A S1 x D2 x Sn~3.

The vector fields Xo and Xx will be used to control the homotopy class of the

tangent plane fields to the foliations.
We shall suppose that not ail the leaves of Fo are compact for if they are, we can

modify Fo by the usual &quot;turbulization&quot; construction to insert a Reeb component
inside a tube T containing a transverse circle meeting ail the leaves, producing a

foliation with only one compact leaf and a tangent plane field in the same

homotopy class as that of Fo. The constructions below can then be carried out
inside the tube T.

The proof of Proposition 1.1 will be carried out in five steps. Steps 2, 3 and 4
deal with auxiliary foliations on 3-dimensional tubes.

Step 1. Construct loops y3 with two-sided holonomy and disjoint tubes around
them.
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Step 2. Cut holes in each tube and modify the foliation.
Step 3. Control the homotopy class.

Step 4. Linearize the foliation on the boundary of each hole.

Step 5. Return to dimension n &gt; 3.

Step 1. Construct loops y} with two-sided holonomy and disjoint tubes around them

Fix a Riemannian metric on M and let Fq be the one-dimensional foliation
orthogonal to Fo. The goal of Step 1 will follow easily from the following
construction (see Figure 3A).

PROPOSITION 1.2. There exist finitely many (smooth) embeddings f} : S1 x Dl -?
M with disjoint images, j 1,...,/, satisfying the following conditions:

(i) Every compact leaf of Fo meets \Jjfj(Sl x Dl(£)).
(ii) the curve fj(Sx x {0}) lies entirely on some compact leaf Lj and is orientation

preserving in both Lj and M.
(iii) Each arc f,({s} x Dl) lies in a leafofF^, se S1.

(iv) Each foliation f~l (Fo) has constant nonzero slope in a neighborhood of each

of the curves S1 x {±|}.

To begin the construction, consider a leaf L of Fo and a leaf / of Ffr which
meets L at a point p. We recall the définition of the holonomy of a loop y on L
based at p, y : / [0,1] -&gt;L, y(0) y(l) =/&gt;. For a sufficiently small interval Jo &lt;= /
containing /&gt; in its interior, we can lift y along leaves of Fq to leaves of Fo near L
and thus get a smooth well-defined mapping (see Figure 2)

/x/0
Figure 2. The holonomy mapping y of the loop y, showing the curves 0(7 x {±1/2}).
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y:/x/0-&gt;Af (1.3)

such that for every s e I and x e Jo, y(s, x) lies on the same leaf of Fo as jc, and on
the same leaf of F£ as y(s). Then the holonomy mapping of y is the diffeomorphism
hy of Jo into / defined by

hy(x)=y(l,x), xeJ0. (1.4)

Now let L be a compact leaf. Fix an orientation of 7, thus ordering the interval

LEMMA 1.5. The loop y on L, the interval JoczJ and points xo,xxeJ0,
xo&lt;p &lt;xu can be chosen so that y is orientation preserving in L and in M and

hy(xt)*xn i=0,l. (1.6)

Proof. (See Fig. 2.) We recall from the theory of codimension one foliations on
compact manifolds that the union of ail compact leaves is closed and hence

compact ([HH], Part B, p. 96). If follows that / must meet some noncompact leaf,
for otherwise its saturation Sat(/) (by définition, the union of ail leaves that meet /)
would be both open and closed, contradicting the hypothesis that M is connected
and that not ail leaves of Fo are compact.

Now suppose that L is two-sided in M. We show that it is possible to choose y,,
Jo and jc! g Jo so that p &lt; hyi(xx) &lt; xx. Otherwise there must exist y &gt;p on J such
that for ail loops y, hy \[Pty] is the identity mapping, and it follows by Reeb stability
that Sat[/?, y] is a one-sided neighborhood of L foliated as a product by Fo and Fq
restricted to Sat[p,y] (see [HH], Part B, p. 83). Let yx eJ be the supremum of ail
such points y. Then the leaf Lyi of Fo through yx is compact and S^t[p,yx] is a
maximal such one-sided product foliated neighborhood. Since the product structure
cannot be extended beyond yl9 there must exist a loop y* on Lyi based at yu an
open interval Jo a J containing yx, and a point xx &gt; yx in Jo such that Ay«(x1 &lt; x,.
Enlarge Jo, if necessary, so that [p, xx]cJ0. Project y* along F£ to a loop yx on L
based at p, so that y*(s) =yx(s,yx), where yx is defined as in (1.3). Then

^y,(*i) hy*(xx) &lt;xX9 as claimed.

Applying this argument on the left side of L we obtain a loop y0 and a point x0
in Jo (possibly extending Jo to the left) such that x0 &lt; hyo(x0) &lt;p. We may suppose
that y0 and yx are orientation preserving in L, by replacing yt by y] if necessary.
Now if hyx(x) ^x for some x &lt;p, then replace x0 by x and y =*yx satisfies (1.6).
Use y y0 analogously if hyo(x) # x for some x &gt;p. If no such x exists, then hyi
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fixes ail points in Jo to the left of p and hyo fixes ail points to the right, so

consequently y =y0Vi satisfies (1.6).

If the leaf L is one-sided in M then an analogous argument can be applied to a
tubular neighborhood of the two-sided double cover of L.

Proof of Proposition 1.2. Given a compact leaf L, the preceding Lemma
provides a loop y on L with two-sided holonomy as in 1.6). We may suppose that
h~l{xl) is defined and lies on Jo for i 0, 1, by replacing xt by hy(xt) if necessary.
By a small perturbation of y we may also suppose that y détermines a smooth
embedding of S1 [0, l]/(0 ~ 1) into L. We shall extend y to a smooth embedding

/: S1 x Dl -*M satisfying properties (ii), (iii) and (iv) of Proposition 1.2 with^J =/
and Lj L, by requiring that the diagram

commute, where q : /-?S1 is the quotient mapping, y is the mapping of (1.3), and

p is a diffeomorphism of the form

P(s,t)=(s,ps(t)), (s,t)eIxD\

onto a certain subset of I xJ0, such that Po — P\^ Po(-~ï) =*o&gt; Po(j) =*i» and

Ps(Q)=P f°r a*l «s e /. By a careful choice of p we may make the curves /?(/ x {± j})
(indicated by dotted curves in Fig. 2) transverse to the foliation / x {point} of
/ x /0, and then make the slope of the leaves off~l(F0) constant in a neighborhood
of each of the curves S1 x {±5} (see Figure 3A). In this way we obtain an
embedding fa : S1 x Dl -* M for every compact leaf La of Fo. Since the union of ail
the compact leaves is compact, it is covered by a finite number of the open sets

Satfx(Sl x (—5,5)), say for the compact leaves Lï9..., Lh so that (i) is satisfied.

Finally a small perturbation of the embeddings f} will eliminate any intersections
that may occur, in view of (iii) and the fact that the leaves hâve dimension greater
than or equal to three.

To finish Step 1 of the proof of Proposition 1.1, it remains to construct the tubes

Tj. In view of (1.2.ii) the surface fj(Sl x Dl) has a trivial normal bundle in M, so

that there is a diffeomorphism

S1x/)lxZ&gt;l&gt;-2-&gt;A!,(6) (1.7)
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Figure 3. A f-x(F0) on S1 x Dl (eut open). B. fjTl(F0) x / on S1 x Dl x /.

given by fj x Id^-z foliowed by the trivialization and multiplication by s, where

Nj(e) is the subbundle of normal vectors to fj(Sl x Dx) of length at most e. By
(1.2.iii), fj(Sl x Dl) is orthogonal to Fo. Consequently the vectors of Nj(e) are

tangent to the leaves of Fo, and so the exponential mapping in the leaves of Fo

defines smooth maps

expFo:JV/(e)-&gt;M, (1.8)

which are disjoint embeddings, j 1,...,/, provided that e is sufficiently smalL

Composing the diffeomorphisms (1.7) and (1.8) gives embeddings

fj-.S1 xDl xD&quot;-2-&gt;M

whose disjoint images T} =fj(Sl x Dl x Dn~2) are the desired tubes. Note that
because we hâve used the exponential mapping in the leaves, rather than in M, the
induced foliation coincides with the product of the foliation fj~l(F0) on S1 x Dl by
the disk Dn~2, that is,

î-2 (1.9)

§2. Cutting open compact leaves

The diffeomorphismsy; : S1 x Dl x Dn~2^Tj permit us to work on the product
foliation f~\F0) x Dn~2 on S1 x Dl x Dn~2, since by (1.9) it is the pullback of Fo
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under fr In view of this product structure, Steps 2, 3 and 4 of the Proof of
Proposition 1.1 can be carried out in dimension three, where they are easier to
understand, and then in Step 5 the resulting foliation will be transposed to the

original dimension n &gt; 3. As already mentioned, ail structures in this section will be

smooth.

Step 2. Cut holes in each tube and modify the foliation

Let N be Dl x / less the two open disks Eo and Ex bounded by the ellipses
centered at (0, \) and (0, f) with horizontal semiaxis \ and vertical semiaxis |, as

shown in Figure 4A, and let d0N dË0KjdEx. We shall modify the restriction F&apos;o of
the foliation f~\FQ) x / (depicted in Figure 3B) to S1 x N, so as to obtain a

foliation F\ on S1 x N such that

F\ is transverse to the circles {s} x dËp, s e S\p 0, 1. (2.1)

We first construct Ff Fi|si x N+, where N+ =Nr\(0,1] x /. Using the standard

coordinates s e R/Z S1 and (r, r) g [ -1, 1] x [0, 1] on N, recall from (1.2.iv)
that near S1 x {|} x /, F&apos;o is defined by a linear équation s at with a ^ 0, say
a&gt;0.

Let F+ be the foliation on S1 x N+ defined by s at on S1 x B, where

B N+ n(0, |] x [£, f], and which coincides with F&apos;Q on S1 x (JV+ - 5) (see Figure
5A). To transform F+ into the foliation Ff satisfying (2.1), the &quot;tongue&quot; of each

leaf of F+ is bent backwards by rotating it in the S1 direction through a varying

-1

Figure 4. A. The trace of F\ on a slice {point} x N. B. The transverse vector field X projected onto a
slice {x} x Dl xl
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S1

Figure 5. A. A leaf of the foliation F+ on S1 x N + B. A leaf of the foliation F,+ on S1 x N+.

distance (see Figure 5B). Explicitly, let Ff =g~1(i7+) where g : S1 x JV+ ¦

S1 x iV+ is a diffeomorphism of the form

g(s, /, r) (j - Àfco(/, r), /, r), (j, f, r) e S1 x (2.2)

where K &gt; 0 is a large constant and g0 : N+ -*[(), oo) is a fonction supported in a

small neighborhood of B such that

has nonvanishing gradient

^/&apos; for (t,r)eB, t

(2.3)

(2.4)

An analogous construction produces a foliation Ff on S1 x N~~ where

Af- =JVn[-l,0) x /. Let Fi be the foliation which coincides with Ff on S1 x
Ar± and has as its remaining leaves the components of S1 x (({0} x I)nN). Then

F\ is clearly smooth on S1 x N± and, using (2.4), can easily be verified to be

smooth where t 0. Take K large enough so that F\ satisfîes (2.1), which is possible
in view of (2.3). In particular, F\ is transverse to S1 x d0N. For a convenient choice

of g0 and K, the trace of F\ on each slice {s} x N will hâve the form depicted in
Figure 4A, with exactly two singularities, both of saddle type, at the points

Step 3. Control the homotopy class

The choice of g0 an^ K just mentioned makes it possible to construct a unit
vector field Jon S1 x Dx x I which is transverse to F\ on S1 x N and whose



182 PAUL A SCHWEITZER, S J

projection on each slice {s} ±Dl x I has the form depicted in Figure 4B. We shall
choose X to agrée with d/dt near d(Sl x Dl x /) and with properties that permit us

to show that

X is homotopic to d/dt modulo d(Sl x Dl x /). (2.5)

It is not difficult to verify that, with a convenient choice of g0 and K, there is a unit
vector field

X(s, t, r) S(t, r) d/ds + T(t, r) d/dt + R(t, r) d/dr (2.6)

on S1 x Dl x /, transverse to F\ on S1 x N, invariant under the S1 action on the
first factor, and such that

S is nowhere zéro on S*1 x (^u^), (2.7)

on S1 x d0N, X is tangent to {point} x d0N, (2.8)

X(s919 r) ±d/ds o (t, r) e {( ±|, |), (0, J), (0, |)}, (2.9)

and

near d(Sl x Dl x /), X coincides with d/dt. (2.10)

To show (2.5), in view of S1 invariance, it suffices to show that X and d/dt are

homotopic on a slice {s0} x Dl xi modulo boundary, or equivalently that the
restriction X : ({^0} x Dl x /, {s0} x d(Dl x I))-+(S2, d/dt) has the same degree as

the constant mapping d/dt, which has degree zéro. We may calculate the degree of
X by adding the degrees at the points of X~l(d/ds). We choose the signs of S on
S1 x Et (i 0,1) by setting 5(0, |) S&amp; j) and 5(0, |) S( -|, |). Then X-\d/ds)
will contain the same number of saddle points (of degree — 1) as centers (of degree

-I-1), and thus the degree of X is zéro, establishing (2.5).

Step 4. Linearize the foliation on the boundary of each hole

In this step we shall partially fill in each hole S1 x Ep, p =0,1, leaving two
smaller holes in each, such that the foliations induced on the boundary are linear,
as required in (l.l.ii). The construction is a straightforward application of an idea

of Thurston ([Th2], pp. 316-317).
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In view of the simplicity of the group G Diffus1) of orientation preserving
diffeomorphisms of S1, it is generated by conjugates of rotations Ra, ae R/Z. In
fact, any difîeomorphism geG can be expressed as

(2.11)

for some g&apos;eG and nontrivial a, b g R/Z. Choose b to be a Herman nutnber, i.e.
such that any élément g g G whose rotation number is b g R is smoothly conjugate
to Rb (see [Her], p. 8). As a makes a complète circuit of the circle, the rotation
number of R_ag also makes a complète circuit, varying continuously, so for some

aeU, R-ag will hâve rotation number b, and then R_ag g&apos;Rbg&apos;~l for some
g&apos;e G, establishing (2.11).

Now identify the annulus / x S1 with a neighborhood of ôËp in Ëp so that
{1} x S1 is identified with dËp. Using variables (s, r, u) on S1 x / x S1, observe in
view of (2.1) that as s makes a positive circuit of the first factor S], the foliation jFÎ
restricted to S] x {1} x Si détermines a holonomy mapping g GDiff^(Si). Let D
be a small disk in Int(5j x/) and let D2 S1 x /- Int D (see Figure 6). Since

nx(D2) is free on two gênerators, we can suspend the diffeomorphisms Ra and
g&apos;Rbg&apos;~l given by (2.11) to obtain a foliation F&apos;2 of D2 x Slu (see Figure 7) which
coincides with F\ on S] x {1} x Si, is transverse to the factor Slu, restricts to the

foliation F(a) on Sls x {0} x Slu9 and such that its pullback under the mapping
dg dg&quot; xg&apos; : S1 xSlu-+dD x Slu is (dg) ~\F2) F(b% for some diffeomorphism
dg&quot; : Sl-+dD which is the restriction of a diffeomorphism g&quot; \D2-+D.

By this method we construct a foliation F^/O on the submanifold D2(p) x Slu

of S1 x Ep (where we hâve added the index p 0, 1 to the notation). Let F&apos;3 be the

Figure 6. D2 S1 x I - Int D.
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Figure 7. D2 x Slu showing one factor D2x {u}.

foliation on

&apos;

Sls xNuD2(0) xSluuD2(l) x Slu (2.12)

which coincides with F\ on S] x N and with F2(p) on D2(p) x S^. Letting Dx(p)
be the disk Ep - Int(/ x S1), observe that S1 x Dl x I - Int iV&apos; consists of four solid
tori S] x Dx{p) and D(p) x Slu9 p 0,1. We thus hâve four disjoint embeddings

g^&apos;.S1 xD2-+Sl xDl xi
such that the restriction ôga : S1 x dD2-*N&apos; satisfies

(2.13)

(2.14)

for some taeU- {0}, a 1, 2, 3, 4.

Finally observe that by (2.8) the vector field X constructed in Step 3 is

transverse to the factor S\ x I of S\ x I x S\ provided that / x S1 is identified with
a small enough neighborhood of dËp. By homotoping X towards ô/du, while
maintaining the nonvanishing (2.7) of the coefficient of d/ds, we may make X
transverse to F2(p) and thus to F3. We also want

±X on ga(Sl x D2), (2.15)

where d/ds is the vector field tangent to the first factor of S1 x D2. This is easy to
accomplish by a homotopy of Zin a small neighborhood of D(p) x Slui but may be

impossible on Sls x Dx(p). Nevertheless we may change the sign of a, and thus the
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direction of spiralling of the leaves on Sls x dDx(p)9 by adding an integer to a (and
subtracting it from b)9 and in view of (2.7), with one sign or the other there will
exist a homotopy of X in a small neighborhood of 5] x Dx(p) to a vector field still
transverse to F2 and satisfying (2.15). We take the sign in (2.15) to be positive,
possibly replacing ga by its composition with a diffeomorphism of S1 x D2 which
reverses the orientation of S1.

Step 5. Return to dimension n&gt;3

For each index y we hâve modified the foliation//1 (Fo) x / on S1 x D1 x / to
a foliation F&apos;3 F&apos;3{j) on N\ which is S1 x D1 x I with four open solid ton
ga(Sl x IntD2) removed.

Define embeddings gh0L : S1 x D2 x S&quot;&quot;3-* T} by setting

gJA(u,x9y)=fJ(s9t9ry)9

where ga(u9 x) — (s9 t9 r). Notice that

for 1 &lt;: a &lt;: 4, where N&apos; is given by (2.12), A S1 x D2 x Sn~\ and

cpiS1 xDl xDn~2-+Sl xDl xi
is defined cp(s, /, y) (s, t, \y\), (s, t,y) e S1 xDx x Dn~2.

Define Fx on Tj - [j g,,a(Int A) to be (//&apos; o y)-1 F&apos;3(j). Then (ii) of Proposition

(1.1) follows from (2.14) and (i) follows from (1.2.i) and the construction of

Lift the vector field X X(j) on S1 x D1 x I to X&apos;(j) on S1 x D1 x Dn~2 by
requiring that ç&gt; „(*&quot;(./&apos;)) X(j) and that the component of X\j) on the factor
Dn~2 be radial. Then the homotopy of X(j) to d/dt on S1 x D1 x I also lifts to a

homotopy of JT(7) to d/dt on S1 x D1 x Dn~2 modulo boundary, so that

XQ=fj.(dldt) and Xx=fj*(X&apos;U)) are homotopic on T; modulo dTj9 and (iii) is

satisfied. Clearly Xo is transverse to Fo and Jf, is transverse to Fl9 and (iv) follows
from (2.15) with the positive sign. This complètes the Proof of Proposition
1.1.

In order to prove that the concordance class can be kept the same, we need the

following resuit.
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D1

Figure 8 D+=D2nDx x I showing the semiannulas where

PROPOSITION 2.16. Let Fo be a foliation ofa closed manifold N and let F+ be

a foliation of N x Dl which agrées with the product foliation Fox Dl outside a

compact subset ofN x (0, 1). Then the foliation F which agrées with F+ on N x I and
is invariant under the involution (x, i) h-? (x, — t) is concordant to Fo by a concordance

supported on a compact subset of N x — 1, 1) x /. The concordance is as dijferen-
tiable as Fo and F+.

Proof Consider the upper half disk Z&gt;+ =D2nDl x I as in Figure 8. The

mapping ç : N x D+ -* N x /, &lt;p(x, t, u) (x, sjt1 -f u2) for x e N, (t, u) eD+, is a

submersion except where (t, u) (0, 0), so the foliation &lt;p
~ lF+ is well defined. On

N x Dl x I the foliation Ff which agrées with (p~lF+ on NxD+ and with
Fo x D1 x / on the rest of N x Dl x I is the required concordance.

We remark that the foliation F inherits certain properties if F+ has them, such

as having no compact leaves, or having smooth leaves.

§3. Raymond&apos;s foliation of S3 and Hector&apos;s exceptional minimal set

The goal of this section is the following Proposition, which will be used in the

next two sections. Recall that ail structures in this section are supposed smooth. Let
N be a compact connected A&gt;manifold (k ^ 3) whose boundary is separated into
two closed sets d0N and 3, JV. The main case of interest is N B x I, and then we
set ôtN =s B x {i}, i 0, 1. To simplify the notation, throughout this section S1 is

identified with R/12Z.

PROPOSITION 3.1. There exist a transversely oriented foliation Fv of an open
set U c Int N, a compact saturated set C cz U containing no compact leaves, a
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submersion p:U-C-+(0,l) constant on each leaf of FU9 a Udimensional foliation
F\j on U transverse to FU9 and a diffeomorphism x of S1 R/12Z onto a leafofFjj
that meets every leaf of FU9 with the following properties.

(i) On each leaf T ofFj} \V_C9 P\t is an oriented diffeomorphism into (0, 1), and
if T has a lower endpoint xoefnC (resp., an upper endpoint xx efnC),
then

lim p(x) 0 resp., lim p(x) 1Y
x-*x0 \ x-+xx

T T
x-*x0 \xeT xeT

(ii) There exists a constant K&gt;0 such that for every t eB S1 — x~l(C),
\l/q&gt;V)\ ^ K and |(l/(?&apos;)&apos;(0| ^ K, where q&gt; P o x\B.

(iii) N — C=^AouAl where the At are disjoint open sets such that

Note that it follows from (3.1.i) that if T has two endpoints in C, then P\T is

surjective. It will be shown below that the gênerai case of the Proposition follows
easily from the following spécial case.

LEMMA 3.2. Proposition 3.1 holds for N S2 x I.

The standard argument using Zorn&apos;s lemma shows that the compact saturated
set C, which is nonempty since it séparâtes N, must contain a minimal set Cx, i.e.

a closed saturated nonempty set which contains no such proper subset. For
codimension one foliations there are only three types of minimal sets - a single

compact leaf, the whole manifold (when every leaf is dense), and the third type,
called exceptional, characterized by intersecting a transverse closed curve in a

Cantor set. Since the conditions of Proposition 3.1 exclude the first two types, C,
must be an exceptional minimal set. While the earliest known exceptional minimal
set, Denjoy&apos;s example on the torus, cannot occur in a C2 foliation ([D], [Se]),
Sacksteder [Sackl] has constructed a C00 foliation of a 3-manifold with an
exceptional minimal set related to an action of the group Go Z/2 Z/3 on the
circle that has an exceptional minimal set (defined by invariant rather than
saturated sets).

There are two significant difficulties in proving Lemma 3.2 - the exceptional
minimal set must fit inside S3 (since S2 x / does) and the holonomy on each

complementary interval must be trivial so that (3.1.i) can be satisfied. The first
difficulty is resolved by Bernard Raymond&apos;s remarkable construction of a foliation
of S3 with an exceptional minimal set.



188 PAUL A SCHWEITZER, S J

THEOREM 3.3 (B. Raymond [Ray]). For certain actions of the group Go

Z/2 * Z/3 on S1 with an exceptional minimal set Cocz S1 (for example Sacksteder&apos;s

action [Sackl]) there exist a C°° foliation F of S3 and a mapping x :Sl-+S3
transverse to F such that

(i) The set Cx Sat t(C0) is an exceptional minimal set of F,

(ii) The holonomy pseudogroup induced on S1 by F under x is gênerated by the

éléments of Go.

The second difficulty is resolved by an interesting exceptional minimal set

constructed by Hector. I thank him for suggesting its use.

THEOREM 3.4 (Hector [Hec]). There exist an action of Go Z/2 * Z/3 on S1

with an exceptional minimal set Co, a constant K&gt;0, and an orientation preserving
local diffeomorphism i// : S1 — Co-^( — 1, 1), constant on each orbit and surjective on
each component of S1 — Co, such that

K and \(l/r)V)\^K ^
(3.5)

for every t e S1 — Co.

It does not seem to be possible to complète Raymond&apos;s construction of the
foliation F on S3 using Hector&apos;s action of Go on S1, but it can be carried far enough
to prove Lemma 3.2. We shall describe Hector&apos;s action and Raymond&apos;s construction,

and then prove Lemma 3.2 and Proposition 3.1.
Hector&apos;s exceptional minimal set. In [Hec], pp. 252-255 and 260-262, G. Hector

introduced a group $ of compactly supported diffeomorphisms of R with two
generators/and x and with an exceptional minimal set. Let/, x e Diff^(51) be the

diffeomorphisms obtained by restricting the generators to [0, 12] and passing to the

quotient S1 R/12Z. The diffeomorphism / is a rotation of order 3 defined by

/(*) *+4, *eR/12Z.

The diffeomorphism g p/2(see Figure 9) has order 2, interchanges [ — 1,1] and

[3, 5] by rotations, and is a strictly expanding diffeomorphism (g&apos;(0 &gt; 1) from
1, 3) to (5,11). Then g and/generate a group Go « Z/2 Z/3 that acts on S1. Note

that x is the identity on [0, l]u[U, 12], and hence, by periodicity, on [ — 1, 1].

Ixmmas 2, 3 and 5 of [Hec], p. 254, interpreted in terms of Go acting on
S1 Z/12Z, state that there is a unique exceptional minimal set Co and that — 1,1)
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Figure 9. The functions g and i on S1 R/12Z.

is a component of S1 — Co such that

Sat(~l,l)=51-C0

If /*(-l,l) (-l, 1) for some /*eG0 then A|(-i.d Id.

(3.6)

(3.7)

LEMMA 3.8. Gitœw awy component (a, b) of( 1, 3) - Con 1, 3), /Aère w a unique
élément h gkgk _ i • • • £i e Go mc/î //z^/

(i) Each gt =fE&apos;gfor some e, ± 1.

(ii) For i &lt; k, gtg^ • • • gi(a9 b) c (1, 3).

(iii) A(*,é)=(-l,l).

Proo/. Observe that g( 1, 3) (5, 11) and that #&apos;(&apos;) &gt; 1 if f e 1, 3). Suppose that
(i) and (ii) hold for \&lt;i&lt;p for some pèl. Then gp_, • • • ^(tf, 6) &lt;= (1, 3) and
consequently 5 g^_, • • • gY(a9 b) c (5,11). Since the orbit of 1 contains ail odd
integers and is contained in Co, S must be contained in (5, 7), (7, 9) or (9, 11). In
the first and third cases, choose ep ±\ so that fe&apos;(S) c(1, 3), set ^ =fepg, and
continue the induction. In the second case, set k=p and gk =fg so that (iii)
follows. Let hp=gp-&apos;gx and note that

the intervais hp(a, b) are expanding and disjoint, p 0, 1,...,

so the process must terminate.

(3.9)

It is fairly easy to adapt this reasoning to prove (3.6) and (3.7) and also show
that the closure of the orbit of 1 is the unique exceptional minimal set of the action.
(See [Hec], pp. 252-255 for more détails.)



190 PAUL A SCHWEITZER, S J

Proof of Theorem 3.4. Let Go be the group of diffeomorphisms of S1 just
described and Co its exceptional minimal set. In view of (3.6) and (3.7) we

may define i// : S1 — Co-&gt;( — 1, 1) by setting iA|(_i, i&gt; Id and requiring that
\// o h\si _ Cq ty for every h eG0. Then \// is clearly smooth and takes each compo-
nent of S1 — Co diffeomorphically onto — 1, 1).

The second inequality of (3.5) is proved by a Denjoy-type argument (cf.
[Sack2], p. 81). Choose constants K, 9 &gt; 0 such that for t e S1 I

&amp; and \g&quot;(t)\&lt;iO/R. (3.10)

Let (a, b) be a component of S1 — Co contained in (1,3) and take

gl9..., gk9 hl9..., hk 6 Go as in (3.8) and (3.9). We claim that

*;(m) £ e2eh&apos;p(v), for any u, v e (a, 6) and p 1,..., k. (3.11)

In fact, by the Chain Rule and the Mean Value Theorem, there are points
*i e (A,-1(«), A,-1(«0), ï 1, ...,/&gt;, such that

A,-i(o)| by(3.10)
/ sa 1

s 20 by (3.9) and (3.8ii).

Since \f/ and h agrée on (a, b), we hâve, for f e(a, b),

Differentiating this équation yields

i ^(Ai-iW)&quot;1^^,-!©)^;-!
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Now /r,(Z&gt;)-/iI(a)=(*-a)A;(Ô for some tt€{a,b), and 2=l-(-l)
(b - a)\j/&apos;(t) for some t e (a, b) so using (3.11) twice in the last inequality we obtain

and then

since £, (/*,(£) - A, (a)) ^ 2 by (3.9). We hâve just proven the second inequality of
(3.5) for K 0e4e and t e(l, 3) - Con(l, 3), but it also holds for/±l(f) (since
(*A °/)&apos;(0 &lt;A&apos;(0) and for / e (p - l,p + 1), p 0,4, 8 (where ^&apos;(0 1), and this
covers ail points of S1 - Co. Finally we hâve ^&apos;(0 £ 1 for ail t g S1 - Co so that the
first inequality of (3.5) holds with K=\.

Next we recall Raymond&apos;s construction briefly, in order to describe certain
détails that we need. (See [Ray] for further détails.) Let Go « Z/2 * Z/3 be a group
of diffeomorphisms of the circle S] R/12Z with an exceptional minimal set

CoczSl. We suppose that we can choose generators g,feG0 and covering
diffeomorphisms |,/eDiffJ(R) so that §2(t) =/3(0 / + 12. This is possible in
the case of Hector&apos;s group, as is easily verified (see Figure 9). Over the two-holed
disk D2 Sls x / — Int D (see Figure 6 and §2) we suspend the action of Go to
obtain a foliation Fo of D2 x S] transverse to the second factor, such that the

foliation induced by Fo on the covering space D2 x R satisfies

The holonomy over S] x {0} (resp. Sls x {1}) is g (resp. /). (3.12)

Explicitly, the fundamental group 7r 7r1(/&gt;2) acts canonically on the universal

cover D2 and also acts on Slt so that a loop freely homotopic to Sls x {0} (resp.
Sls x {1}) acts by g (resp./), and then the foliation Fo on D2 x Slt &amp;B2 xn S] is the

quotient of the foliation B2 x {point} on Ô2 x S]. One easily checks, in view of
(3.12), that the foliations induced by Fo on Sls x {0} x S) and S] x {1} x S} are by
circles of homotopy classes (2, 1) and (3, 1) respectively. Now

A ¦Ci]
acts on T2 R2/12Z2 by left multiplication and therefore on 5] x / x S] « T2 x /.
The pullback A~lF0 under the diffeomorphism A is a foliation on 5] x /x S,1
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Figure 10. The manifold N is the 3-sphere with a tubular neighborhood of the trefoil knot removed.

minus an open solid torus. On Si x {0} x S) and S] x {1} x S] the foliations by
circles induced by A ~ lF0 now are of types (1,0) and (0, 1) respectively, so that after
an isotopy near the boundary, we can attach two solid tori foliated by disks along
thèse boundary components to obtain S3 minus the interior of a solid torus

S3-h(Sl xlntD2)

{S] x / x S] -h(Sl x Int D2)}uD2 x {0} x S) uSj x {1} x Z&gt;2,

foliated by a foliation Fx which restricts to A~lF0, D2 x {0} x {point}, and

{point} x {1} x D2 on the three subspaces. One can verify that the hole
h(Sl x Int D2) is a tubular neighborhood of the trefoil knot. (See Figure 10, where
the hole and the tori 5] x {0} x S] and S] x {1} x S] are depicted.) Now define

t:S1-+N by setting t(t) (xo,t) for some point x0elntD2 and note that
C SatFlT(C0) is an exceptional minimal set for Fl9 but it meets dN.

By an ingenious trick Raymond gets the exceptional minimal set into the
interior of the manifold: he doubles N along a cylinder B h(Jx x dD2) c dN9 for
some closed interval Jxc:Sl such that C ndN c Int B. Such an interval Jx need not
exist in gênerai, but in the case of Hector&apos;s action of Go, the diffeomorphisms /, g
and their covering diffeomorphisms/ g e Diff^(i?) ail agrée on [ — 1,1], so that the

holonomy g~l o/on dN is the identity on [ — 1, 1] s R/12Z. After an isotopy near
dN, the foliation F,\ÔN will hâve leaves h({s} x dD2) for s g [ — 1, 1]. Since (0,1) and
Co are disjoint, any choice of Jx as a closed interval containing S1 — (0, 1) in its
interior will suffice to guarantee that C&apos; ndN c Int B holds.

Now introduce corners on dN along dB (see Figure 11), so that B is part of a

round sphère, and N is the (outside) bail less the hole. Reflect N through this
sphère, and obtain the double Nf of N along B as the union of N and its reflected
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Figure 11. The manifold N with corners introduced prior to doubling along the cylinder B.

image. Now the set Cx consisting of C&quot; and its reflected image is an exceptional
minimal set of the doubled foliation F&apos; on N&apos; such that Cx a Int N&apos;. Raymond
carefully chooses the interval Ju for Sacksteder&apos;s action and others with similar
properties, so that the foliation on the boundary ôf the doubled hole (a tubular
neighborhood of the square knot, which is the double of the trefoil) is given by
circles transverse to the disk factor. Hence one can complète Raymond&apos;s foliation
.F by inserting a Reeb component and making the leaves spiral around it along dN&apos;.

Proofof Lemma 3.2. In the case of Hector&apos;s action of Go on S1, it seems to be

impossible to complète Raymond&apos;s construction by inserting a Reeb component
since there will be singularises on dN\ but it suffices to get a foliation on an open
set U c S3.

Since the mapping i// : S1 - Co -&gt;( —1, 1) given by (3.4) is constant on each

orbit, it détermines a mapping \ji : N&apos; - C, -&gt;( -1, 1) constant on each leaf of F
such that \J/r(t) \)/(t) for t e S1 - Co. We choose the interval Jx mentioned above

so that S1 — Int Jx c (0, 1) (using the parametrization S1 R/12Z). Since x is the

identity on (0, 1), this is possible. Then the set C C, u^-&apos;CO) is a compact set in
IntiV&apos;. Furthermore C séparâtes N&apos; into two open sets ^~1( —1,0) and ^~!(0» !)•
Since S3 - Int N&apos; meets only one of the closures of thèse two sets, C séparâtes S3.

Choose a 1-dimensional foliation F1 transverse to F with tCS1) as a leaf. Let y be

an arc in a leaf of F± with endpoints p0 and px in distinct components of
S3 — C - t(S1), and remove small open balls centered at p0 and px with closures

contained in thèse components. Choose the balls and identify their complément
with S2 x I so that y n (S2 x /) {x,} x / (for some xx e S2) and so that for a small
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closed disk neighborhood D of xu D x / is product foliated, i.e.,

(3.13)

Let At be disjoint open sets such that S2 x I — C AokjA1 and S2x{i}cAi9
i 05 1. Let U S2 x (0, 1) nSat r(Sl)9 Fv F&apos;\v and Fh f-%.

We now define the submersion fi : U — C-?((), 1) by setting p(x) ^/(x) if
if(x) € (0,1) and p(x) *j/(x) -h 1 if f(x) e -1, 0). One easily checks that p satisfies

(3.1.i), and (3.5) implies (3.1.ii). D

Proof of Proposition 3.1.

Case 1. N Sk~l x J, fc ^ 3. For fc 3 this is just Lemma 3.2. For /: &gt; 3 it
suffices to multiply S2 x I, U, C, and Fv on the left by Sk~3, and then embed
S*&quot;3 xS2 x /in Sk~* x /so that it séparâtes Sk~l x {0} from S*&quot;l x {1}. In view
of (3.13) we may choose the embedding so that there exist an open arc J c (0, 1),

a point *! g S*&quot;2 such that Cn({xi} x I) cz{xx} x /, and a product neighborhood

DxxJ of {xjx/ foliated as a product by the foliations Sk~3xFv and

{point} x Fj;9 where j^ is a closed disk neighborhood of xx in Sk~l. The remainder
of the proof in this case is a straightforward transposition of the properties from
S2 x I to the product Sk~3 x S2 x I.

Case 2. N B x I where B is a closed connected (k — l)-manifold. We start
with the resuit of Case 1 for Sk~l x I and change it to Bk~l x / by a kind of
surgery. Let C aU czSk~x x /, the foliations Fu and Fj}9 the closed disk DY and
the arc J be as in Case 1. If Bo is B with the interior of a closed disk removed, then
B is diffeomorphic to Bou(Sk~l — Int 2&gt;i), with the boundaries identified. Let FUb
be the foliation on

UB~BQxJu(U~DïxI),

which coincides with Bo x {point} on Box J and with Fv on U — D x L The

compact saturated set

CB^BQxCJuC-(Dl x/)

séparâtes the two boundary components, where C, is the subset of / such that
{xx} x Cj Cn({xj} x /). The remaining détails are routine.

The gênerai case follows easily from Case 2 by setting B d0N and identifying
B x I with a collar neighborhood of ë0N in N. D
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§4. Tilting the leaves to fill the holes

According to Proposition 1.1, the original foliation Fo can be modifiée to a
smooth foliation Fx defined on Mx which is obtained from the original manifold M
by removing a finite number of &quot;holes&quot; g,(Int A) with disjoint closures gt(A)&gt; where
A =Sl x D2x Sn~3. The foliation F, is transverse to dMl and on the boundary of
the ith hole the induced foliation (gl\dA)~lFl is the product of a linear foliation on
the torus S1 x dD2 by Sn~3. In this section we shall construct a foliation G, of A
without any compact leaves for each i, so that Gt is transverse to dA and
Gt\dA ss(gi\ôA)~&apos;1Fi- Then gluing thèse foliations into the holes will enable us to
complète the proof of the Theorem stated in the Introduction.

Henceforth we fix L To begin the construction of Gn we represent the disk D2

as D2(\) uSl x / by identifying S1 x I with the annulus \&lt;&gt; |z| £ 1 by the mapping
(z, t) i-&gt; (It - \)z. Define the restriction of Gt to S1 xD(j) x Sn~3 to be the
foliation whose leaves are {point} x D(j) x Sn ~3. The remaining &quot;hole&quot; still to be

foliated is now the interior of S1 x S1 x I x S&quot;1&quot;3, and its two boundary compo-
nents are foliated as follows. On S1 x S1 x {0} x Sn~3 the foliation (just defined)
has leaves {point} x S1 x {0} x S&quot;&apos;3, and on S1 x S1 x {1} x Sn~3 the foliation is

(gi\dA)~lF\ =F{tt) x {1} x Sn~3, f, #0. Extend thèse two foliations to product
foliations, denoted Fq and F\ respectively, on S1 x S1 x I x Sn~3, by multiplying
each by /. Note that both are transverse to the first factor S1 and (in view of their

linearity on S1 x S1) invariant under the S ^action on this factor. We shall

complète the définition of Gt by constructing a foliation F&apos; on S1 x S1 x I x Sn&quot;3

by modifying F&apos;o and F\ in a way analogous to the behavior of the Reeb foliation
of S3 near the torus leaf T2: the other leaves spiral in asymptotically towards T2

from opposite sides in two différent directions. (It is essentially this change of
directions across T2 which makes it impossible to avoid the torus leaf on S3.) We

shall replace T2 by a compact saturated set C (the union of an exceptional minimal
set and a single extra non-compact leaf) contained in Int^1 x S1 x I x Sn~3) and

separating the two boundary components. The remaining leaves of F&apos; will start as

leaves of F&apos;o and F\ near the respective boundary components, but will be modified

so as to spiral asymptotically around C&quot; from opposite sides.

The two following Propositions, to be proven in this section and the next,

respectively, will complète the construction of F&apos; and prove the Theorem. We

consider a smooth principal S1 fiber bundle n:N&apos;-+N where N is a compact
connected manifold whose boundary has two components d0N and dxN. Thus
dN&apos; ÔqN&apos;kjÔïN&apos;, where d,N&apos; n~l(dtN).

PROPOSITION 4.1. Let F&apos;o and F\ be smooth foliations on N&apos; transverse to the

fiber Sx and invariant under its principal action. If n =dimiV&apos; £ 4 then there is a



196 PAUL A SCHWEITZER, S J

foliation F&apos; of N&apos; transverse to dN&apos; with no compact leaves, such that

(i) The leaves of F&apos; are C°° submanifolds;

(ii) Near dtN&apos; the foliations F\ and F&apos; agrée for i 0, 1;

(iii) There is a vector field Y&apos; on N&apos; simultaneously transverse to F&apos;o, F\ and F&apos;

and coinciding near dN&apos; with the vector field Y on N&apos; that générâtes the

principal Sl-action.

PROPOSITION 4.2. The construction ofFf in Proposition 4.1 can be carried out
so that F&apos; is locally defined by a Cl l-form on N&apos;.

Proof of the Theorem. Let N S1 x / x Sn~3, take the product fibration
n : N&apos; S1 x N -+ N with the two foliations F&apos;o and F\ on N&apos; defined above, and let

dtN Sl x {/} x S&quot;1&quot;3, i&quot; 0,l. From Propositions 4.1 and 4.2 we obtain the
foliation F&apos; with the indicated properties. Gluing together smoothly F&apos; on
N&apos; S1 x S1 x / x S&quot;&apos;3, with the foliation {point} x D2{\) x Sn~3 on S1 x
D2{\) xSn-3 yields the desired foliation G, of A S1 x D2 x Sn~\ which we

transport to the &quot;hole&quot; g,04) cMby the diffeomorphism gt. Thus we extend Fl to
a foliation F on M such that grl(F) Gx for each i.

The foliation Gt has no compact leaves because F&apos; has none. Thus F has no
compact leaves, for every compact leaf of Fx on Ml= M — (J* gt (A) meets some

boundary component g,(d,4), where it is glued to a noncompact leaf of gt{Gt).
Clearly F is locally defined by a C^-differential l-form and ail its leaves are C°°
submanifolds of M, because F&apos; and each Gt hâve thèse properties, provided that we
smooth the corners along the boundaries gt(dA).

In order to check that the plane fields TF0 and TF are homotopic on each tube

Tj modulo 57}, it suffices in view of (1.1.iii) to exhibit a vector field X on (J, T3

transverse to 77% coinciding with Xx on (J7 T} — (J, gt (A), and homotopic to Xy on
gt (A) modulo boundary for each i. For a fixed index i let Y&apos; be the vector field on
N&apos; given by (4.1.iii) extended to be equal to Y (the vector field on A which
generated the S1 action on the first factor) on A — Int N&apos;. Now Y and Y&apos; are both
transverse to F&apos;o on N\ so they are homotopic on A modulo dA. By (l.l.iv),
Xi\gl(A) =gAY) so it suffices to define X\gM) =^*(F).

Now if the foliations Fo and F are not C1 -concordant, we can change F inside
each tube TJ9 essentially doubling the modification from Fo to Fby adding the mirror
image of the modification inside each tube alongside the original modification, as

explained in Proposition 2.16, so that the resulting foliation has ail the properties
of F already verified and in addition is C ^concordant to Fo. To apply 2.16, let

N~Sl xDl xDn-\ identify Dn~2 with Dn~2 xD\ and let F+ be the pullback

/;- lF where/; =fj o (UN x $) : N x Dl -? TJ9 $ is a diffeomorphism of D1 which
pushes ail the changes into the interval (0,1), and jj : S1 x Dl x Dn~2-+ T} is the

diffeomorphism defined at the end of §1.
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Proof of Proposition 4.1. Since the base N of the principal circle bundle
n : N&apos;-+N has dimension at least three, we can apply Proposition 3.1 to obtain a
foliation Fv of an open set U c Int N, a transverse 1-dimensional foliation Fj}9 and
a compact saturated set C c U containing no compact leaves such that N — C is the
disjoint union of open sets Ao and Al9 with the properties stated there. Given two
smooth foliations F&apos;Q and F\ on N&apos; transverse to the fibration and invariant under
the principal S1 action a : S1 x N&apos;-*N\ we must construct a new foliation F&apos; and
a vector field Y&apos; on N&apos; satisfying the conclusion of (4.1).

We foliate C n~l(C) by the inverse images under n of the leaves of Fv in
C. On A\ tc&quot;1^) we shall deform the leaves of F\ \A[ so that they spiral around
the leaves in C&quot;, for i 0,1. The spiralling will be produced by the action a
and a smooth proper function / : JV — C -&gt; R, called the tilting function, which
détermines the direction and extent of the spiralling. More precisely, we define a
diffeomorphism

&apos;- C, /&apos;(*&apos;) «( -/(*(*&apos;)), *&apos;), (4.3)

where by an abuse of notation we write/(7t(x&apos;)) for its image f{n(x&apos;)) modulo 1 in
S1 R/Z, and set

n^C/O-WU;, &lt;- &lt;U. (4.4)

We shall choose the tilting function/to vanish in a neighborhood of N — (7 so that
F7 will agrée with FJ in a neighborhood of A\ - A\r\U&apos; which contains dtN\
i o, 1, where C/&apos; ^&quot;&apos;(t/). We also choose/to be strictly increasing on the part
of each leaf T of F^ \v_ c that lies in a certain neighborhood of C. Since/is proper,
f{x) tends to -h oo (respectively, - oo) as x tends to C along T in the positive
(respectively, négative) direction (see Figure 12). The leaves are tilted more and

more by /&apos; as they approach C, thus causing them to spiral around C (see Figure
13). One can check that Fjj can be lifted to a 1-dimensional foliation on t/&apos;

transverse to the leaves of F&apos; near C. This proves that F&apos; has bidistinguished
neighborhoods near C and is therefore a foliation. (This fact will follow indepen-
dently from the construction, in §5, of a C1 1-form defining F locally.)

The restriction of F&apos; to each A\ is clearly smooth. The remaining leaves are in
C and are C00 by construction. They are noncompact since they are fibered over
the (noncompact) leaves of C. The leaves in each A\ are noncompact because they
are covering spaces of the components of At which must hâve points of C in their
closure, since C séparâtes Ao from Ax in N which is connected.
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Figure 12 The tilting function / along a leaf of

Figure 13 The foliation F&apos;

Lastly we construct the vector field

Y - eXZ on U&apos;

Y on N&apos; - U\

where Z is a vector field on U&apos; tangent to the lift of Fj) with the same orientation
and k : N&apos;-&gt;[091] is a smooth function which is 0 near N&apos; — Uf and 1 near C&quot;.

Clearly Y&apos; and Y coïncide near dN&apos;. We claim that for any sufficiently small e &gt; 0,
Y&apos; is simultaneously transverse to the foliations F&apos;O9 F\ and F&apos;. Indeed, Y is

transverse to F&apos;o and F\ by hypothesis and consequently transverse to F&apos; on
N&apos; — C&quot;, although tangent to F&apos; along C&apos;. The small perturbation makes Y&apos;

transverse to F&apos; along C and (because of the choice of sign) préserves the

transversality to F&apos; on N&apos; - C. D

Remark 4.5. The foliation F&apos; is C1 by (4.2), but it cannot be C2. Suppose that
F&apos; were defined by C2 distinguished neighborhoods. The same is true of the
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foliation Fuon Uc N. By Sacksteder&apos;s Theorem 1 [Sack2], there must be a loop a
on a leaf in C with strongly contracting holonomy. Then n~l(&lt;x(S1)) is a torus
contained in some leaf of C&quot; such that the holonomy of one generator of its
fundamental group (the lift of a) is a contraction, while the holonomy of the other
generator (the fiber S1) has as fixed point set a Cantor set (the intersection of C&quot;

with a transverse arc). This contradicts Lemma 1 of Kopell [K], which asserts that
if two C2 diffeomorphisms of 1R fîxing the origin commute, so that the first is a
contraction and the second has other fixed points besides 0, then the second must
be the identity mapping.

Remark 4.6. Propositions 4.1 and 4.2 yield a shorter construction (not using
Prop. 1.1) of C1 foliations without compact leaves on S1 x Sn~l (n ^ 4) and similar
manifolds. Let TV be a product neighborhood of the equatorial (n - 2) sphère in
Sn~ \ and let F&apos;o F\ be the product foliation {point} x Sn~l on S1 x Sn~ K Then
(4.1) will modify the foliation F&apos;o inside N&apos; S1 x N so that ail compact leaves are
eliminated, and (4.2) asserts that the resuit is C1.

§5. The foliation is defined by a C1 1-form

In this section we prove Proposition 4.2 by showing that the foliation F&apos;

constructed on Nf in the proof of Proposition 4.1 is locally defined by a C1 1-form.
First we define the tilting function / and then we pass to a convenient coordinate
chart where the coefficients of the defining 1-form can be explicitly calculated and
shown to be C1. The notation of Proposition 4.1 is maintained. According to

Proposition 3.1 there exist a submersion /? : U - C -? (0, 1) constant on each leaf of
Fv and a dirTeomorphism x of S1 R/Z onto a leaf of Fj) that meets every leaf of

The tilting function. We define / : N - C -? R by

\x) r(x)b(p(x)) for x e U - C

\x)=0 for xeN-U

in terms of smooth functions r : N - C -&gt; [0, + oo) and 6 : (0,1) -&gt; R which will
now be chosen. Fix a smooth Riemannian metric g on N such that

rf(C, N - U) &gt; 2, where &lt;/ is the distance function defined by g, and so that Fj) is

orthogonal to Fv at every x e U such that &lt;/(*, C) £ 2. For a point xeU-CletTx
be the leaf of the foliation Fjj\u-c passing through x, and let |rx| e (0, + oo] be its
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length. Define r : U - C -+ R by setting

&lt;r(x)=a(-log\Tx\) iîd(x9C)ï\
\r(x) 0 if d(x, C) :&gt; 2

(5.2)

and smoothly extending r over U — C, where a : [-oo, oo) -&gt;[1, oo) is a smooth
function such that a(x) 1 for x ^ 1 and a(x) x for x ^ 2. Note that r vanishes

near N — U so that (5.1) will give a smooth function/, and that

(5.3)

(see Figure 14) will be constructed so that

(5.4)

Next the smooth function b : (0,1)
b&apos; &gt;0, the symmetry

t/e(0,

holds, and

&apos;)&apos;, b/b\ (blby-&gt;0 as u -&gt;0+ or m -^ 1&quot;. (5.5)

Thèse five functions are therefore bounded on (0,1) and 6-&gt;oo or b ^ —oo

according asw-&gt;l~ orM-*0+. The stated properties of b are easily verified if we
set

b(u) p(u) e1/(1 &quot; M) - p( 1 - m) e1/M, m g (0, 1),

Figure 14. The function z - b(u).
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where p : [0, 1] -&gt;[(), 1] is a smooth function such that p(u) =0 for u near 0,

p(u) 1 for u near 1, p&apos;(u) :&gt; 0 for ail u e (0, 1), and p&apos;(i) &gt; 0.

A coordinate chart. Given an arbitrary point jcq e C&quot;, take a bidistinguished
coordinate chart ([HH], Part A, p. 19) \j/ defined on a connected open neighbor-
hood Uo c U of jc0 tc(jco),

i// : Uo-+J x VœUx U&quot;-2 (5.6)

relative to the foliations Fv and F£. This means that for ail teJ (tu t2) and

y eV, the sets \l/~l({t} x V) and ty~\J x{y}) are plaques of leaves of Fv and /*£
respectively. It follows that the sets At and C détermine open sets Bt c / and

a relatively closed set CoaJ such that i?, x K ^(l/on^^), / 0, 1, and

Co x K \l/(UonC). We choose C/o&gt; ^ and / small enough so that ^ extends to a

diffeomorphism on a compact set £70 c {7. Since the circle t(R/Z) of Proposition 3.1

meets ail the leaves of Fv there is a path y on the leaf LXQ containing x0 from some

point t(/0) Oo e U) to x0. We choose the interval / and the diflfeomorphism i// so that

\j/hyT{t) (t9 y0), teJ,

where we identify J czR with its image in U/Z and hy is the holonomy mapping of
y, as in (1.4). It follows that if x e Uo - C and i//(x) (/, y) then j8(x) p(hvx(t))
)St(O since x and hYT(t) are in the same plaque and jS is constant along the leaves of
Fu. Therefore

P(x)=cp(t) where ^(x) (t, y), xeU0-C, (5.7)

where q&gt; is the mapping of (3.1.ii). By an abuse of notation we write r for r ° ^ -1

so that r becomes a function of (/, y) e (J - Co) x K. We choose t/0 small enough

so that d(x, C) ^ 1 for ail xeU0, which implies by (5.2) that r is locally constant

as a function of t.

The lifted coordinate charts. Let U&apos;0 n-l(U0) c:N&apos; and let L\ be the leaf of
F\ \Uq containing x&apos;o, i 0, 1. Then nt n\Li : L\ -&gt; C/o is a covering map, and we

choose t/0 sufficiently small to make each nt a diffeomorphism. We define Sl-

equivariant coordinate charts

trU&apos;o-ïJx VxS\ i=0, 1
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by setting

JXV

Figure 15. The coordinate charts.

\l/t(x&apos;) (ij/(x), z) for x&apos; a(z, nt l(x)) e U&apos;o, (5.8)

where x € Uo, z e S1 IR/Z, and a : S1 x N&apos; -+ Nf is the S1 -action of the principal
S1 bundle n:N&apos;^&gt;N.

The foliation F&quot; on the coordinate space. We shall define a foliation F&quot; on
J xV x S1 such that \//ôlF&quot;&apos;^F&apos;\uh. From (5.8), the equivariance of {//, and the
invariance of F[ under a, it follows that

(5.9)

where FA is the horizontal product foliation J x V x {point} of / x V x S1. Note
that the S^equivariant diffeomorphism

(5.10)

has the form

(5.11)

for some smooth function k:Jx V-
and (5.10) it follows that

&gt; R/Z which does not dépend on z. From (5.9)

(5.12)
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Parallel to (4.3) we define

f&apos;:(J-C0) x VxSl-&gt;(J-C0) xVxS\
(5.13)

f/(t,y9z)=(t,y9z-J[t9y))9

where /=/° i//~l : (/ — Co) x F-+ R with its values taken modulo 1, and set

F&apos;h=(f&apos;)-lFh (5.14)

on (J-Co) xV x S1. Thus F&apos;h is the foliation of (J-Co) xV x S1 obtained by
modifying the horizontal foliation Fh so that its leaves spiral around Cox V x S1.

DEFINITION 5.15. Define the foliation F&quot; on J x V x S1 to hâve the same
leaves as F&apos;h on Box V x S\ the same leaves as (\jf&apos;)~xFfh on Bx x V x S\ and the
leaves {t} x V x S1 (t e Co) on CoxV x S1.

LEMMA 5.16. if/^&apos;F&apos;= F\ub.

Proof. By (5.9), \//ôlFh =F&apos;Q. Therefore the S^equivariant mapping ^0 trans-
forms the construction (4.3)-(4.4) of {ff)~xFf0 on A&apos;ovU&apos;q into the construction

(5.13)-(5.14) of F&apos;h=Cf&apos;)~xFh onB0x V x S\ that is,

&apos;h\BoX yxSl) =(f&apos;)~lF&apos;o\A&gt;onU&gt;o,

or equivalently, by the définitions of F&quot; and F\

&amp;ô (F&quot;\BqX VxSi) F&apos;\A&gt;onU&apos;Q.

Analogously the fact (5.12) that $*xW)~lFh =F\ implies that
^ôlW)~lF&apos;h (//)&quot;1ir/1 and consequently

Since C&quot; is foliated by leaves of Fv\c multiplied by S\ and ^(M x V x Sx)

is a plaque of such a leaf if t 6 Co, we get

proving the Lemma.
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The l-form œ that defines F&quot;. On J x V x S1 we hâve the coordinates t eJ,
y (y\ ,yn~2) e V, and z eSl IR/Z. As a prélude to calculating the
coefficients of the l-form

œ dt + &quot;S P,(f, jO &lt;/&gt;&gt;&apos; + ÔC, J) dz, (5.17)

which defines the foliation F&quot; on / x V x S\ we shall calculate the coefficients of
the smooth l-form

&quot;X
)&amp;, (5.18)

which defines the foliation F&apos;h on (/ — Co) x F x 51. The function

f=fo\j/-1 :(/_c0) x F-&gt;R, is given by

/(r,&gt;;)=r(r,&gt;&apos;)^(0) (5.19)

in view of (5.7) and (5.1). From the définition (5.13)-(5.14) of F&apos;h it follows that on

(/ — Co) x V x S1 the leaves of F&apos;h are given by

z r(t, y)b((p(t)) -h constant.

Therefore their tangent plane field is the kernel of the l-form

where the variables t and y are suppressed and d} ô/dyJ. Consequently

and

In order to control the convergence of thèse coefficients to 0 as t approaches Co, we

introduce the following définition, where / (/0, tx) a M is any open interval,
Co c / is a closed subset, and V c Rm is any open set. Call each component (^0, s{)
of / - Co a gap and the set Sfao, sx) (s0, j,) x V a gap set. For e &gt; 0 let SB be the

union of the gap sets S(s0, s^ for which sx - s0 &lt; e.
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DEFINITION 5.21. A continuous function g : (/ - Co) x K-* R is O-controlled
if

(i) For each gap set S(s09 sx)9 yx e F, and i 0, 1, either st tt or

\img(t9y)=Q as (t9y)-*(si9yl)9 (t9y) eS^s^.

(ii) sup{|#(f,y)\:(t,y)eS9}-+0ase-+ 0.

ACr(Ur&lt;oo) function g : (7 - Co) x K-&gt; R is r-controlled if g and its partial
derivatives of order at most r are O-controlled.

We shall need the three following lemmas whose proofs will be given at the end

of this section.

LEMMA 5.22. Let g : (/ - Co) x F-&gt; R be r-controlled and define g(t9 y) 0

for (r,y)eCox V. Then g :J x V-+U is a Cr function.

LEMMA 5.23. Let g09gl :(J ~ Co) x V-&gt;U be r-controlled fonctions. Then

(0 So + £i • (J ~ Co) x V -? R is r-controlled,

(ii) Ifa : (/ — Co) x V-*Risa Crfunction with uniformly bounded Cr norm9 then

the product a g0 : (J - Co) x V -+ R is r-controlled,

(iii) IfJ — CQ BouBl where Bo and Bx are disjoint open sets and g : (/ — Co) x
V-+ M satisfies g\BixV=gl\Blxvfor i 0, 1, then g is r-controlled.

Returning to our spécifie situation, / x V \I/(UO)9 we hâve the following resuit.

LEMMA 5.24. The derivatives d/ and djdkr (1 £j9 h £ n -2) are uniformly
bounded on (J — Co) x V.

Next we show that q(t9y) andp}(t9y) are 1-controlled.

By (3.1.ii), |l/ç&gt;&apos;(/)| ^ AT and |(l/ç&gt;0XO| ^ ^ for some constant K&gt;0. Conse-

quently (5.5) and (3.1.i) imply that the functions

and M*-*)0 &lt;525)
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and their first derivatives with respect to t,

-,)&apos;(t)( — o(p)(t) and

are uniformly bounded on (J — Co) x V and satisfy the condition (5.21.i). Now Uo

was chosen so that d(x, C) ^ 1 for x e U09 so by (5.2), r{x) ^ 1 on (70, which
contains \j/(J x V). Furthermore the gap length \TX\ tends to zéro as s -&gt;0, that is,

sup{|7;| : x eij/-l(Se)} -+0 as a-*0,

because the metric is bounded on Ûo which is compact. Now by (5.3) r(x)
—log|!Tx| when \TX\ is sufficiently small, so the function r(y)~l and (by (5.24)) its
derivatives —r~2ôjr are bounded and tend to zéro uniformly for (t, y) e Se as e -+0.
This implies that the products of the functions (5.25) by r(t,y)~l are 1-controlled.
The first product is precisely —q(t,y)9 and multiplying the second product by d/,
which has bounded C1 norm by (5.24), yields/?y(f, y) which is therefore 1-controlled
by (5.23.H). (Note that the présence of the factor r(x) in the définition (5.1) of/(x)
is essential hère. If the factor r(x) were removed, then the C^-norms of the
coefficients p} and q would hâve approximately the same range of values on each

gap, so that their first derivatives could not be continuous.)
From (5.18) and (5.11) it follows that the 1-form which defines {^f)~lFfh is

i//&apos;*a&gt;o (1 + (q o Wkt) dt+% (Pj oil,&apos; + (qo ^) d;X) dy&gt; + (g o f) dz (5.26)

on J x V x S\ where Xt dX/dt. Now q(t, y) is 1-controlled and hence by (5.22)
extends to a C1 function, also denoted q, on J x V. Thus g(t, y) 1 -f (q ° ty &apos;)Xt is

a C ^function and (possibly replacing / x F by a smaller product neighborhood of
i//(x0)) we may assume that g g(t, y) &gt; 0 and l/g has bounded C1 norm on / x V.

Since ty&apos; only changes the coordinate z and p} and q do not dépend on z, we hâve

q q o ifr&apos; and pj—Pj °&amp;&apos;- Normalizing the coefficient of dt in (5.26) now yields

(5.27)
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where p3 ={\jg){pJ + qdjk) and q (l/g)q, which are 1-controlled by (5.23). Fi-
nally from the définition (5.15) of F&quot; it follows that the coefficients in (5.17) satisfy

Pj\Box V Pj\Box V-&gt; Pj\Bx x V Pj\Bl x V-&gt; ?j \c0 x V 0

and similarly for Q. Then (5.23.iii) and (5.22) imply that P, and Q are 1-controlled
on (/ - Co) x V and hence C1 on / x V. Thus co is a C1 1-form defining F&quot; which
is diffeomorphic to F&apos; in a neighborhood of x&apos;o. D

Proof of Lemma 5.22. The proof for r 0 is a straightforward exercise. For
r 1, observe that dy£ dg/dyJ 0 on Co x K, where g vanishes identically. For
the vérification that dg/dt 0 on Co x V, we fix a point in V so that g becomes a
function of t alone. Given c e Co and / in the gap (sOi s^, say c £sOi the Mean
Value Theorem on [s091] yields

\g(t) -g(c)\ \g(t) - g(so)\ £ |*&apos;(A)| • \t - s,\

for some X e (50,51!), while |g(/) — g(c)| 0 if t e Co. Since g&apos;(t) is 0-controlled on

(/ — Co) x K, this implies that g&apos;{c) 0, so dg/dt 0 on Co x K. Applying the case

r 0 to the derivatives ô;g and ôg/ôi shows that they are continuous, so g is C1.

The case r &gt; 1 follows by an easy induction from the cases r 0 and r 1.

/ Lemma 5.23. Given r-controlled functions go*£i: (J — Co) x F-»R,
by (5.22) they extend to Cr functions on / x F, and from the proof of (5.22) it is

clear that their derivatives of order less than or equal to r vanish identically on
Co x V. The assertions (i), (ii) and (iii) now follow easily.

Proof of Lemma 5.24. Dénote by g the metric induced on J x V by the

restriction of the Riemannian metric g to Uo under the diffeomorphîsm \//. Since g
extends to the compact set J x V, there exists a constant K &gt; 0 such that the

coefficient goo(t,y) =g(d/dt, d/dt)(t,y) satisfies

^-2 500 &lt;.K and
dyJdf

on / x V. From (5.3) we obtain

i -s0) (5.28)
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on each gap set ,S(s0,.y^ that is narrow enough to hâve \Tx\^e~2 for every
x€\l/~lS(s0,sl). Differentiating the équation (5.28) with respect to yJ yields

¦ Ç*i 1

Js0 L

which together with (5.28) shows that \d/\ &lt;. K3/2. Differentiating (5.28) twice
yields \ôjdkr\ £ K\K3 + l)/2 by a similar argument.

There remain at most finitely many gap sets S(s09sx) containing points with
\Tx\&gt;e~2. For each such gap set the first and second derivatives of r are uniformly
bounded on a slice {t} x F, refe^). Since r and its derivatives are locally
constant in /, this bound holds on ail of S(s0, sx).
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