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Embedding punctured lens spaces in four-manifolds

Allan L. Edmonds and Charles Livingston

1. Introduction

The gênerai problem of classifying embeddings of a given compact 3-manifold
into a given 4-manifold has a rich history, intrinsically tied to broader developments
in low-dimensional topology. It is our goal hère to investigate the embedding
problem in light of the significant advances in 4-manifold theory of récent years.
The focus will be on one spécial case of the problem, the détermination of the least

integer n for which the lens space L(p, q), p > 1, or the punctured lens space

L(/?, q)0, embeds in #nCP2. Except for some elementary preliminary results we will
restrict attention to the lens spaces L(p, 1) that arise as total spaces of circle bundles

over the 2-sphere. We will consider both the topological locally fiât and smooth

catégories, for which the results differ significantly. Although this is certainly a

spécial case, it is nonetheless sufficient to illustrate the basic methods, to demon-
strate the impact of the récent developments in the field, and finally to indicate the
limitations of thèse methods and to point to problems calling for further research,

It is a well known fact, due originally to Hantzsche [1938] and based upon
duality, that no lens spaces (other than S3 and S1 x S2) can embed in 4-space.
Zeeman [1965] proved as a by-product of his work on twist-spun knots that a

punctured lens space L(p, q)0 embeds in S4 provided p is odd. (For an alternative

approach see Hosokawa and Suzuki [1981].) Meanwhile, Epstein [1965] observed

that a homotopy-theoretic resuit of D, Puppe [1958] implies that the condition that

p be odd is in fact necessary. He concluded that, "The situation with regard to
embeddings of lens spaces and punctured lens spaces is therefore completely
solved." He was, of course, implicitly referring to embeddings in euclidean space. In
fact, as we shall see, there are many other interesting questions mvolving just which
lens space or punctured lens space might embed in which 4-manifolds.

We note below that any lens space lip.q) embeds smoothly in #nCP2, for
some positive integer n, a fact not true for ail 3-manifolds. In the topological
category we give a complète analysis of the minimum n such that £(/?, 1) so embeds,

and a nearly complète analysis for the punctured lens spaces L(p, l)0. We contrast
this with some non-embedding results for L(p, l)0 in the smooth case, in the light

169



170 ALLAN L. EDMONDS AND CHARLES LIVINGSTON

of récent work on gauge theory. Both the cases of L(p, q), q ^ ± 1, and the smooth
situation merit further study. In addition we handle the cases of S2 x S2 and
—CP2 # CP2. While the detailed results are too complicated to summarize in the

introduction, they are laid out in a séries of tables in the final section of the paper.

2. Some elementary embeddings

We begin with some link-calculus style embeddings of certain lens spaces and

punctured lens spaces in connected sums of copies of S2 x S2, the twisted S2-bundle

over S2, and CP2.

2.1 PROPOSITION. Any lens space embeds smoothly in #nS2x S2 for some

positive integer n.

Proof Every lens space bounds a standard plumbing manifold with ail even

framings, as in Hirzebruch et al. [1971]. The double of such a plumbing manifold
is necessarily of the form #nS2 x S2.

2.2 REMARK. By taking a further connected sum with a copy of the twisted
S2-bundle over S2, we get an embedding in #mS2 x S2.

In fact, of course, every closed, orientable 3-manifold embeds smoothly in some
#nS2 x S2, by essentially the same proof. If one punctures the lens space it turns
out that n 1 always suffices.

2.3 PROPOSITION. For ail integers p>0 and q, (q,p) 1, the punctured lens

space L(p9 q)0 embeds smoothly in S2 x S2.

Proof. Without loss of generality we may assume that pq is even. Start with a
standard handlebody description of L(p9 q)0 x /, coming from a handlebody
description of L(p, q) and consisting of a 0-handle, a 1-handle, and a 2-handle
attached along a "(p, #)-curve" with framing pq. Add two 0-framed 2-handles as

small linking circles to the 1-handle and to the 2-handle. Then the whole framed
link falls apart into a cancelling 1-handle and 2-handle pair, and a Hopf link with
one component with framing 0 and the other with framing pq. Since pq is even, this
is a framed link picture of S2 x S29 as required.

2.4 REMARK. If p is odd, and one repeats the construction above using an
odd q9 then the resulting 4-manifold is S2 x S2. But, as we shall see, punctured lens

spaces with even order fundamental group do not always embed hère.
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2.5 PROPOSITION. Every lens space L(p,q) embeds smoothly in #nCP2 for
some positive integer n.

Proof. We give a link calculus approach to this. We may assume that p and q
hâve opposite parity. Expand p\q in a continued fraction décomposition

1

a2--

with ail entries >2. Take a collection of n»k unknotted unlinked circles with
framing +1, describing some #nCP2. Start with k of the circles. Sliding one over
the next créâtes a simple chain with framings 1, 2,..., 2. By sliding links of this
chain over other framed components, it is easy to create a linked chain of
unknotted curves with framings corresponding to the terms of the continued
fraction (many of the curves that are slid over are tangled in with the chain). The
chain then describes the lens space sitting in #nCP2.

This gives another interesting, nontrivial, genus-like invariant of lens spaces. It
follows easily that L(p, 1) embeds smoothly in #pCP2, with simply connected

complementary domains with second betti numbers 1 and p — l. We shall see that
L(p, 1) always embeds topologically in #nCP2, with n <5. It is an interesting
question whether n can be chosen independent ofp and q in gênerai. This is almost

surely false in the smooth category.

2.6 THEOREM. IfS2czX4 and S2 • S2 ±p, then L(p, 1) c X\
Proof. The lens space arises as the boundary of a tubular neighborhood of the

2-sphere. In the smooth category this is standard elementary material involving the

existence of normal bundles and the classification of oriented 2-plane bundles by
their euler classes. In the topological category we must appeal to the much deeper
existence of topological normal bundles in the case of codimension two embeddings
in topological 4-manifolds, due to Freedman. See Freedman and Quinn [1990],
Section 9.3.

2.7 REMARK. The only homologically nontrivial embedded 2-spheres in GP2

represent the generator and twice the generator and yield smooth embeddings of
L(l, 1) s S3 and L(4, 1). In GP2 # CP2 we also obtain a smooth 2-sphere repre-
senting 3 times the first generator, by the "Boardman construction" (see Boardman
[1964]), and hence a smooth L(9,1). In this case one takes three 2-spheres, each

representing the first generator, and two 2-spheres respectively representing the
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second generator and its négative. Among thèse five embedded 2-spheres there are
three points of positive intersection and one point of négative intersection. Appro-
priate tubing éliminâtes the intersection points and créâtes an embedded sphère

representing the class (3,0). As Boardman notes, the same technique allows one to
represent the class (3,2, 1) in #3GP2 by an embedded sphère: Start with three

sphères representing the first generator, two sphères representing the second generator,

two sphères representing the third generator, and one sphère representing the

négative of the third generator. Appropriate tubing créâtes the desired 2-sphere. We
note one more example of this technique. The class (3,3,1,0) in #4CP2 is

represented by a smoothly embedded 2-sphere: Take three sphères representing the

first generator, three sphères representing the second generator, two sphères
representing the third generator, and one sphère representing the négative of the third
generator, and one sphère representing the fourth generator and one sphère

representing the négative of the fourth generator. Once again, appropriate tubing
créâtes the desired smoothly embedded 2-sphere. AU other known smoothly embedded

2-spheres in #«CP2, n small, are "formai" conséquences of thèse.

2.8 REMARK. Not every 3-manifold embeds smoothly in some #rtCP2, how-
ever. For example the Poincaré homology 3-sphere I does not.

Proof If it did, then both +Z and — Z would bound positive definte 4-mani-
folds. But E also bounds a smooth Is8-manifold. Putting thèse together yields a

smooth positive definite 4-manifold with a nonstandard form, contradicting early
work of Donaldson.

3. The basic construction

The essential idea hère is to show that an embedded lens space or punctured lens

space gives rise to a family of embedded surfaces, which, in favorable cases, can be

chosen to be 2-spheres, but perhaps in a différent 4-manifold. We begin with several

standard lemmas, whose proofs will be omitted.

3.1 LEMMA. In any simply connectée spin 4-manifold X4 there are exactly four
isotopy classes of embeddings S1 x D3->X49 distinguished by orientation and spin

parity. If X4 has odd type then there are exactly two isotopy class of embeddings,

distinguished by orientation.

3.2 LEMMA. In any simply connected spin 4-manifold X4 there are exactly two

isotopy classes of embeddings S1 x D2~+ X4, distinguished by spin parity. If X4 has

odd type then there is exactly one isotopy class of embeddings.
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3.3 LEMMA. A (p9 q) curve on the boundary of S1 x D2 under a change of
framing homeomorphism (z9 w) h-* (z9 znw) becomes a (p,q + np) curve. Under the

change of orientation homeomorphism (z, w) h-» (z, w) the (p, q) curve becomes a
(p9 —q) curve.

The first two lemmas above show that ail of the self-homeomorphisms of
S1 x D2 described in the preceding lemma can be realized by isotopies of the
ambient 4-manifold, assuming it has odd type.

3.4 LEMMA. A (p,q) curve K c S1 x S1 c S1 x D2 c S1 x S2 c B2 x S2

bounds an orientable surface in B2 x S2 of genus less than or equal to

\(\p\ ~~ 1)(|?| ~ !)• This surface can be chosen to be disjoint from B2 x {point}.

3.5 THEOREM. Ifp is even and L(p9 q)0 c X49 where X4 is a simply connected

4-manifold of odd type, then there are embedded surfaces I± in S2 x S2 # X4,

of genus less than or equal to \{\p\ — 1)(|#| — 1), representing homology classes of
the form (p,k±;<x) in H2(S2 x S2#X4) =Z®Z®H2(X4) with self-intersection

Z± - Z± =2k±p -f-a2= +pq where k+ and k_ hâve opposite parities.

Proof Write L(p, q)0 S1 x Z)2u2-handle, where the 2-handle, D2 x I, is at-
tached along a (/>, q)-curve on S1 x ôD2. Isotope S1 x D2 into standard position on
the boundary of a standard 4-ball inside a slightly larger 4-ball. In particular we
hâve in X4 a copy of D2 x D2 containing our S1 x D2 in a standard way. In the
usual longitude-meridian coordinates induced from the 3-sphere, the attaching
curve becomes a (p, qx)-curve for some qx of the form qt ±q +np for some

integer n. Using the preceding lemmas we can arrange that qx q.

Remove the interior of a small regular neighborhood of S1 x D2 of the form
S1 xD3, replacing it with a copy of B2 x S2. We do this in such a way that the
ambient manifold becomes S2 x S2 # X4. The attaching (p, q) curve for the 2-handle

bounds a surface F_ in B2 x S2 missing B2 x {point}. This surface, together
with the core C of the 2-handle of L(p9 q)09 defines the surface E_. Moreover, the
self-intersection £_ -1_ —pq9 as one sees if one traces through standard sign
conventions carefully.

One can understand k_ in the statement of the theorem as the intersection
number I_ • (B2 x {point u/)2 x {point}) C • (D2 x {point}) since the first factor
of the S2 x S2 summand is made up of the added B2 x {point} and the
D2 x {point}. Hère the D2 x {point} cornes from the product D2 x D2 structure
inside X4.

To construct surface I+9 change the attaching map for the B2 x S2 by an

isotopy of the identity that moves the (p9 —q) curve to a (/?, q). curve. We cap off
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the eore C of the 2-handle of L(p, q)0 with a différent surface F+ in B2 x S2 missing
B2 x {point} with boundary the (p, —q) curve. Note that the resulting surface

represents a homology class of the form (/?, k+; a), since the only change from I_
is supported inside the added B2 x S2. Thus I+ I+ 2k+p -h a2 +pq. The

équations 2k+p + a2 +/?# and 2&_/? H- a2 —/?# then imply that 2(k+ —k_)p
2(pq), so that k+—k_= q, which is odd. Thus, k+ and A:_ hâve opposite parities,
as required.

3.6 COROLLARY. Ifp is even and L(p9 l)ocl4, where X4 is a simply con-
nected 4-manifold of odd type, then there is an embedded 2-sphere I in S2 x S2 # X4,

representing a homology class of the form (/?, k; a) in H2(S2 x S2 # X4) Z © Z ©
H2(X4) with self-intersection I -1 2kp + a2 ±p, where k is even.

3.7 REMARK. In our main applications the 4-manifold X4 will be of the form
#nGP2, with n < 5. In this case we can adjust the homology class of the surface I
by diffeomorphisms of S2 x S2 #n CP2 to normalize the homology class a as much
as possible, while fixing the self-intersection number and the first coordinate. In
this case a homology class can be represented in the form (p9k;ru rj.
According to C. T. C. Wall [1964] every automorphism of H2(S2 x S2 #n CP2)

(respecting the intersection form) is realizable by a diffeomorphism, since n < 8. Let
(a, b; eu en) be a standard basis for the homology. Consider changes of basis

of the form a' a ± et ± e} T b, b' b, e\ =el+b,e'J=eJ+ b, and e'k ek for k # /

or j. (It is allowed that i =j.) The effect of such an automorphism on

(p,k;ru ,rn) is to leave the first coordinate alone, adding or subtracting p,
respectively 2/?, from two, respectively one, of the last n coordinates. In addition we
hâve the automorphisms that change one basis élément et to its négative. (On a

single CP2 this is induced by complex conjugation.) In this way we can arrange that
ail rt > 0, r, <p,rt<pj2 for i > 2. By further permutation of basis éléments we can
further assume that r2 > r3 > • • • > rn.

Note also that if the original punctured lens space L(p, l)0 was smoothly
embedded in a smooth 4-manifold X4, then the resulting 2-sphere I a S2 x S2 # X4

may be chosen to be a smoothly embedded 2-sphere.

4. Two topological applications of the Basic Construction

As a quick application of thèse ideas we obtain an elementary proof of the resuit
of Epstein on punctured lens spaces in S4.

4.1 COROLLARY (Epstein). If L(p, q)0 a S4 then p is odd.
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Proof. If p is even, then by the preceding observations we hâve the relation
2kp + 0 ±pq. But this would imply that q is even, contradicting the fact that p
and q must be relatively prime.

4.2 COROLLARY. If L(p, q)0aCP2 then the exportent ofl in p is even.

Proof. The Basic Construction yields a surface in S2 x S2# CP2 representing a

homology class of the form (/?, k; r), where 2pk +r2= ±pq. Then r2=p(±q — 2k).
If p is even, so that there is actually something to prove, then q must be odd, and
the resuit follows immediately from the latter équation.

5. Classical results of Rochlin, Hsiang-Szczarba, and Kervaire-Milnor

The first results use work of Rochlin and Kervaire-Milnor and of Rochlin and

Hsiang-Szczarba: Suppose E c X4 is a 2-sphere. Recall that E, or its underlying
homology class, is said to be characteristic if E • F F • F mod 2 for any surface or
homology class F in X4.

5.1 ROCHLIN CONGRUENCE (as formulated by Rochlin [1952], generalized

by Kervaire and Milnor [1961] and suitably extended to the topological case). If X4

is a spin manifold, then sign(X4) 0 mod 16. If [E] is a characteristic homology
class in a (stably smoothable), not necessarily spin, 4-manifold X4, then E • E
sign(X4) mod 16. More generally,

1-1= sign(X4) + 8KS(Z4) mod 16

for X4 an arbitrary closed, oriented topological 4-manifold, where KS(X4) e Z2

dénotes the Kirby-Siebenmann triangulation obstruction and 8: Z2->Z16 is the

standard inclusion.

5.2 ROCHLIN INEQUALITY (as formulated by Rochlin [1971] (compare
also similar results of Hsiang and Szczarba [1970]) and extended to the topological
category). If [E] is divisible by 2, then

\E-EI2-sign{X4)\<b2{X4)

If [E] is divisible by k =pr, where p is an odd prime, then

EI2-sign(X4) <b2{X\
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6. Two topological applications of the Rochlin Conditions to unpunctured lens

spaces in certain 4-manifolds

Hère we give a couple of quick applications.

6.1 THEOREM. If L(p9 1) embeds topologically in a closed, simply connected

4-manifold X4 in such a way that one complementary domain is rationally acyclic,
then p =4.

Proof Suppose X4 Ukjl F with U rationally acyclic. Replace F with the euler
class p 2-disk bundle Ep over the 2-sphere, forming a new 4-manifold
F4 U uLEp. Then Y4 is a homotopy ±CP2 containing the 0-section of Ep9 a

topologically embedded 2-sphere of self-intersection p. It follows that p =d2 where
d is the divisibility of the homology class represented by the 2-sphere. The Rochlin
Inequalities then imply that further p < 4.

6.2 PROPOSITION. IfL(p9 1) can be embedded in a positive definite 4-manifold
X4 with b2 n9 then p can be written as a sum of at most n squares.

Proof Since by number theory every positive integer p can be written as a sum
of at most 4 squares (see Grosswald [1985], for example) we may as well assume

n < 3. We may also assume that p # 4. The algebraic classification of definite forms
of low rank implies that the intersection form of X4 is a standard diagonal form.
Let X4 U uL F. Both U and F are positive definite in their induced orientations,
with nonzero second betti number, by Theorem 6.1. One of C/and F, say F, has the

same oriented boundary as the disk bundle Ep. Replace F by Ep9 forming a new
simply connected 4-manifold Y4 U uLEp. Now Y4 is also positive definite by our
choice of which complementary domain to replace with Ep> and has b2(Y4) <n.
Since n is assumed to be small Y4 also has a standard diagonal form. The homology
class represented by the core 2-sphere Z in Ep is a linear combination of the
éléments of an orthonormal basis. It follows that p I • I is a sum of at most n

squares.

6.3 COMPLEMENT. If L(p9 1) can be embedded in a positive definite 4-manifold

X4 with b2 n < 4 and p cannot be written as a primitive sum of n squares (i.e.
with gcd 1), then {p, n) (4, m), 1 < m ^ 3; (8, m), 2 < m < 4; (9, 2); (12, 3); or
(16,4).

Proof As in the proof of Proposition 6.2 we can assume that L{p91) is the

boundary of a tubular neighborhood of an embedded 2-sphere S with I • I =p.
Moreover, expressing E as a linear combination of an orthonormal basis displays p
as a sum of <*n squares. By the Rochlin Inequality, if this expression is divisible,
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then/? < 9n/2 < 18. A case by case analysis of when/? and n are small complètes the

argument.

In the rest of this paper we will follow the notational convention established by
Freedman and Quinn [1990], Section 10.4: if X4 is a simply connected topological
4-manifold with odd intersection p'airing, then *X4 dénotes the unique topological
4-manifold homotopy équivalent to X4 but not homeomorphic to X4,

6.4 COROLLARY. Ifp is odd, p*9, andL(p, 1) c #2CP2 or * #2C/>2, then

P is not divisible by any prime congruent to 3 mod 4.

Proof. According to the above, /?=r2 + s2isa primitive sum of two squares.
Then r2 + s2 0 mod q for any prime q dividing p. This means — 1 is a square
mod q, hence the claim.

6.5 COROLLARY. If L(p, 1) c #3 CP2 or * #3 CP2, tfien p =* 7 morf 8.

Proof We can express p as a sum of three squares. The squares mod 8 are 0, 1,

and 4. No three of thèse add up to 7 mod 8.

In Section 9 we shall make use of number-theoretic analyses of sums of squares
to reverse the implications in the above propositions.

7. Topological applications of the Rochlin Conditions to punctured lens spaces
in definite 4-manifolds

Hère we combine the Rochlin Conditions with the Basic Construction.
Throughout this section we assume that p is even, since Zeeman has shown that ail
punctured lens spaces with odd order fundamental group embed in S4.

7.1 PROPOSITION. Ifp is even and L(p, l)0 embeds topologically in CP2 or in
*CP2 thenp=4.

Proof Let X4 CP2 or *CP2. The basic construction yields a 2-sphere Z in
S2 x S2 # X4 representing a homology class of the form (/>, k; r), where

2pk -f r2 ±p9 and we may assume that k is even. The latter équation implies that

r also must be even. Hence I represents a nontrivial, 2-divisible homology class. By
the Rochlin Inequality p < 8. By Corollary 4.2 we know that p # 2 or 6. It remains

to rule outp 8. But ifp 8, then the fundamental équation reads 16k + r2 ±8.
Réduction mod8 shows that r=0mod4. But then r2 0modl6, which is a

contradiction.
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7.2 REMARK. L(491) does embed in CP2 as the boundary of a tubular
neighborhood of a smooth quadric curve. By the embedding theorem of Lee-

Wilczynski and Hambleton-Kreck (see Section 8 and Theorem 8.1 below), there is

also an embedded 2-sphere I in *CP2 such that I • £ 4. So again L(4, 1) embeds

in *CP2 as the boundary of a tubular neighborhood of I.

7.3 PROPOSITION. Ifp is even, and L(p, l)0 embeds topologically in CP2 #
CP2 then p=4 or 8, or p ±2mod 16.

Proof. As before, we obtain a 2-sphere I in S2 x S2 # CP2 # CP2, representing
a homology class of the form (/?, k;r, s), where we can assume k is even, and

£ • I 2kp +r2 + s2= ±p. Since p is even, either both r and 5 are odd, or both r
and s are even. In the former case, I is a characteristic 2-sphere and the condition

p ±2 mod 16 follows from the Rochlin Congruence. In the latter case, E repre-
sents a 2-divisible homology class, and it follows from the Rochlin Inequality that

p < 12. Since I is divisible by 2, we see that I • I +/? is divisible by 4, thus ruling
out p 6 or 10. It remains to rule out the possibility that p 12. In this case our
basic équation says that 24A: + r2 + s2 ± 12, with k, r, and s ail even. The even

squares mod 48 are 0, 4, 16, and 36. Reasoning mod 48, it follows that I -1
— 12. But this contradicts the Rochlin Inequality.

7.4 REMARK. If/? =2, 4, or 8, then L(p, 1) (unpunctured) embeds smoothly
in CP2#CP2 as the boundary of a tubular neighborhood of a smooth curve
representing the homology class (1,1), (2, 0), or (2, 2), respectively.

7.5 PROPOSITION. Ifp is even, and L(p, l)0 embeds topologically in *CP2 #
CP2 then p=4, or 8, or p ±6 mod 16.

Proof The proof is the same as above, only taking into account the term
8KS s 8 mod 16 appearing in the Rochlin Congruence.

7.6 PROPOSITION. Ifp is even, and L(p, l)0 embeds topologically in #3CP2
or in * # 3CP2, then p 2 mod 4 or p < 16.

Proo/. We suppose that p s 0 mod 4. Let Z4 # 3CP2 or * # 3 CP2. The basic
construction yields an embedded 2-sphere E <= S2 x S2 # X4 representing a homology

class of the form (p, k;r,s, t)9 with 2kp + r2 + s2 -h t2 ±p, where we may
assume that k is even. Since/? 0 mod 4 we see that r, s, and t are ail even, and the

homology class represented by I is 2-divisible. The Rochlin Inequality then implies
that p £ 4 x 4 16.

7.7 REMARK. Reasoning as before we see that £(/?, 1) embeds smoothly in
#3CP2 for/? =2, 4, 6, 8, 10, or 14 as the boundary of a tubular neighborhood
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of a smooth 2-sphere representing a class of the form (1, 1,0), (2,0, 0), (1, 1, 2),

(2, 2, 0), (1, 3, 0), or (1, 2, 3), respectively. Compare the summary of the Boardman
construction in Remark 2.7.

7.8 PROPOSITION. Ifp is even, and L(p, l)0 embeds topologically in #4CP2
then p # 0 mod 8, or p < 20.

Proof. Suppose that p 0 mod 8. The basic construction yields an embedded

2-sphere I a S2 x S2 #4GP2 representing a homology class of the form
(p, k; r, s, t, u), with k even and 2kp + r2 + s2 + t2 -f w2 +/?. Since /? 0 mod 8

we see that r, s, t and u are ail even, and the homology class represented by I is

2-divisible. The Rochlin Inequality then implies that p < 4 x 5 20.

7.9 COROLLARY. L(8k, l)0 does not embed topologically in #4CP2for k>3.

Our primary remaining need is to décide whether L(p, l)0 embeds in #4CP2
when p —4 mod 16. We will see below that it cannot embed smoothly.

8. Topological embeddings of sphères

R. Lee and D. Wilcyznski [1990] hâve investigated the problem of representing
a homology class by a topological locally flat embedded 2-sphere. The end resuit is

that the Rochlin-Kervaire-Milnor Congruence and the Rochlin Inequality provide

necessary and sufficient conditions for the existence of a simple 2-sphere - that is,

a 2-sphere whose complément has abelian fundamental group.

8.1 THEOREM. Let X4 be a closed, simply connected topological 4-manifold
and £ e H2(X4). Then Ç is represented by a simple, topological, locally flat, embedded

2-sphere in X4 if and only if
• £ -Ç s sign(Z4) + SKS(X4) mod 16 if £ is characteristic and

• \I - r/2-sign(Ar4)| < b2(X4) if [I] is divisible by 2 and

\((d2 - l)/d2)I ¦ Z/2 - sign(Z4)| < b2(X4) if the divisibility d of Ç is odd.

We note that Lee and Wilczynski originally proved this in the case d is odd;
subsequently they [1993] and, independently, I. Hambleton and M. Kreck [1993]

completed the earlier program to give the full resuit in the case d is even. We hâve

slightly modified the statement into a form différent from but équivalent to that
given by thèse authors. We primarily need the case of divisibility one hère. But
we do need to refer occasionally to the gênerai case including especially even

divisibility.
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As an application of this resuit we hâve the following statement about certain

embeddings, which will be used to indicate the limitations of the Basic Construction
in Section 3 as a necessary condition for embedding punctured lens spaces.

8.2 COROLLARY. The following homology classes are represented by topologi-
cally embedded 2-spheres in S2 x S2 #„ CP2:

• p ±2mod 16: The classes (p, \( ~p ± 2); \p9 \p) in S2 x S2 #2 CP2

# p 12 mod 16: The classes (p, |( -p ± 4); \py \p, \p) in S2 x S2 #4 CP2

m p 16: The classes (16,0; 4,0,0) and (16, -1; 4, 0, 0) in S2 x S2 #3 CP2.

9. Topological embeddings of unpunctured lens spaces in positive definite 4-manifolds

In this section we realize topologically embedded lens spaces L(p, 1) by using
number-theoretic information about writing/? as a sum of squares and applying the

embedding theorem above to produce an embedded 2-sphere with euler class p.
There will be many cases to consider.

9.0 FACTS ABOUT SUMS OF SQUARES. Hère we summarize some basic
facts. Références are Grosswald [1985] and Dickson [1971].

• Any positive integer is a sum of 4 squares. For odd integers such a

décomposition can always be chosen to be primitive. But not ail even integers
can be expressed as a primitive sum of 4 squares e.g., 32.

• Any positive integer is a primitive sum of 5 squares. Proof: Express p — 1 as

a sum of 4 squares and then add 1.

• A positive integer p is a sum of 3 squares if and only ifp is not of the form
4a(86 -f 7). Such a décomposition can be chosen to be primitive if p ^ 0

mod 4.

# A positive integer p is a sum of 2 squares if and only if ail prime divisors q
of n such that q 3 (mod 4) occur to an even power in p. Such a décomposition

can be chosen to be primitive if and only if p is not divisible by any
prime congruent to 3 mod 4 and is not divisible by 4.

9.1 PROPOSITION. Ifp is even, then L(p, 1) embeds topologically in #5CP2
and * # 5CP2.

Proof. Writing p — 1 as a sum of 4 squares, we see that p can always be written
as a sum of five relatively prime squares. Thèse five numbers, before squaring,
détermine a homology class in H2( #5CP2). This class is primitive by the relatively
prime condition. It is ordinary, because not ail five integers can be odd when p is

even. Therefore the Embedding Theorem 8.1 of Lee and Wilczynski and Hambleton
and Kreck shows that this class is represented by a topologically embedded 2-sphere
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with self-intersection /?. The boundary of the tubular neighborhood of this 2-sphere
is L(p, 1). The same proof applies to * #5CP2.

9.2 PROPOSITION. If p is odd, then L(p9 1) embeds topologically in #4CP2
and * #4CP2.

Proof. Represent p as a primitive sum of 4 squares. Since p is odd the
summands cannot ail be odd. Therefore this décomposition corresponds to a

primitive ordinary homology class in #4CP2. By Theorem 8.1 it is represented by
a topologically embedded 2-sphere in #4GP2. The boundary of the tubular
neighborhood of this 2-sphere is L(p, 1). The same proof applies to * #4CP2.

9.3 PROPOSITION. If p^Amod 16, then L(p9\) embeds topologically in

#4CP2.

Proof One can write the odd integer p — 1 as a sum of three squares, since it
is not of the form 4e(Sb 4- 7). Thus p can be expressed as a sum of four squares, one
of which is 1. Reducing mod 8 shows that ail four of the squares are odd. Thus we
hâve p r2 -f • • • -f r4 where ru r4 are odd, with gcd 1. Consider the corre-
sponding homology class £ (rl5..., r4) in H2{ #4CP2). The class Ç is primitive
and characteristic with £•£=/? sign( #4CP2) mod 16. Theorem 8.1 shows that Ç

is represented by an embedded 2-sphere. The boundary of the tubular neighborhood

of this 2-sphere is L(p, 1).

9.4 PROPOSITION. If p s -4 mod 16, then L(p, 1) embeds topologically in

* #4CP2.

Proof The proof is the same as that of Proposition 9.3 except that the

application of Theorem 8.1 in this case would provide the embedded 2-sphere in
* #4CP2.

9.5 PROPOSITION. Ifp -4 mod 16, then L(p, 1) does not embed (unpunc-
tured) topologically in #4CP2.

Proof Suppose that L=L(/?, 1) does embed in JT4=#4CP2. Then Z
UuLV. It follows from Theorem 6.1 that b2U¥>0^b2V. Suppose that
b2U 2 £2K Then UkjEp or VuEp h a positive definite simply connected
4-manifold with b2 3 and containing a copy of L(p, 1), This contradicts Proposition

7.6. Therefore we may assume without loss of generality that b2 U « 1 and

62F 3.

We claim that the boundary of U as an oriented 4-manifold is the same as dEp.

If not consider UuEp, which would be a positive definite 4-manifold with b2 — 2
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containing L(p, 1). Note futher that UuEp is simply connectée, since Ep is simply
connectée! and the Seifert-Van Kampen theorem applied to X Uv V shows that
7rj Î7 is normally generated by nx{dU). This contradicts Propositions 7.3 and 7.5.

We claim that V has vanishing relative Kirby-Siebenmann stable triangulation
obstruction KS(F) e H4(V,dV;Z2) «Z2. By additivity of top classes, KS((7) +
KS(F) =KS(X) =0. Therefore it .suffices to see that KS(U) 0. Consider Z
Ukj—Ep. In this case the intersection form is indefinite of rank 2. Again, by
Seifert-Van Kampen we hâve nx(UKj—Ep) 0. Both U and Ep hâve even intersection

pairings. It follows that Z is homotopy équivalent to S2 x S2. By Freedman's
classification of closed simply connected 4-manifolds, Z ^S2 x *S2, so that
KS(Z) 0. By additivity KS(U) 0 and then as well KS(F) 0.

Since KS(F) 0, KS(Ep u V) 0. The Rochlin Congruence applied to the core
2-sphere in Ep implies p 4 mod 16.

9.6 PROPOSITION. If p 2 mod 4, then L(p9l) embeds topologically in

#3CP2 and in * #3CP2.

Proof. Such an integer /? can be written as a sum of 3 relatively prime squares:

p r2 + s2 H- ?2. Consider the corresponding homology class (r, ^, 0 e H2(#3CP2).
Since /? is even, not ail of r, s, and f can be odd. Thus this homology class is

primitive and ordinary. By work of Lee and Wilczynski it is represented by a

topological locally fiât 2-sphere. The boundary of a tubular neighborhood of this
2-sphere is L(p, 1). The same argument applies to * #3CP2.

9.7 REMARK. If p is even, and L(p, l)0 embeds topologically in #4CP2, but
L(p, l)0 does not embed topologically in #3GP2, then p 4 mod 8.

It remains to résolve whether L(16, l)0 embeds topologically in #3CP2. (It
cannot embed unpunctured by the Rochlin Inequality.)

9.8 PROPOSITION. Ifp 1, 3, or 5 mod 8, then L(p9 1) embeds topologically
#3CP2 and in * #3CP2.

Proof. We can write p r2 + s2 H-12 as a primitive sum of 3 squares. Then
(r, 5, t) represents a primitive ordinary class £ in H2(CP2) and in H2(*CP2).

First suppose that p 1 or 5 mod 8. Since odd squares are congruent to
1 mod 8, it follows that not ail three squares are odd. As such it is represented in
both of thèse 4-manifolds by a topologically embedded 2-sphere by Theorem 8.1.

The boundary of a tubular neighborhood of the 2-sphere provides the required lens

space.
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On the other hand, ifp 3 mod 8, then ail three squares must be odd. Then the

homology class £ is primitive and characteristic with self-intersection p. It satisfies

ÇÇ=sign(X4) + %KS(X4) (mod 16) for exactly one choice of X4 #3CP2 or
* #3CP2, depending on whether p 3 or 11 mod 16. Theorem 8.1 implies that for
this choice of X4 there is an embedded 2-sphere with self-intersection p yielding an
embedding of L(p, 1). We must show that we can also embed L(p9 1) c *X4. Write
X4 Ep uL V. Replace Ep by *Ep, which exists since p is odd, to create the desired
*X4.

9.9 REMARK. When p 11 mod 16, we obtain an embedding L(p,l)cz
#3CP2, but there is no 2-sphere I c #3CP2 with I-1 =p. This is infact our only
example of an embedding of a lens space L(p, 1) in a situation in which there is no

2-sphere with self-intersection p.

9.10 PROPOSITION. Ifp 2 mod 16 and not divisible by afactor congruent to
3 mod 4, then L(p, 1) embeds topologically in #2CP2.

Proof Let p r2 + s2, where r and s are relatively prime integers. Since

p 2 mod 16 it follows that r and s are odd. Consider the corresponding homology
class Ç (r, s) e H2(CP2). Then t; is a primitive characteristic homology class, and
<J • £ r2 + s2 =p 2 sign(#2CP2) mod 16. Therefore, by Theorem 8.1 <J is rep-
resented by a topologically embedded 2-sphere. The boundary of a tubular neigh-
borhood of that 2-sphere gives the required embedding of L(p, 1).

9.11 PROPOSITION. Ifp 10 mod 16 and is not divisible by afactor congruent
to 3 mod 4, then L(p, 1) embeds topologically in * #2CP2.

Proof One proceeds as above. The only différence is in the Rochlin-Kervaire-
MilnorCongruence: £ • £ =r2+s2=p 10 sign(*#2CP2) +8KS(*#2CP2) mod 16.

9.12 PROPOSITION. If p is odd and not divisible by a prime congruent to
3 mod 4, then L(p, 1) embeds topologically in #2GP2 and in * #2GP2.

Proof Proceed as in the preceding two propositions. The only différence is that
one seeks to embed a primitive ordinary class, which can always be done with no
further obstruction.

10. Fundamental results of Donaldson

For use below we quote a basic a resuit from Donaldson [1987].
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10.1 THEOREM. (^4) A simply connectée! smooth 4-manifold with a definite
intersection pairing has a diagonalizable intersection form, and hence is homotopy
équivalent to a connected sum of copies ofCP2. (B) A simply connected smooth spin
4-manifold with b£ < 2 or b£ < 2 has 0 signature.

11. Further restrictions on smooth embeddings of punctured lens spaces in definite
4-manifolds

Hère we apply Donaldson's theorems to find further restrictions on the existence

of smooth punctured lens spaces.

11.1 PROPOSITION. Ifp is even, and L(p, l)0 embeds smoothly in CP2 # CP2
then p 2, 4, or 8.

Proof. Referring to Proposition 7.3 we need to show that if p s + 2 mod 16,

then p 2. As above, we obtain a smooth 2-sphere I in X4 S2 x
S2 # CP2 # CP2, representing a homology class of the form (p, k; r, s), where we
can assume k is even, and X1 -1 2kp -f r2 + s2 ±p. Since p s 2 mod 4, we see

that r and s must both be odd. Thus we hâve a characteristic homology class

represented by a smoothly embedded 2-sphere £, with I -1 *= ±p. Taking
connected sum with p - 1 copies of =f (CP2, CP1) we obtain a smoothly embedded

2-sphere S representing a characteristic homology class and satisfying S ' S ±1.
Blowing down S we obtain a smooth, simply connected spin 4-manifold with
b2 =/? + 2 and signature 2T(p— 1) T 1 which equals 2-/7 or p -f 2. By Don-
aldson's Theorem 10.1, we must hâve signature 0, so that p — 2.

11.2 PROPOSITION. Ifp is even, and L(p, l)0 embeds smoothly in #4CP2 a/ïrf

ps4 mod' 8, f/œn /? s 4 mod 16, or p ^ 12.

Proof. Suppose that /? s 4 mod 8. The basic construction yields an embedded

2-sphere I c:S2 x S2 #4CP2 representing a homology class of the form
(/?, &; r, 5, /, w), with A: even and I • I 2A:/? -f r2 + ^2 +12 H- w2 ±p. We see that
if r9 s, t and w are ail even, then the homology class represented by 1 is 2-divisible.
The Rochlin Inequality then implies that -2^1-1^18. This provides for the

cases that p 4 or p *= 12.

If not ail the squares are even, then, since p s 4 mod 8, we see that ail of r, s,

t and u must be odd, so that [I] is characteristic. The Rochlin Congruence States

thât Ï*ls4 mod 16. If I - X +/?, then /? s 4 mod 16, as required.
Suppose that I - S « —p. Blow up /> — 1 (-f l)'s to produce a characteristic

2-sphere S with self-intersection —1 in a 4-manifold with b% =/? -f 4 and éj — 1.
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Blow down the 2-sphere S to obtain a smooth, positive definite, spin 4-manifold,
contradicting Donaldson's Theorem 10.1.

11.3 REMARK. We know that L(12,1) embeds smoothly in #3CP2 as the

boundary of a tubular neighborhood of a curve representing the homology class

(2, 2, 2). We also know that L(12,1) does not embed topologically in #2CP2, since

12 cannot be written as a sum of 2 squares.

11.4 PROPOSITION. Ifp 3 mod 4 and p> 3, then L(p, 1) does not embed

smoothly in #3CP2.

Proof. The lens space L would separate X4 #3CP2 into two closed comple-
mentary domains U and V. We may replace U, say, with the disk bundle Ep to form
Y4 Ep u F, a manifold with definite intersection pairing. By Corollary 6.4, Y4 has

the homotopy type of X4, not #2CP2. Now Y4 contains a smooth 2-sphere I as

the core of Ep, with self-intersection number I • E =p. In terms of a standard
orthonormal basis for the homology of Y4, the homology class represented by I
has the form (ru r2, r3), where r\ + r2. + r3 =/>• Since /? 3 mod 4, we see that ru
r2i and r3 are ail odd, so that I is characteristic. Now, blowing upp — 1 — l)'s and
then blowing down the resulting + 1), we obtain a smooth spin 4-manifold with
bj. =2. According to Donaldson's Theorem 10.1, this manifold has signature
0 3 — (/* — 1) — 1, which implies that p - 3, a contradiction.

12. Further restrictions on embeddings of punctured lens spaces in indefinite
4-manifolds

Hère we complète our picture to include an analysis of which punctured lens

spaces L(p9 l)0 embed in which standard indefinite 4-manifolds. Recall that an
indefinite simply connected 4-manifold is homeomorphic to —CP2#CP2 or
*( -GP2 # CP2) or S2xS2# Y4 for some 4-manifold F4. Since ail punctured lens

spaces embed in S2 x S2, we need only investigate further the first two cases.

12.1 PROPOSITION. If p is even, and L(p, l)0 embeds topologically in

-CP2#GP2 thenp^Sorp=0mod 16.

Proof. The existence of such an embedding gives rise via the Basic Construction
to an embedded 2-sphere I in S2 x S2 # — CP2 # CP2 representing a homology
class of the form (p9k;r9s), with self-intersection 2kp — r2-M2= ±p, where we

may assume that k is even. Since p is even, r and s hâve the same parity. If they are
both even, I represents a 2-divisible class and the Rochlin Inequality implies that
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p < 8. If they are both odd, then the 2-sphere I represents a characteristic élément
in homology, and the Rochlin Congruence yields p 0 mod 16.

12.2 PROPOSITION. If p is even, and L(p, l)0 embeds topologically in

*( -CP2 # CP2) then p <% or /> 8 mod 16.

Proof. The proof is the same as that for Proposition 12.1, except for the last

sentence, where we conclude instead that p 8KS(*( -CP2 # CP2)) mod 16.

12.3 PROPOSITION. If p is even, and L(p, l)0 embeds smoothly in

-CP2#CP2 thenp<%.

Proof If p > 8 then, as above, we obtain a smoothly embedded characteristic
2-sphere I in S2 x S2 # -CP2 # CP2, with self-intersection ±/?. The blow up/blow
down trick, blowing up (p — 1) + l)'s and blowing down a (±1), produces a

smooth spin 4-manifold with b2 4 + (p — 1) — 1 =/> + 2 and è^ 1, contradict-
ing Donaldson's Theorem 10.1.

12.4 PROPOSITION. If p=0mod 16 /fe/i L(/>, 1) embeds topologically in

-CP2 # CP2. If p 8 morf 16 rteif L(/?, 1) embeds topologically in

*(-CP2#CP2).

Proof Let /> 8£. We can express %k r2 — s2, where r 2k 4-1 and

5 2k — 1. Since r and s are relatively prime and odd, we see that (r, s) represents
a primitive characteristic homology class in H2( — CP2 # CP2), with (r, s) • (r, .s)

8fc. It follows from Theorem 8.1 that (r, s) is represented by a topologically
embedded 2-sphere in — CP2#CP2 when fc is even, i.e., p=0 mod 16, and

represented by a topologically embedded 2-sphere in *(—CP2#CP2) when k is

odd, i.e., p s 8 mod 16. The boundary of a tubular neighborhood of this 2-sphere

yields the required lens space in either case.

12.5 REMARK. In the concrète spécifie case above one can find the 2-sphere

by a more direct argument depending only on the early work of Freedman, as

follows. Consider any framed link of 2 unknotted components with framings 16k

and 4k — 1, with linking number 8A: — 1. This defines a simply connected smooth
4-manifold containing a 2-sphere with self-intersection 16A: and with boundary a

homology 3-sphere, since the déterminant of the linking matrix is —1. By Freedman

this homology 3-sphere bounds a contractible topological 4-manifold. Freed-
man's classification of topological 4-manifolds shows that the resuit X4 of cap-
ping off with the contractible 4-manifold is homotopy équivalent to — CP2 # CP2.

Since the component of the framed link with framing 16k is characteristic and un-
knotted the Rochlin Congruence implies that 16k 8KS(Z4) mod 16. Therefore
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KS(Z4)=0 and we can conclude that X4 is homeomorphic to -CP2#GP2.
Similar constructions can often be used in place of our previous appeals to Theorem
8.1, the embedding theorem of Lee-Wilczynski and Hambleton-Lee.

13. Tables summarizing the main results

The charts below summarize what is known concerning the embedding of lens

spaces and punctured lens spaces in a connected sum of complex projective planes.

Désignations of "yes", "no", and "?" indicate that such an embedding exists, does

not exist, or that the embeddability is unknown. For a few of the cases in which p
is only given mod 16, the resuit dépends on the actual value ofp. In thèse cases ail
possible answers are given in the chart, with détails appearing in a footnote.

The remainder of the notation is as follows. If a resuit dérives directly from a
resuit presented elsewhere on the chart, it is written in lower case. This can occur
in three ways: smooth embeddings yield topological embeddings, closed embeddings
yield punctured embeddings, and embeddings in #nGP2 yield embeddings in
#M + 1GP2. Of course, the contrapositive of each of thèse statements gives a

nonembedding resuit as well. Other results are presented with uppercase "YES"
and "NO". Thèse are labelled in one of two ways: either the proposition number
that yields the resuit is given in parenthèses, or a homology class in #nCP2 that is

representable by an embedded sphère of prescribed self-intersection is listed as a

subscript. In the second case, the realizability of that class follows from either the

Embedding Theorem 8.1 in the topological setting, or from the smooth realizability
of certain basic classes using the gênerai Boardman construction as described in
Remark 2.7.

TOP
Table 1. p even, large, TOP, unpunctured: L(p, 1) c #WGP2, p >20

P
mod 16

0

2

4

6

g

10

12

14

CP2

no
no
no
no
no
no
no
no

#2c/>2

no
YES & NOa

no
no
no
no
no
NO (6.2)

#3CP2

no
YES (9.6)
no
YES (9.6)
no
YES (9.6)
no
YES (9.6)

#4CP2

no
yes
YES (9.3)
yes

no
yes
NO (9.5)
yes

#5CP2

YES (9.1)
yes

yes

yes
YES (9.1)
yes
YES (9.1)
yes
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Table 2. p even, large, TOP, punctured: L(p, l)0 c #nCP, p > 20

mod 16

0
2

4
6

8

10

12

14

CP2

no
NO (4.2)
no
no
no
no
no
NO (4.2)

#2CP2

no
yes & lb-c

no
NO (7.3)
no
NO (7.3)
no
T

#3CP2

no
yes
NO (7.6)
yes

no
yes
NO (7.6)
yes

#4CP2

NO (7.8)
yes

yes

yes
NO (7.8)
yes
V
yes

#5CP2

yes

yes

yes

yes
yes

yes

yes

yes

Table 3. p even, large, DIFF, unpunctured: L(p, 1) c # nCP2, p > 20

mod 16

0
2

4
6

8

10

12

14

CP2

no
no
no
no
no
no
no
no

#2CP2

no
no
no
no
no
no
no
no

#3CP2

no

no
7

no
7

no

#4CP2

no

7

7

no
7

no

7

7

7

7

7

7

7

Table 4. p even, large, DÏFF, punctured: L(p, l)0 c #MCP2, p > 20

P
mod 16 CP2 #3CP2 #4CP2 #5CP2

0
2

4
6
g

10

12

14

no
no
no
no
no
no
no
no

no
NO (11.1)
no
no
no
no
no
NO (11.1)

no

no

no

no
7

no

7

7

no
7

N(NO (11.2)
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TOP
Table 5. p even, small, TOP, unpunctured: L(p, 1) c #nCP2, p

p

2

4

6

8

10

12

14

16

18

20
22

CP2

no
yes

no
no
no
no
no
no
no
no
no

#2cp2

yes

yes
no
yes

no
no
NO (6.2)
no
NO (6.3)
no
no

#3CP2

yes

yes

yes

yes

yes

yes

YES(32,i)
NO
YES(4,U)
no
YES(3,3,2)

#4CP2

yes

yes

yes

yes

yes

yes

yes

yes

yes

YES(3)31il)
yes

#5CP2

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

TOP
Table 6. p even, small, TOP, punctured: L(p, l)0 c # MGP2, p < 22

P

2

4
6

8

10

12

14

16

18

20

22

CP2

NO (7.1)
yes

no
NO (7.1)
no
no
NO (7.1)
no
NO (7.1)
no
no

#2c/>2

yes

yes
NO (7.3)
yes
NO (7.3)
NO (7.3)
T
NO (7.3)
7e

no
NO (7.3)

#3c/>2

yes

yes

yes

yes
yes

yes

yes
?c

yes
NO (7.6)
yes

#4c/>2

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

#5CP2

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

DIFF
Table 7. p even, small, DIFF, unpunctured: L(p, 1) c # MCP2, p ^ 22

P

2

4
6

8

10

12

14

16

18

20
22

CP2

no
YES(2)
no
no
no
no
no
no
no
no
no

#2cp2

YES(1J)
yes
no
YES(2<2)

no
no
no
no
no
no
no

#3CP2

yes

yes

YES(2,U)
yes
YES(3f(M)

YES(2,2,2)

YES<32ti)
no

no

#4CP2

yes

yes

yes

yes

yes

yes

yes
YES(2,2,2,2)

YES(3A3j0)

#5CP2

yes

yes

yes

yes

yes

yes

yes

yes

yes
YES(2>2,2,2,2)

^(3,0,3,0,2)
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DIFF
Table 8. p even, small, DIFF, punctured: L(p, l)0 <= # nCP2, p ^ 22

/> CP2 #2CP2 #3CP2 #4CP2 #5CP2

2

4
6

8

10

12

14

16

18

20

no
yes
no
no
no
no
no
no
no
no

yes
yes
no
yes
no
no
NO (11.1)
no
NO (11.1)
no

yes
yes
yes
yes
yes
yes
7

7

no

yes

yes
yes

yes

yes
yes

yes
yes
yes
7

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

22

Table 9.

P
mod 16

no

p odd, TOP,

CP2

no

unpunctured:

7

TOP
L(P, 1) c #

#2cp2

7

«CP2,

yes

p>\

#3CP2 #4CP2

1 NO (6.3) YES&NO" YES (9.8) yes
3 no NO (6.4) YES (9.8) yes
5 NO (6.3) YES&NOa YES (9.8) yes
7 no no NO (6.2) YES (9.2)
9 NO (6.3) YES & NOfl YES (9.8) yes

11 no no YES (9.8) yes
13 NO (6.3) YES&NO" YES (9.8) yes
15

Table 10.

P
mod 18

no

p odd, DIFF,

CP2

no

DIFF
unpunctured: L(p, 1) c #w<

#2CP2

NO (6.2)

2P\p>\

#3CP2

YES (9.2)

#4CP2

1

3

5

7

9

11

13

15

no
no
no
no
no
no
no
no

NO&r
no
NO(11.4)rf
no
NO(11.4)rf
no
NO&r
no

N<
7

no

no
7

no

7

7*

'<yl

"With only three exceptions, L(p, 1) embeds topologically in #2CP2 if and only iîp can be written as a
primitive sum of two squares and, ifp is even,/? s 2 mod 16. An integer n is a primitive sum of two squares
if and only if4 dœs not divide n and no prime q s 3 mod 4 divides n. The three exceptions arise from the
smoothembeddmgsofLQ?, l)in #2CP2when/> =4,8, or 9. See Section 9.0 and Proposition 9.10 and 9.12.
£The only known "yes" answers dérive from embeddings of the corresponding unpunctured lens space.
cBy Remark 8.2, the known obstructions to embedding punctured lens spaces do not apply in this situation.
^Isolated exceptions to thèse occur because of the spécial smooth embeddings of sphères in #WCP2. The
exceptions in the realm of this chart are described in Remark 2.7.
The only known "no" answers that occur hère are those that follow from the topological case.



Embedding punctured lens spaces in four-manifolds 191

REFERENCES

J M Boardman, Some embeddings of 2-spheres in 4-manifolds, Proc Cambridge Philos Soc 60
(1964), 354-356

L E Dickson, History of the theory of numbers Vol 2, Diophantme analysis, Chelsea, 1971

S K Donaldson, The orientation of Yang-Mûls moduh spaces and 4-mamfold topology, J Diff Geom
26(1987), 397-428

DBA Epstein, Embedding punctured mamfolds, Proc Amer Math Soc /6(1965), 175-176
M H Freedman and F Quinn, Topology of 4-Manifolds, Princeton Univ Press, 1990
S Fukuhara, On an invariant of homology lens spaces, J Math Soc Japan 36(1984), 259-277
P M Gilmer and C Livingston, On embedding 3-manifoîds in 4-space, Topology 22 (1983),

241-252
E Grosswald, Représentations of Integers as Sums of Squares, Spnnger-Verlag, New York, 1985

I Hambleton and M Kreck, Cancellation ofhyperbohc forms and topologicalfour-mamfolds, J Reme

Angew Math 443 (1993), 21-47
W Hantzsche, Einlagerung von Mannigfaltigkeiten in eukhdishe Raume, Math Zeit 43(1938), 38-58
F Hirzebruch, W Neumann, and S S Koh, Differentiable Mamfolds and Quadratic Forms, Marcel

Dekker, New York, 1971

F Hosokawa and S Suzuki, On punctured lens spaces in 4-space, Math Sem Notes Kobe Univ no
2(1982), 323-344

W -C Hsiang and R H Szczarba, On embedding surfaces in four-mamfolds, Proc Symp Pure Math
vol 22, Amer Math Soc, 1970, 97-103

M A Kervaire and J W Milnor, On 2-spheres in 4-manifolds, Proc Nat Acad Sci USA 47
(1961), 1651-1657

R Lee and D M Wilczynski, Locally flat 2-spheres in simply connected 4-manifolds, Comm Math
Helv 65(1990), 388-412, Correction, Ibid 67(1992), 334-335

R Lee and D M Wilczynski, Representing homology classes by locally flat 2-spheres, K-Theory 7

(1993), 333-367
Y Matsumoto, On the bounding genus of homology 3-spheres, J Fac Sci Univ Tokyo 29 (1982),

287-318
D Puppe, Homotopiemengen und ihre induzierten Abbildungen H, Math Zeit 69 (1958), 395-417
V A Rochlin, New results in the theory of four-dimenswnal mamfolds, Doklady Akad Nauk SSR

(NS) #4(1952), 221-224
V A Rochlin, Two-dimensional submanifolds offour-dimenswnal mamfolds, Funkcional Anal Appl 5

(1971), 39-48
E C Zeeman, Twisting spun knots, Trans Amer Math Soc 115 (1965), 471-495

Department of Mathematics
Indiana University
Bloomington, Indiana 47405 USA

edmonds @ indiana -edu

livingst @ indiana edu

Received August 2, 1994, February 1, 1996


	Embedding punctured lens spaces in four-manifolds.

