Fenchel type theorems for submanifolds of Sn.

Autor(en): Langevin, R. / Rosenberg, Harold
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 71 (1996)

PDF erstellt am: 01.07.2024
Persistenter Link: https://doi.org/10.5169/seals-53860

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Fenchel type theorems for submanifolds of $\mathbf{S}^{\boldsymbol{n}}$

Remi Langevin and Harold Rosenberg

We dedicate this paper to the memory of Nicolaas Kuiper

The total curvature of compact hypersurfaces M of $\mathbf{R}^{n}\left(\int_{M}|K|\right)$ is related to the topology of M and to the manner in which M is embedded in \mathbf{R}^{n}. K is the GaussKronecker curvature of M, i.e., the determinant of the second fundamental form.

For curves C in \mathbf{R}^{3}, the theorems of Fenchel and Fary-Milnor, state the total curvature of C is at least 2π (with equality precisely for convex planar curves) and if C is knotted in \mathbf{R}^{3} then $\int_{C}|k|>4 \pi$, [Fe], [Fa], [M_{1}], $\left[\mathrm{M}_{2}\right]$.

Chern and Lashof observed the total curvature of $M^{k} \subset \mathbf{R}^{n}$ is

$$
c \int_{P^{n-1}}|\mu|(M, l)
$$

where c is a constant depending only on n and k, P^{n-1} is the projective space of lines l through the origin in \mathbf{R}^{n} and $|\mu|(M, l)$ is the number of critical points of the projection of M to l. Since this projection is a Morse function for almost all l, they obtained $c \beta$ as a minoration of the total curvature, β the sum of the betti numbers of $M[C-L]$.

In particular for surfaces in \mathbf{R}^{3} one has

$$
\int_{M}|K| \geq 2 \pi(2 g+2)
$$

g the genus of M. If a torus is knotted in \mathbf{R}^{3}, then the total curvature is at least twice as large, i.e., 16π [L-R]. Results of this type for knotted surfaces of higher genus in \mathbf{R}^{3} have been obtained by Kuiper and Meeks [K-M].

In this paper we establish results of this nature for submanifolds of S^{n}. For surfaces in S^{3}, it is not sufficient to consider $\int_{M}|K|$, where K is the extrinsic curvature of M (consider the boundary of a small tubular neighborhood of a geodesic. Any two points of M differ by an isometry of S^{3} so the intrinsic curvature of M is constant; it is zero by Gauss-Bonnet. So $|K|=1$ and $\int_{M}|K|$ is the area of M). In fact,
for curves C in S^{2}, it's easy to see that $\int_{C}\left(\left|k_{g}\right|+1\right) \geq 2 \pi$, and equality holds precisely when C is a geodesic; k_{g} the geodesic curvature of C. However for surfaces M in S^{3}, it is still not enough to consider $\int_{M}(|K|+1)$. One must add to $|K|+1$, a function $h_{1}(x)=$ the average of the absolute values of the normal curvatures to M at x. Then one has the desired results:

$$
C(M)=\int_{M}\left(c_{2}|K|+c_{1} h_{1}(x)+c_{0}\right) \geq 2 \pi(2 g+2),
$$

for certain constants c_{0}, c_{1}, c_{2}, and g the genus of M. Moreover, if M is knotted in S^{3}, then $C(M) \geq 2 \pi(2 g+4)$.

The function $\int_{M} h_{1}$ has an interesting geometric interpretation. It is the total number of folds of M. We call this the 1-length of M. It is a one dimensional measure of M; for M in \mathbf{R}^{3} and $t M$ the homothety of M by t, one has $L_{1}(t M)=t L_{1}(M)$. In general, for M a p dimensional submanifold of \mathbf{R}^{n} or S^{n}, we introduce i-length of M for every $i \leq p$. We then study the behaviour of i-length through projections and intersections obtaining local and cinematic-type formulae.

Notice that $h_{1}(x)$ is not (except if M is convex) the first symmetric function of curvature σ_{1} of M at x. Chern and Slavsky have studied $\int_{M} \sigma_{1}$, for M in \mathbf{R}^{n} and proved cinematic formulae for these functions [Ch], [SI].

The 2-length of $M \subset S^{3}, L_{2}(M)$, is the area of $M, L_{0}(M)$ is the total curvature of M. We define $L_{1}(M)$ as follows. Let Σ be a geodesic 2 -sphere of S^{3} with x a conjugate point of Σ (i.e., $\operatorname{dist}(x, \Sigma)=\pi / 2$). Let $p: S^{3}-\{x,-x\} \rightarrow \Sigma$ be the projection along the geodesics starting at x. Denote by γ_{Σ} the critical values of p / M. Define

$$
L_{1}(M)=\frac{1}{\pi^{2}} \int_{G(4,3)}\left|\gamma_{\Sigma}\right| d \Sigma,
$$

where $G(4,3)$ is the Grassmann manifold of 3 -planes through the origin of \mathbf{R}^{4}, identified with the space of geodesic 2 -spheres of S^{3}.

We prove $L_{1}(M)=\pi^{2} \int_{M} h_{1}$. Also we establish

$$
L_{0}(M)=\frac{1}{2 \operatorname{Vol} G(4,2)} \int_{G(4,2)}\left|\gamma_{l}\right| d l,
$$

where $l \in G(4,2)$ is a geodesic of S^{3}, and $\left|\gamma_{l}\right|$ is the number of critical points of the projection of M to l (along the geodesic spheres orthogonal to l).

Now one uses the cinematic formulae to relate $L_{0}(M)+L_{1}(M)+L_{2}(M)$ to the critical points of a Morse function on M. For this, we construct an "adapted" singular foliation of S^{3}.

The theory is much simpler for curves on S^{2}; we indicate the argument here. Let $l \in G(3,2)$ denote a geodesic of S^{2} and for each $y \in P^{2} \quad(y=a$ pair of antipodal points of S^{2}), let $\mathscr{F}(y)$ be the foliation of S^{2} (singular at y) by geodesics passing through y.

We have

$$
\int_{C}\left|k_{g}\right|=\frac{1}{2} \int_{P^{2}}|\mu|(C, \mathscr{F}(y)) d y,
$$

where $|\mu|(C, \mathscr{F}(y))$ denotes the number of contact points of C and $\mathscr{F}(y)$. Also

$$
|C|=\frac{1}{2} \int_{l \in G(3,2)} \#(C \cap l) d l=\frac{1}{2 \pi} \int_{y}\left(\int_{l \in \mathscr{F}(y)} \#(C \cap l)\right) d y
$$

where $|C|$ denotes the length of C. Hence

$$
\int_{C}\left(\left|k_{g}\right|+1\right)=\frac{1}{2} \int_{y}\left[|\mu|(C, \mathscr{F}(y))+\frac{1}{\pi} \int_{l \in \mathscr{F}(y)} \#(C \cap l) d l\right] d y
$$

Now for $y \in P^{2}$, if C intersects every $l \in \mathscr{F}(y)$, then C intersects every such l in at least two points and

$$
\int_{l \in \mathscr{F}(y)} \#(C \cap l) \geq 2 \pi
$$

If C is disjoint from $l \in \mathscr{F}(y)$, then a moments thought shows there are at least two points of contact of C with $\mathscr{F}(y)$. Thus $|\mu|(C, \mathscr{F}(y)) \geq 2$; so $\int_{C}\left(\left|k_{g}\right|+1\right) \geq 2 \pi$. This illustrates the integral geometric technique but for curves the result is not interesting since the last inequality is just an application of Fenchel's theorem for curves in $\mathbb{R}^{3}=\left(k=\sqrt{k_{g}^{2}+1}\right.$ is the curvature of C in $\left.\mathbf{R}^{3}\right)$.

For surfaces in S^{3} the argument requires the introduction of a foliation adapted to a flag of geodesic spheres.

We remark that this notion of length has been applied in oceanography [J-L].

I. The length functions for submanifolds of $\mathbf{R}^{\boldsymbol{n}}$ and their cinematic formulae

Let M be a p-dimensional submanifold of \mathbf{R}^{n} and let h be a $i+1$ dimensional linear subspace of \mathbf{R}^{n} (we will denote by $G(n, i+1)$ the Grassmann manifold of all such h). The critical points of the orthogonal projection p_{h} of M to h will be denoted
by $\Gamma_{h}(M)$ (or Γ_{h} if there is no ambiguity) and we denote the set of critical values of p_{h} by γ_{h}, or $\gamma(M, h)$.

When $p \geq i$, for almost every $h \in G(n, i+1), \Gamma_{h}$ is almost everywhere an i-dimensional submanifold of M and for almost every $x \in \Gamma_{h}, T_{x}\left(\Gamma_{h}\right)$ and h^{\perp} are transverse in $T_{x}(M)$, so γ_{h} is a hypersurface of h in a neighborhood of $p_{h}(x)$.

We define the i-length functional as:

$$
L_{i}(M)=c \int_{G(n, i+1)}\left|\gamma_{h}\right| d h
$$

where $\left|\gamma_{h}\right|$ denotes the volume of γ_{h} (when $i=0, \gamma_{h}$ is a finite set and $\left|\gamma_{h}\right|$ is the number of points in γ_{h}), and the constant c is chosen so that if M is the boundary of an ε-tubular neighborhood of an i-dimensional submanifold C of an affine $p+1$ dimensional subspace of \mathbf{R}^{n}, then $\lim _{\varepsilon \rightarrow 0} L_{i}(M)=|C|$.

If $t M$ denotes a homothety of M by $t>0$, then clearly

$$
L_{i}(t M)=t^{i} L_{i}(M)
$$

The constant c occurring in the definition of L_{0} is $1 / 2\left|\mathbf{P}_{n-1}\right|$, since a sphere of any dimension ≥ 1 satisfies $\left|\gamma_{l}\right|=2$ for every line $l \in G(n, 1)$. We will see shortly that $L_{0}(M)$ is the total curvature of M.

Here are some examples of 1-lengths of surfaces in \mathbf{R}^{3} :
$L_{1}(M)=\frac{1}{\pi^{2}} \int_{G(3,2)}\left|\gamma_{h}\right| d h$.
If M is a round cylinder of height λ, then γ_{h} is (for almost all h) two parallel segments of length $\lambda|\cos \theta|$ where θ is the angle between the axis of M and the plane h. Hence $L_{1}(M)=\lambda$. If M is a sphere of radius R, γ_{h} is a circle of radius R and $L_{1}(M)=4 R$.

I.1. The local formulae

We define extrinsic curvature functions h_{i} on $M^{p} \subset \mathbf{R}^{n}$, and we prove $L_{i}(M)=$ $c \int_{M} h_{i}(x) d x$, where $c=c(n, p, i)$.

Let us begin by L_{0} and L_{1} of a surface M in \mathbf{R}^{3}. We know that

$$
L_{0}(M)=\frac{1}{4 \pi} \int_{\mathbf{P}_{2}}\left|\gamma_{l}\right| d l
$$

where $\left|\gamma_{l}\right|$ is the number of critical points of the projection of M to l.
Let $\phi: M \rightarrow E$ be the map $\phi(x)=\left(l(x), p_{l(x)}(x)\right)$, where $l(x)$ is the line through the origin parallel to the normal line to M at $x, p_{l(x)}(x)$ is the orthogonal projection of x to $l(x)$, and E is the tautological line bundle over P_{2}. Let $N=\phi(M)$ and H be the horizontal plane field of the Riemannian fibration $\pi: E \rightarrow P_{2}$.

Clearly $\pi \phi$ is the Gauss map of M with $|\operatorname{Jac}(\pi \phi)|=|K(x)|, K$ the Gauss curvature of M at x; so

$$
|K(x)|=|\operatorname{Jac} \phi(x)|\left|\operatorname{Jac} p_{H(x)}\right|
$$

where Jac $p_{H(x)}$ is the Jacobian of the orthogonal projection (in E) of $T_{\phi(x)} N$ to $H_{\phi(x)}=H(x)$.

Hence

$$
\int_{\mathbf{P}_{2}}\left|\gamma_{l}\right| d l=\int_{N}\left|\operatorname{Jac}\left(p_{H}\right)\right|=\int_{M}|\operatorname{Jac}(\phi)|\left|\operatorname{Jac} p_{H}\right| d x=\int_{M}|K(x)| d x
$$

The first equality is a special case of the coarea formula and the second is a change of variables. Hence

$$
L_{0}(M)=\frac{1}{4 \pi} \int_{M}|K(x)| d x
$$

This formula for the total curvature of M is the basis of the Chern-Lashof theorem and easily generalises to \mathbf{R}^{n} [C-L].

For future calculations it is useful to introduce the following notation. Let $p: E \rightarrow B$ be a Riemannian fibration and $N \subset E$ a submanifold transverse to the fibers $F(y)=p^{-1}(y), y \in B$. Let H be the horizontal plane field of the fibration. At $x \in N, T_{x}(N)$ is the orthogonal sum $T_{x}\left(N \cap F_{x}\right)+V(x)$ where $V(x)$ is a subspace transverse to the fibers of dimension that of $H(x)$. Denote by Jac $p_{H(x)}$ the Jacobian of the orthogonal projection of $V(x)$ to $H(x)$. Then the coarea formula yields:

$$
\int_{N}\left|\operatorname{Jac} p_{H(x)}\right| d x=\int_{B}|F(y) \cap N| d y
$$

and more generally, if $\phi: M \rightarrow E$ is an immersion transverse to the fibers, $N=$ $\phi(M)$, then

$$
\int_{M}|\operatorname{Jac} \phi|\left|\operatorname{Jac} p_{H(x)}\right|=\int_{N}\left|\operatorname{Jac} p_{H(x)}\right| d x=\int_{B}|F(y) \cap N| d y
$$

Now we derive the local formula for a surface M in \mathbf{R}^{3}. Let l be a line in the tangent space to $x \in M$, and let $|k(x, l)|$ be the module of the normal curvature of M at x in the direction l; i.e., $k(x, l)$ is the curvature of the plane curve $M \cap\left(v_{\mathrm{x}} \oplus l\right)$, v_{x} the normal line to M at x.

We define

$$
h_{1}(x)=\frac{1}{\operatorname{Vol}\left(\mathbf{P}_{1}\right)} \int_{\mathbf{P}_{1}\left(T_{1}(M)\right)}|k(x, l)| d l .
$$

When M is convex at $x, h_{1}(x)$ is the mean curvature of M at x.
PROPOSITION I.2. For M a surface in \mathbf{R}^{3},

$$
L_{1}(M)=\frac{1}{\pi} \int_{M} h_{1}(x) d x
$$

Proof. Let $\pi: E=E(3,2) \rightarrow G(3,2)=G$ be the tautological line bundle, $E=\{h \in G, x \in h\}$.

Let $\phi: P_{1}(M) \rightarrow E$ be the map

$$
\phi(x, l)=\left(h=l^{\perp}, p_{h}(x)\right),
$$

and let $\phi\left(P_{1}(M)\right)=N$. We know that

$$
\int_{G}\left|\gamma_{h}\right| d h=\int_{P_{1}(M)}|\operatorname{Jac} \phi|\left|\operatorname{Jac} p_{H}\right|,
$$

so we compute the Jacobians.
Let l be a line through x in $T_{x}(M), v_{x}$ denote the line normal to M at $x, h=l^{\perp}$ the subspace of \mathbf{R}^{3} orthogonal to l and W the orthogonal to v_{x} in h; cf. Figure 1 .

We choose a basis of $T_{(x,))}\left(P_{1}(M)\right)$ as follows:

- U_{f} is a unit vector tangent to the circle fiber of $\mathbf{P}_{1}(M)$ at x,
- U_{Γ} is a horizontal lift of a unit vector tangent to Γ_{h} at x,
- U_{l} is a horizontal lift of a unit vector tangent to $\left(l \oplus v_{x}\right) \cap M$ at x.

Also, let U_{γ} be a horizontal lift (in E) of a unit vector tangent to γ_{h} at y.
The volume of the parallelepiped generated by the first three vectors is $|\cos \theta|$ where θ is the angle between $T_{x} \Gamma_{h}$ and h.

The image $d \phi\left(U_{\Gamma}\right)$ is the vector $\pm \cos (\theta) U_{\gamma}$. The vector $d \phi\left(U_{f}\right)$ and $d \phi\left(U_{l}\right)$ are projected by the differential $d \pi$ of the projection $\pi: E(3,2) \rightarrow G(3,2)$ on two orthogonal vectors of $T_{\pi \phi(x)} G(3,2)$; the first unitary and the second of norm $|k(x, l)|$.

Hence
$|\operatorname{Jac} \phi(x)|\left|\operatorname{Jac} p_{H}\right|=|k(x, l)|$,
and I. 2 follows by integrating over the fibers of $\mathbf{P}_{1}(M)$.
Remark. A different proof of this can be found in [L-S] based on a Meusnier formula.

Now we define the functions $h_{i}(x)$ when $M \subset \mathbf{R}^{n}$ is a hypersurface. Let $l=l^{i}$ be an i-dimensional subspace of $T_{x}(M)$, and let $v(x)$ be the normal line to M at x. Denote by $|K|(x, l)$ the absolute value of the Gauss-Kronecker curvature at x of the hypersurface $M \cap(l \oplus v(x))$ of $l \oplus v(x)$. Then we define

Figure 1

$$
h_{i}(x)=\frac{1}{\operatorname{Vol} G(n-1, i)} \int_{G\left(T_{x} M, i\right)}|K|(x, l) d l,
$$

where $G\left(T_{x} M, i\right)$ is the i-dimensional subspaces of $T_{x}(M)$.
Now I. 2 generalizes to \mathbf{R}^{n}.
PROPOSITION I.3. The functions $h_{n-i}(x)$ localize the functions $L_{i}(M)$; more precisely,

$$
\int_{M} h_{n-i}(x)=c L_{i}(M)
$$

where the constant c depends only on the dimensions.
Proof. Let G be the bundle over M whose fibers are the spaces $G\left(T_{x} M, l\right), l$ an $n-1-i$ dimensional subspace of $T_{x} M$, and let $E=E(n, i+1) \rightarrow G(n, i+1)$ be the tautological bundle.

Define $\phi: G \rightarrow E$ by

$$
\phi(x, l)=\left(h=l^{\perp}, p_{h}(x)\right) .
$$

Notice that the dimension of $G(M, n-1-i)$ is equal to the dimension of $N=\bigcup_{h \in G(n, i+1)} \gamma_{h}$, which is in $+n+i^{2}-i-1$.

Now the proof proceeds as in I.2; we leave the details to the reader.

I.4. The cinematic formulae

We will show that the p-length of a submanifold $M \subset \mathbf{R}^{n}$ is equal to the ($p-i$)-length of the sections of M by affine subspaces of codimension i (up to a constant only depending on dimensions; we will denote such constants by c here).

The idea is to use the Cauchy formula and a projection in cascade.
Let D denote the flag of all pairs (h, L) where $g \in G_{n, p+1}$ and L is an affine subspace of h of codimension i.

When L is transverse to γ_{h}, the points of $\gamma_{h} \cap L$ are the critical points of the projection of $M \cap\left(L \oplus h^{\perp}\right)$ to the vector subspace l determined by L. Let $H=$ $L \oplus h^{\perp} ; H$ is an affine subspace of codimension i in \mathbf{R}^{n}.

Since $\gamma(M \cap H, l)=\gamma_{h} \cap L$, we have

$$
\left|\gamma_{h}\right|=c \int_{L \in A(h, p+1-i)}|\gamma(M \cap H, l)| .
$$

Hence

$$
L_{p}(M)=c \int_{G(n, p+1)}\left(\int_{A(h, p+1-i)}|\gamma(M \cap H, l)|\right)
$$

Notice that D can be thought of as $\{H \in A(n, n-i), l \in G(H, p+1-i)\}$, hence D is a Riemannian fibration over $A(n, n-i)$ with fiber $G(H, p+1-i)$.

Now

$$
c \cdot L_{p-i}(M \cap H)=\int_{G(H, p+1-i)}|\gamma(M \cap H, l)|
$$

hence one has the cinematic formula:

$$
L_{p}(M)=c \int_{A(n, n-i)} L_{p-i}(M \cap H)
$$

II. Surfaces in $S^{\mathbf{3}}$

In this section we will define the length functionals of surfaces in S^{3} and establish the local and cinematic-type formulae. There are technical difficulties that arise here (in contrast to \mathbf{R}^{3}) due to the fact that the distortion of the projection in S^{3} to a geodesic sphere depends on the point.

We begin with $L_{2}(M)(=$ the area of $M)$ and the spherical Cauchy-Crofton formula [Sa].

THEOREM II.1. For M a compact surface in S^{3},

$$
L_{2}(M)=\frac{1}{\pi} \int_{G(4,2)}|M \cap l| d l
$$

where l is a great circle of S^{3} (which we can think of as a 2-plane through the origin of $\left.\mathbf{R}^{4}\right),|M \cap l|$ is the number of points of $M \cap l$.

Proof. Consider the map $\phi: P\left(T S^{3} / M\right) \rightarrow G(4,2), \phi(x, L)=l$ where l is the great circle whose tangent at x is L

Write the tangent space to $G(4,2)$ at l_{0} as an orthogonal sum:

$$
T_{l_{0}} G(4,2)=T_{l_{0}}\{l / x \in l\} \oplus T_{l_{0}}\left\{l \perp \Sigma_{l_{0}, x}\right\}
$$

where $\Sigma_{l, x}$ is the geodesic 2 -sphere at x orthogonal to l.
Write $T_{(x, L)}\left(P T S^{3} / M\right)=V \oplus H$ where V is the tangent space to the fiber and $H=V^{\perp}$. Then

$$
d \phi=\left(\begin{array}{cc}
I d & * \\
O & p_{L^{\perp}}
\end{array}\right)
$$

where $p_{L^{\perp}}$ is the orthogonal projection of $T_{x} M$ to $T_{x}\left(\Sigma_{l, x}\right)=L^{\perp}$. Then

$$
\int_{L \in P_{\mathrm{r}}\left(T S^{3} / M\right)}|\operatorname{Jac} d \phi|=\int_{P_{2}}\left|\cos \nless\left(L^{\perp}, T_{x} M\right)\right|=\pi .
$$

Since

$$
\int_{G(4,2)}\left|\phi^{-1}(l)\right|=\int_{G(4,2)}|l \cap M|,
$$

we have

$$
\int_{G(4,2)}|l \cap M|=\pi|M| .
$$

Now we discuss $L_{1}(M)$. Let $a=(x,-x) \in G(4,1)$, be a pair of antipodal points of S^{3} which are not on M. This point a determines a projection $p_{\Sigma}: M \rightarrow \Sigma$ where Σ is the geodesic 2 -sphere of S^{3} conjugate to a (i.e. dist $(x, \Sigma)=\pi / 2$). By definition $p_{\Sigma}(y)$ is the point of Σ which is the intersection with Σ of the geodesic of S^{3} through a and y. Let Γ_{Σ} be the critical points of p_{Σ} and γ_{Σ} the critical values.

DEFINITION. $L_{1}(M)=\left(1 / 2 \pi^{2}\right) \int_{G(4,3)}\left|\gamma_{\Sigma}\right| d \Sigma$.
The constant is chosen so that the 1 -length of an ε tubular neighborhood of a curve C tends to the length of C as $\varepsilon \rightarrow 0$. This choice will be justified once we have established the cinematic formulae for L_{1}.

Now just as in \mathbf{R}^{3} we define an extrinsic function h_{1} on M. Let $k(x, l)$ be the geodesic curvature at x of the curve $\Sigma_{l} \cap M$ in Σ_{l}, where Σ_{l} is the geodesic 2 -sphere at x tangent to l and $v_{x}=T_{x}(M)^{\perp}$. Then define

$$
h_{1}(x)=\frac{1}{\pi} \int_{P_{1}\left(T_{x} M\right)}|k(x, l)| d l .
$$

THEOREM II.2. For M a compact surface in S^{3},
$L_{1}(M)=\frac{1}{\pi} \int_{M} h_{1}$.
Proof. For $x \in M$, let Σ_{x} be the geodesic 2 -sphere tangent to M at x. Let P be the bundle over M with fiber the projective space P_{2} :

$$
P=\left\{(x, a) / a=(y,-y), y \in \Sigma_{x}\right\}
$$

Denote by Σ_{a}^{*} the geodesic 2 -sphere conjugate to the pair $a=(y,-y)$, and let $E=E(4,3) \rightarrow G(4,3)=G$ be the tautological bundle:

$$
E=\{(\Sigma, y) / \Sigma a \text { geodesic 2-sphere, } y \in \Sigma\}
$$

Then define $\phi: P \rightarrow E$ by:

$$
\phi(x, a)=\left(\Sigma_{a}^{*}, p_{\Sigma_{a}^{*}}(x)\right)
$$

By construction $N=\phi(P)$ is the union of the critical values $\gamma_{\Sigma} ; N=\bigcup_{\Sigma} \gamma_{\Sigma}$ (cf. Figure 2; the polar curve Γ_{Σ} is the set of critical points of the orthogonal projection on Σ, and the critical values Γ_{Σ} is in $p_{\Sigma}\left(\Gamma_{\Sigma}\right)$).

Then

$$
\int_{G_{4,3}}\left|\gamma_{\Sigma}\right| d \Sigma=\int_{P}|\operatorname{Jac} \phi|\left|\operatorname{Jac} p_{H}\right|
$$

so we must calculate the Jacobians.
To do this we decompose $T_{(x, a)} P$ and $T N$.
As y varies on Σ, Σ_{y}^{*} spans a sphere $S(\Sigma)$ contained in G.
Let F be the 3-dimensional orthogonal complement of $T \gamma_{\Sigma}$ in $T N$, at the point $u=\left(\Sigma_{a}^{*}, p_{\Sigma_{a}^{*}(x)}\right)$. Write $F=F_{1} \oplus F_{2}$ (at $\left.x\right)$, where F_{1} is the lift of $T_{\Sigma_{a}^{*}}(S(\Sigma))$ to F and F_{2} is the orthogonal complement of F_{1} in F. So $T N=F_{1} \oplus F_{2} \oplus T \gamma_{\Sigma}$, at x. Let H_{1} be the horizontal lift to $H(E)$ of $T_{\Sigma_{a}^{*}}(S(\Sigma))$, and let H_{2} be H_{1}^{\perp} in $H(E)$.

Now define a splitting of $T_{(x, y)} P$, non orthogonal in general, as follows. Write $T_{x} M=T_{x} \Gamma_{\Sigma_{y}^{*}}+L$, where L is the line tangent to the circle l joining x to y (this is not orthogonal in general). Let h_{1} and h_{2} be the horizontal lifts to P of $T_{x} \Gamma_{\Sigma_{y}^{*}}$ and L respectively.

We shall see that the matrix of $p_{H} \circ d \phi$ is then:

Figure 2

$$
\left(\begin{array}{ccc}
\alpha & * & * \\
0 & I d & * \\
0 & 0 & k(x, L)|\sin \theta|
\end{array}\right)
$$

here α is the Jacobian of the projection of Γ_{Σ} on γ_{Σ} and θ is the arclength on l between x and y. This matrix is computed with respect to the basis vectors $\left\{h_{1}, T_{(v, r)}, \Sigma_{x}, h_{2}\right\}$ of the domain and the basis vectors $\left\{T \gamma_{\Sigma}, H_{1}, H_{2}\right\}$ of the range. We calculate the matrix of $p_{H}{ }^{\circ} d \phi$ on $H_{1} \oplus H_{2}$; identifying $H_{1} \oplus H_{2}$ with $T G$.

By definition of $\Gamma_{\Sigma}, d \phi\left(h_{1}\right) \subset T \gamma_{\Sigma}$.

The coefficient α satisfies: $\alpha|\sin \theta|=\alpha_{0}$, where α_{0} is the Jacobian of the projection of $\Gamma_{\Sigma_{0}}$ on $\gamma_{\Sigma_{0}}$, when the geodesic sphere Σ_{0} is orthogonal to l at x. This follows from lemma II.3, which we prove shortly.

By definition of $T_{\Sigma_{a}^{*}}(S(\Sigma)), d \phi\left(T_{(x, y)} \Sigma_{x}\right)$ is of the form:

$$
\left(\begin{array}{c}
* \\
I d \\
0
\end{array}\right)
$$

It remains to determine the component of $d(p \circ \phi)\left(h_{2}\right)$ on H_{2}. For that, we follow a point on the circle tangent at ξ, where ξ is a point moving on the curve C of intersection of M with the geodesic sphere at x containing l and the normal geodesic circle to M at x (cf. Figure 3). Figure 3 shows the analogous map for a curve on S^{2} : the length of the arc of the evolute (image of the arc $d l$ between x and

Figure 3
ξ) is $k(x)|\sin \theta|$, up to first order, where θ is the arc length along l between x and y (since $k(x)=d \varphi / d s$).

The same analysis applies in S^{3}; one gets $k(x, l)|\sin \theta|$.
The decomposition of $T P$ is not orthogonal; the volume of the parallelepiped generated by $h_{1}, T_{(x, y)} \Sigma_{x}$ and h_{2} is α_{0}.

The volume density on $P\left(\Sigma_{x}\right)$ is $|\sin \theta d \theta \wedge d \varphi|$ where (θ, φ) are polar coordinates at x on the space $P\left(\Sigma_{x}\right)$ of pairs of antipodal points on Σ_{x}.

Hence

$$
\begin{aligned}
\int_{P}|\operatorname{Jac} \phi|\left|\operatorname{Jac} p_{H}\right| & =\int_{M} \int_{P\left(\Sigma_{\mathfrak{v}}\right)} \frac{\alpha_{0}|k(x, l)||\sin \theta||d \theta \wedge d \varphi|}{\alpha_{0}} \\
& =2 \pi \int_{M} h_{1}(x) d x .
\end{aligned}
$$

To complete the proof of theorem II. 2 we now prove Lemma II.3.
LEMMA II.3. Let $C(t)$ be a curve on a surface M embedded in \mathbf{R}^{3}. Assume $\dot{C}(t)$ is not in the kernel of γ at $C(t), \gamma$ the Gauss map of M. Then the characteristic line of the envelope of the family of tangent planes to M along $C(t)$ is $d \gamma(\dot{C})^{\perp}$.

Proof. The equations of the envelope are:

$$
\begin{aligned}
& \langle X-x, \gamma(x)\rangle=0 \\
& \langle X-x, d \gamma(\dot{C})\rangle=0
\end{aligned}
$$

As an immediate corollary of this lemma we have: if $K(x) \neq 0$ (so $d \gamma(x)$ is non singular), all the curves C through $x(C$ on M), such that the characteristic line through x of the envelope of the family of planes $T_{C(t)} M$ is a given line D, are tangent at x to the line Δ such that $d \gamma(\Delta)=D$.

The analogous result in S^{3}, using envelopes of geodesic spheres tangent to M along a curve, follows from the following remark concerning cones in \mathbf{R}^{4}, over $M \subset S^{3}$ and $C(t)$ a curve on M. Then the envelope of the family $T_{C(t)}(Z)$, contains the 2-plane $(d \gamma(\dot{C}(t)))^{\perp}$, (orthogonal in $T_{C(t)} Z$ to $d \gamma(\dot{C}(t))$) whenever $\dot{C}(t)$ is not contained in $\operatorname{Ker} d \varphi$. This remark is clear since the equations of the 2-plane are as before:

$$
\begin{aligned}
& \langle X-C(t), \gamma(C(t))\rangle=0 \\
& \langle X-C(t), d \gamma(\dot{C}(t))\rangle=0 .
\end{aligned}
$$

We finish this section with a discussion of $L_{0}(M)$. By definition:

$$
L_{0}(M)=\frac{1}{2 \operatorname{Vol}(G(4,2))} \int_{G(4,2)}\left|\gamma_{l}\right| d l
$$

where $\left|\gamma_{l}\right|$ is the number of critical points of the projection of M to the geodesic l; the projection along the (singular) foliation $\mathscr{F}(l)$ of geodesic 2 -spheres orthogonal to l. Notice that $\left|\gamma_{l}\right|$ is the number of points of contact of M and $\mathscr{F}(l)$, for almost all l. The constant is chosen so that $L_{0}(\partial B(x, \varepsilon))=1$, for $\varepsilon \rightarrow 0$.

THEOREM II.4. Let M be a surface in S^{3} and $K(x)$ be the extrinsic Gauss curvature of M at x. Then

$$
L_{0}(M)=\frac{1}{4 \pi} \int_{M}|K(x)|
$$

Proof. Let $E=E(4,2) \rightarrow G(4,2)=G$ be the tautological fibration and let $P(M)$ be the bundle over M of the geodesic 2-spheres tangent to M. Define $\phi: P \rightarrow E$ by:

$$
\phi(x, y)=\left(y, l \text { is orthogonal to } \Sigma_{x} \text { at } y\right) .
$$

Here Σ_{x} is the geodesic sphere tangent to M at x. Let $N=\phi(P)$ and H be the horizontal field of the bundle $E \rightarrow G$.

Take a basis of $T_{(x, y)} P$ composed of a unitary frame tangent to Σ_{x} at y and two horizontal unit vectors that project to two unitary vectors tangent to the principal directions to M at x. Then it is clear that the proof of II. 4 follows from Lemma II. 5 below.

First we define the 0-length of a curve C on S^{2} :

$$
L_{0}(C)=\frac{1}{4 \pi} \int_{G(3,2)}\left|\gamma_{l}\right| d l .
$$

Then we have:

LEMMA II.5. Let k_{g} be the geodesic curvature of a curve $C \subset S^{2}$. Then

$$
L_{0}(C)=\frac{1}{2 \pi} \int_{C}\left|k_{g}\right|
$$

Proof. Let $E=E(3,2) \rightarrow G(3,2)=G$ be the tautological fibration and $P(C)$ the bundle over C with fibers the geodesic circles of S^{2} tangent to C. Define $\phi: P(C) \rightarrow$ E by

$$
\phi(x, y)=\left(y, l \text { is orthogonal to } \Sigma_{x} \text { at } y\right) .
$$

Here Σ_{x} is the geodesic circle tangent to C at x. We have

$$
\left|\operatorname{Jac} p_{H}\right|=|\cos d(x, y)|\left|k_{g}\right|,
$$

so integrating on the fibers of $P(C)$ we have

$$
\int_{C}\left|k_{g}\right|=C_{0} \cdot L_{0}(C) .
$$

Since

$$
\lim _{\varepsilon \rightarrow 0} \int_{\partial B(x, y)}\left|k_{g}\right|=2 \pi,
$$

we see that $C_{0}=2 \pi$.
Now we derive a cinematic-type formula satisfied by $L_{1}(M)$.
THEOREM II.6. Let M be a surface in S^{3}. Then

$$
L_{1}(M)=\frac{1}{\pi} \int_{G(4,3)} L_{0}(M \cap \Sigma) .
$$

The constant is obtained by considering small spheres S_{t}. Then $L_{1}\left(S_{t}\right) \sim 4 t$ and $\int_{G(4,2)} L_{0}\left(S_{t} \cap \Sigma\right) \sim 4 \pi t$.

Proof. By definition,

$$
L_{1}(M)=\frac{1}{2 \pi^{2}} \int_{G(4,3)}\left|\gamma_{\Sigma}\right| .
$$

The Cauchy-Crofton formula in S^{2} says:

$$
\left|\gamma_{\Sigma}\right|=\frac{1}{2} \int_{G(3,2)}\left|\gamma_{\Sigma} \cap l\right| .
$$

The inverse image of the orthogonal projection onto Σ of the great circle l is a sphere Σ_{l}. The points of $\gamma_{\Sigma} \cap l$ are the critical points of the orthogonal projection of $\Sigma_{l} \cap M$ onto l. Hence

$$
L_{1}(M)=\frac{1}{4 \pi^{2}} \int_{G(4,3)} \int_{G(3,2)}\left|\gamma_{\Sigma} \cap l\right|=\frac{1}{4 \pi^{2}} \int_{D(4,3,2)}|\mu|\left(\Sigma_{l} \cap M, P_{l}\right),
$$

where P_{l} is the (singular) foliation of Σ_{l} by geodesics orthogonal to l. Here $D=D(4,3,2)$ is the space of flags $(\Sigma, l), \Sigma \supset l$. The map $D \mapsto D,(\Sigma \supset l) \mapsto(l \subset \Sigma)$, is an isometry of D. Hence

$$
L_{1}(M)=\frac{1}{4 \pi^{2}} \int_{G(4,3)} 4 \pi L_{0}(\Sigma \cap M)=\frac{1}{\pi} \int_{G(4,3)} L_{0}(\Sigma \cap M)
$$

which completes the proof of II. 6 .

III. The Fenchel theorem for surfaces in $\boldsymbol{S}^{\mathbf{3}}$

Let $D=D(4,3,2,1)$ be the space of flags $\Delta=(y \subset l \subset \Sigma)$ where y is a pair of antipodal points of a geodesic l contained in a geodesic sphere Σ of S^{3}. Given Δ, let $\mathscr{F}(y)$ be the foliation (singular) of Σ by the geodesics of Σ passing through y and let $\mathscr{F}(l)$ be the foliation of S^{3} by the geodesic spheres of S^{3} containing l.

For M a compact surface in S^{3} we define the geometry of M with respect to Δ, by

$$
\operatorname{Geom}(M, \Delta)=\#(l \cap M)+|\mu|(M \cap \Sigma, \mathscr{F}(y))+|\mu|(M, \mathscr{F}(l)),
$$

where $|\mu|(M \cap \Sigma, \mathscr{F}(y))$ is the number of points of contact of $M \cap \Sigma$ and $\mathscr{F}(y)$, and $|\mu|(M, \mathscr{F}(l))$ the number of contact points of M and $\mathscr{F}(l)$. If M is transvere to Δ (i.e. $y \notin M$ and l and Σ are transverse to M) and if $M \cap \Sigma$ is in general position with respect to $\mathscr{F}(y), M$ in general position with respect to Δ, then $\operatorname{Geom}(M, \Delta)$ is well defined. This holds for almost every $\Delta \in D$.

Hence we can define the geometry of M :
$\operatorname{Geom}(M)=\frac{1}{\operatorname{Vol}(D)} \int_{D} \operatorname{Geom}(M, \Delta)$.

Figure 4

THEOREM III.1. Geom $(M) \geq 2 g+2, g$ the genus of M, and if M is knotted in $S^{3} \operatorname{Geom}(M) \geq 2 g+4$. (M oriented).

Proof. It suffices to prove the inequalities for $\operatorname{Geom}(M, \Delta)$ whenever M is transverse to Δ and in general position with respect to $\mathscr{F}(y)$ and $\mathscr{F}(l)$. To do this we shall construct a foliation $\mathscr{F}=\mathscr{F}(t)$ of $S^{3}-B(x, t)$ for $t>0$ small, $x \in y, B(x, t)$ the t-ball of S^{3} centered at x, satisfying:

- $\operatorname{Geom}(M, \Delta)=|\mu|(M, \mathscr{F})$
- \mathscr{F} is smoothly equivalent to a foliation of \mathbf{R}^{3} by parallel planes,
- M is in general position with respect to \mathscr{F}.

Then the standard Morse theory applies and the theorem follows.
Let $t>0$ be chosen so that $B(x, t)$ is disjoint from M. Let Σ_{1} be one of the hemispheres of Σ bounded by $l, \Sigma=\Sigma_{1} \cup \Sigma_{2}, \Sigma_{1} \cap \Sigma_{2}=l$. Let \mathscr{F}_{1} be a one-dimensional foliation of $\Sigma_{1}-B(x, t)$ as in Figure 4). Notice that l is a leaf of \mathscr{F}_{1} (actually $l-B(x, t)$). We require the leaves of \mathscr{F}_{1} to be geodesics of Σ_{1} through y, outisde of a small tubular neighborhood of l in Σ_{1}.

This foliation of Σ_{1} has a "Reeb-type" component near an arc $x=l_{1}$ of l going from $-x$ to $\partial B(x, t)$ (the left side of l in Figure 4). Notice that if C is a curve on Σ, transverse to l_{1}, then the foliation \mathscr{F}_{1} can be constructed so that $\#\left(C \cap l_{1}\right)=$ the number of contact points of C and the Reeb-type component of \mathscr{F}_{1}. It suffices to construct \mathscr{F}_{1} so the Reeb-type component is close enough to l_{1}.

Similarly, define a foliation \mathscr{F}_{2} of $\Sigma_{2}-B(x, t)$, with the Reeb type component of \mathscr{F}_{2} close to the other arc of l, i.e. $l-l_{1}$; cf. Figure 4.

Now define $\mathscr{F}(\varepsilon)$; the trace of $\mathscr{F}(\varepsilon)$ on Σ will be $\mathscr{F}_{1} \cup \mathscr{F}_{2} ; \varepsilon=t$.
Each leaf α of \mathscr{F}_{1} bounds a 2-disk in Σ_{1} (more precisely, each leaf of \mathscr{F}_{1}, together with an arc on $B(x, \varepsilon) \cap \Sigma_{1}$ joining the extremities of α, bounds a disk in Σ_{1}). Let
α_{1} be a leaf of \mathscr{F}_{1} as indicated in Figure 4, and consider the leaves of α of \mathscr{F}_{1} inside the disk of Σ_{1} bounded by α_{1}. Let $D(\alpha)$ be the disk of Σ_{1} bounded by α. Let $F(\alpha)$ be a 2 -disk in S^{3} which is a thickened $D(\alpha)$; imagine $F(\alpha)$ as a thin pancake over $D(\alpha) . F(\alpha)$ is orthogonal to Σ_{1} and $F(\alpha) \cap \Sigma_{1}=\alpha$. In S^{3}, Σ separates S^{3} into two balls B_{1} and B_{2}, and $F(\alpha)$ intersects each ball in a 2-disk close to $D(\alpha)$.

Choose the $D(\alpha), \alpha$ inside $D\left(\alpha_{1}\right)$, so that the $\bigcup_{\alpha} F(\alpha)$ foliate a part of S^{3}, and all the $F(\alpha)$ are sufficiently flat so the foliated set is close to $D(\alpha)$. (One can do this by pushing one's thumb into $S^{3}-B(x, \varepsilon)$, starting at $a \in \partial B(x, \varepsilon)$ to create the Reeb component. One keeps on pushing almost until x. The thumb starts out as a very thin thumb and then spreads out as a thin pancake till α_{1}.)

Let $\Sigma(l)$ be the geodesic 2 -sphere of S^{3} containing l, which is orthogonal to Σ along l (in the ball B_{1} for example, if one imagines Σ_{1} as the upper hemisphere, then $\Sigma(l) \cap B_{1}$ is the equatorial plane). Now foliate the region of $S^{3}-B(x, \varepsilon)$ between $F\left(\alpha_{1}\right)$ and $\Sigma(l)-B(x, l)$ by "blowing out" $F\left(\alpha_{1}\right)$ to $\Sigma(l)$. More precisely, the region in question is topologically $F\left(\alpha_{1}\right) \times[0,1]$. One puts the product foliation in the region. However one does this so all the leaves outside a small tubular neighborhood of Σ, are leaves of $\mathscr{F}(l)$, i.e. they coincide with geodesic spheres containing l, outside of a tubular neighborhood of Σ.

This defines $\mathscr{F}(\varepsilon)$ on half of $S^{3}-B(x, \varepsilon)$. To extend to the other half, one does the same thing we just did, blowing down to the foliation by thin pancakes close to the foliation \mathscr{F}_{2} of Σ_{2}. In fact, if β is the geodesic of S^{3} through y and orthogonal to Σ, then one extends $\mathscr{F}(\varepsilon)$ by rotating $\mathscr{F}(\varepsilon)$ by π around β.

By construction, all the leaves of $\mathscr{F}(\varepsilon)$, outside a tubular neighborhood of Σ, are parts of the geodesic spheres of $\mathscr{F}(l)$. Now if M is a surface in S^{3}, transverse to $\Sigma, y \notin M$ (i.e. $x \notin M$ and $-x \notin M$) and M in general position with respect to $\mathscr{F}(y)$ and $\mathscr{F}(l)$, then constructing $\mathscr{F}(\varepsilon)$ so that the tubular neighborhoods of l (to define $\left.\mathscr{F}_{1}\right)$ and of Σ, are small, one sees that $\operatorname{Geom}(M, \Delta)=|\mu|(M, \mathscr{F}(\varepsilon))$. A moments inspection shows $\mathscr{F}(\varepsilon)$ is equivalent to a parallel foliation of \mathbf{R}^{3}. This completes the proof of Theorem III.1.

THEOREM III.2. Let M be a compact surface in S^{3}. Then $\operatorname{Geom}(M)$ is a linear combination of $L_{0}(M), L_{1}(M)$ and $L_{2}(M)$:

$$
\operatorname{Geom}(M)=\pi^{3} L_{2}(M)+4 \pi^{3} L_{1}(M)+2 \pi^{2} \operatorname{Vol} G(4,2) L_{0}(M)
$$

Proof. We have

$$
\int_{D}|l \cap M|=\pi^{2} \int_{G(4,2)}|l \cap M|=\pi^{3} L_{2}(M) \quad \text { by II.1. }
$$

Also

$$
\begin{aligned}
\int_{D}|\mu|(M \cap \Sigma, \mathscr{F}(y)) & =\pi \int_{D(4,3,1)}|\mu|(M \cap \Sigma, \mathscr{F}(y)) \\
& =\pi \int_{G(4,3)} 4 \pi L_{0}(M \cap \Sigma)=4 \pi^{3} L_{1}(M) \quad \text { by II.6. }
\end{aligned}
$$

Finally

$$
\begin{aligned}
\int_{D}|\mu|(M, \mathscr{F}(l)) & =\pi^{2} \int_{G(4,2)}|\mu|(M, \mathscr{F}(l)) \\
& =2 \pi^{2} \operatorname{Vol}(G(4,2)) L_{0}(M) \quad \text { by definition of } L_{0}(M) .
\end{aligned}
$$

COROLLARY III. 3.

$$
\operatorname{Geom}(M)=\int_{M} \pi^{3}+2 \pi h_{1}(x)+\frac{\pi}{2} \operatorname{Vol} G(4,2)|K(x)| .
$$

Proof. This follows immediately from Theorem III. 2 and the local formulae.

IV. Geometry of $M^{n-1} \subset \boldsymbol{S}^{\boldsymbol{n}}$

Let $D=D(n, n-1, \ldots, 1)$ be the space of flags $\Delta=\left(\Sigma^{0} \subset \Sigma^{1} \subset \cdots \subset \Sigma^{n}=S^{n}\right)$ each Σ^{i} and i-dimensional geodesic sphere of S^{n}. Define $\mathscr{F}(i, i+2)$ to be the (singular) foliation of Σ^{i+2} by geodesic $i+1$ spheres that contain Σ^{i}. Denote $M \cap \Sigma^{i+2}$ by M_{i} when M is in general position with respect to Δ (we subsequently assume this).

We define the geometry of M with respect to Δ.
$\operatorname{Geom}(M, \Delta)=\left|M \cap \Sigma^{1}\right|+\sum_{i=2}^{n}|\mu|\left(M_{i}, \mathscr{F}(i-2, i)\right)$.
As in the proof of III. 1 one has:
THEOREM IV.1. Let $M^{n-1} \subset S^{n}$ be in general position with respect to the flag Δ. Then there is an $\varepsilon>0$ and foliation $\mathscr{F}=\mathscr{F}(4)$ of $S^{n}-B(x, \varepsilon), x \in \Sigma^{0}$, satisfying:

- $\operatorname{Geom}(M, \Delta)=|\mu|(M, \mathscr{F})$, and
- \mathscr{F} is smoothly equivalent to a foliation of \mathbf{R}^{n} by parallel hyperplanes.

THEOREM IV.2. Geom (M) is a linear combination of $L_{0}(M), L_{1}(M), \ldots$, $L_{n-1}(M)$;

$$
\operatorname{Geom}(M)=\int_{D} \operatorname{Geom}(M, \Delta)=\sum_{i=0}^{n-1} c_{i} L_{i}(M),
$$

where c_{0}, \ldots, c_{n-1} are dimension constants.

COROLLARY IV.3. For $M^{n-1} \subset S^{n}$, one has

$$
\sum_{i=0}^{n-1} c_{i} L_{i}(M) \geq \beta(M),
$$

$\beta(M)$ the sum of the Betti numbers of M.

V. The geometry of submanifolds $M \subset S^{n}$ of arbitrary codimension

Similar results can be obtained in higher codimension. The construction of the foliation associated to a complete flag is unchanged. Therefore we can extend the results obtained in \mathbf{R}^{n} (see [C-L], [Fe], [L-R]).

THEOREM V.1. Let V be a compact manifold immersed in S^{n}. Then
$\operatorname{Geom}(V) \geq \sum \beta_{i}$,
where the β_{i} are the Betti numbers of V.
If V is the sphere S^{p} and is embedded, the condition

Geom $(V)<4$
implies that V is an unknotted sphere (topologically and differentiably for $p=1$, all n; $p=2 n=4 ; p \geq 5, n=p+2$).

The integral geometric construction requires one more step. For example, in the codimension 2 case ($V^{n-3} \subset S^{n-1}$), we need to consider the "quasi flag space" $D(n, n-2, n-1, n-2)$ of

$$
\{h \subset k \supset l, \operatorname{dim}(h)=n-2, \operatorname{dim}(k)=n-1, \operatorname{dim}(l)=n-2\} .
$$

Notice that the dimension of the fiber bundle \mathfrak{D} on V

$$
\mathcal{D}=\left\{x \in V, h_{x} \subset k \supset l, \operatorname{dim}(k)=n-1, \operatorname{dim}(l)=n-2\right\},
$$

where h_{x} is the vector space spanned by the geodesic sphere tangent at x to V, is $2(n-2)$, the same as that of the Grassmann manifold $G(n, n-2)$.

THEOREM V.2. A curve C embedded in S^{3} satisfies

$$
\begin{aligned}
& \int_{C}\left|k_{g}\right|+1 \geq 2 \pi \\
& \int_{C}\left|k_{g}\right|+1 \geq 4 \pi
\end{aligned}
$$

if C is knotted, and more precisely

$$
\int_{C}\left|k_{g}\right|+1 \geq 2 \pi \cdot(\text { bridge number of } C) .
$$

The first result was already proved by Banchoff [Ba]; the two others extend results of Fenchel, Fary and Milnor [Fe], [Fa], $\left[\mathrm{M}_{1}\right],\left[\mathrm{M}_{2}\right]$; and Sunday $[\mathrm{Su}]$.

REFERENCES

[Ba] T. Banchoff, Total central curvature of curves, Duke Math. Journal 37 (1970), 281-289.
[Ch] S. S. Chern, On the kinematic formula in integral geometry, Math. and Mechanica 16 (1966), 101-118.
[C-L] S. S. Chern and R. K. Lashoff, On the total curvature of immersed manifolds, II, Mich. Math. Journ. 5 (1958), 5-12.
[Fa] I. Fary, Sur la courbure totale d'une courbe gauche faisant un noeud, Bull. S.M.F. 78 (1949), 128-138.
[Fe] M. Fenchel, On total curvature of Riemannian manifolds I, Journ. Lond. Math. Soc. 15 (1940), 15-22.
[J-L] C. Jacobi and R. Langevin, Habitat geometry of marine benthic substrates: effect on early stages of colonization, Journal of Experimental Marine Biology and Ecology, to appear.
[K-M] N. Kuiper and W. Meeks, Total curvature of knotted surfaces, Invent. 77 (1984), 25-69.
[L] R. Langevin, Classe moyenne d'une sous-variété d'une sphère ou d'un espace projectif, Rend. Circ. Mat. di Palermo, serie 2, tomo 28 (1979), 313-318.
[L-S] R. Langevin and T. Shifrin, Polar varieties and integral geometry, Amer. Journ. math. 104 (1982), 553-605.
[L-R] R. Langevin and H. Rosenberg, On total curvature and knots, Topol. 15 (1976), 405-416.
[\mathbf{M}_{1}] J. Milnor, On the total curvature of knots, Annals Math. 52 (1949), 248-260.
[\mathbf{M}_{2}] J. Milnor, On the total curvature of closed space curves, Math. Scand. 1 (1953), 289-296.
[Sa] L. A. Santalo, Integral geometry and geometric probability, Encyl. of Math. and its applications, Addison Wesley (1976).
[SI] V. V. Slavski, Integral geometric relations with an orthogonal projection for surfaces, Sib. Math. Journ. 16 (1975), 275-284.
[Su] D. Sunday, The total curvature of knotted spheres, Bull. Amer. Math. Soc. 82 (1976), 140-142.

Remi Langevin

Université de Bourgogne
Laboratoire de Topologie, UMR 5584
9 ave. A. Savary
B.P. 400

21011 Dijon Cedex, France
Harold Rosenberg
Université de Paris
2, Place Jussieu
75251 Paris, France
Received September 27, 1995.

