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Fenchel type theorems for submanifolds of S"

Rémi Langevin and Harold Rosenberg

We dedicate this paper to the memory of Nicolaas Kuiper

The total curvature of compact hypersurfaces M of R" (jM \K\) îs related to the

topology of M and to the manner in which M îs embedded in R" K îs the Gauss-

Kronecker curvature of M, î e the déterminant of the second fundamental form
For curves C in R3, the theorems of Fenchel and Fary-Milnor, state the total

curvature of C îs at least 2n (with equahty precisely for convex planar curves) and

if C is knotted in R3 then Jc \k\ > 4tt, [Fe], [Fa], [M,], [M2]
Chern and Lashof observed the total curvature of Mk c R" is

L
where c is a constant depending only on n and k, Pn x

is the projective space of
hnes / through the ongin in RM and |// |(M, /) is the number of cntical points of the

projection of M to / Smce this projection is a Morse function for almost ail /, they
obtamed cfi as a minoration of the total curvature, fi the sum of the betti numbers

of M[C-L]
In particular for surfaces m R3 one has

JM

g the genus of M If a torus is knotted in R3, then the total curvature is at least

twice as large, i e, I6n [L-R] Results of this type for knotted surfaces of higher
genus in R3 hâve been obtamed by Kuiper and Meeks [K-M]

In this paper we estabhsh results of this nature for submanifolds of S" For
surfaces in S3, ît is not sufficient to consider jM \K\9 where Kis the extnnsic curvature
of M (consider the boundary of a small tubular neighborhood of a géodésie Any
two points of M differ by an isometry of S3 so the mtnnsic curvature of M is

constant, it is zéro by Gauss-Bonnet So \K\ 1 and JM \K\ is the area of M) In fact,

594



Fenchel type theorems for submanifolds 595

for curves C in S2, it's easy to see that Jc (\kg\ + 1) >2n, and equality holds
precisely when C is a géodésie; kg the géodésie curvature of C. However for surfaces

M in S3, it is still not enough to consider \M (\K\ + 1). One must add to \K\ -h 1, a

function hx(x) the average of the absolute values of the normal curvatures to M
at x. Then one has the desired results:

C(M) I

for certain constants c0, cu c2, and g the genus of M. Moreover, if M is knotted in

S\ then C(M) > 2n(2g + 4).
The function \Mhx has an interesting géométrie interprétation. It is the total

number of folds of M. We call this the 1-length of M. It is a one dimensional

measure of M; for M in R3 and tM the homothety of M by /, one has

Lx{tM) — tLx(M). In gênerai, for M a p dimensional submanifold of Rn or Sn, we
introduce /-length of M for every i<p. We then study the behaviour of /-length
through projections and intersections obtaining local and cinematic-type formulae.

Notice that hx{x) is not (except if M is convex) the first symmetric function of
curvature ox of M at x. Chern and Slavsky hâve studied \M ax, for M in Rw and

proved cinematic formulae for thèse functions [Ch], [SI].

The 2-length ofMc S3, L2(M\ is the area of M, L0(M) is the total curvature
of M. We define LX{M) as follows. Let Ibe a géodésie 2-sphere of S3 with x a

conjugate point of I (i.e., dist(x, I) n/2). Let p: S3 — {x, —x} -+Z be the projection

along the geodesics starting at x. Dénote by yz the critical values of piM.
Define

-2 I \yz\dZ,
71 JG(4,3)

where G(4, 3) is the Grassmann manifold of 3-planes through the origin of R4,

identified with the space of géodésie 2-spheres of S"3.

We prove LX{M) — n2 \Mhx. Also we establish

\y\dl2Vol G(4, 2)

where /e G(4, 2) is a géodésie of S3, and |y/| is the number of critical points of the

projection of M to / (along the géodésie sphères orthogonal to /).

Now one uses the cinematic formulae to relate L0(M) -f LX(M) 4- L2(M) to the

critical points of a Morse function on M. For this, we construct an "adapted"
singular foliation of S3.
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The theory is much simpler for curves on S2; we indicate the argument hère.

Let /e(j(3, 2) dénote a géodésie of S2 and for each yeP2 (y a pair of
antipodal points of S2), let !F(y) be the foliation of S2 (singular at y) by geodesics

passing through y.
We hâve

f \K\A\ WC,F(y))dy,
Je l Jpi

where \/u\(C, ^(y)) dénotes the number of contact points of C and ^(y). Also

#(Cnl))dy,

where \C\ dénotes the length of C. Hence

#(Cnl)dl]dy.
J

Ln Jy \Jl

Now for j 6 P2, if C intersects every le^(y), then C intersects every such / in at
least two points and

I #(Cnl)>2n

If C is disjoint from le^(y), then a moments thought shows there are at least

two points of contact of C with &(y). Thus |//|(C, ^(y)) > 2; so Jc (|fcj + 1) > In.
This illustrâtes the intégral géométrie technique but for curves the resuit is not
interesting since the last inequality is just an application of Fenchel's theorem for
curves in IR3 (k ^/A:2-!-1 is the curvature of C in R3).

For surfaces in S3 the argument requires the introduction of a foliation adapted
to a flag of géodésie sphères.

We remark that this notion of length has been applied in oceanography [J-L].

I. The length functions for submanifolds of R" and their cinematic formulae

Let M be a p-dimensional submanifold of Rw and let h be a / + 1 dimensional
linear subspace of R" (we will dénote by G(n, i + 1) the Grassmann manifold of ail
such h). The critical points of the orthogonal projection ph of M to h will be denoted
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by Fh (M) (or fh if there is no ambiguity) and we dénote the set of critical values

ofPh by yh, or y (M, h).
When p > i9 for almost every h e G(n9 i + 1), fh is almost everywhere an /-dimen-

sional submanifold of M and for almost every xeFh, Tx(fh) and h1 are transverse
in TX(M), so yh is a hypersurface of h in a neighborhood of ph{x).

We define the /-length functional as:

where \yh\ dénotes the volume of yh (when / 0, yh is a finite set and \yh\ is the
number of points in yh and the constant c is chosen so that if M is the boundary
of an s-tubular neighborhood of an /-dimensional submanifold C of an affine p + 1

dimensional subspace of R", then limf^0 Lt(M) \C\.

If tM dénotes a homothety of M by t > 0, then clearly

Ll(tM) t'Ll(M).

The constant c occurring in the définition of Lo is 1/2|PW_ {\9 since a sphère of
any dimension > 1 satisfies |y/| 2 for every line le G(n, 1). We will see shortly that

L0(M) is the total curvature of M.
Hère are some examples of 1-lengths of surfaces in R3:

Ll(M) -2
f \yh\dh.

71 Jc?(3,2)

If M is a round cylinder of height A, then yh is (for almost ail h) two parallel

segments of length À |cos 8 \ where 6 is the angle between the axis of M and the

plane h. Hence L,(M) L If M is a sphère of radius Z£, yA is a circle of radius R

and

7.1. 7%e local formulae

We define extrinsic curvature functions ht on AP c R", and we prove Lt(M)
c {a/ A,(*) rfx, where c c(«, /?, /).

Let us begin by Lo and L, of a surface M in R3. We know that

L0(M) —
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where |y/| is the number of critical points of the projection of M to /.

Let 0: M-*E be the map (f>(x) — (l(x),pl(x)(x)), where l(x) is the line through
the origin parallel to the normal line to M at x,pl(x)(x) is the orthogonal projection
of x to /(.x), and E is the tautological line bundle over P2. Let N= (fi(M) and H be

the horizontal plane field of the Riemannian fibration n: E-*P2.
Clearly n<fi is the Gauss map of M with |Jac(?r0)| |AT(jc)|, K the Gauss

curvature of M at x; so

where JacpH(x) is the Jacobian of the orthogonal projection (in E) of T^N to
H«x) H(x).

Hence

f \yt\dl= f \Jac(pH)\= f |JacC^)| lJac/^^1 rfx: f \K(x)\dx.
JP2 JN JM JM

The first equality is a spécial case of the coarea formula and the second is a change
of variables. Hence

±- f \K(x)\dx.
^K JM

This formula for the total curvature of M is the basis of the Chern-Lashof
theorem and easily généralises to R" [C-L].

For future calculations it is useful to introduce the following notation. Let
p\E-+B be a Riemannian fibration and NczE a submanifold transverse to the
fibers F(y)=p~l(y), yeB. Let H be the horizontal plane field of the fibration. At
xeN, Tx(N) is the orthogonal sum Tx(NnFx)+ V(x) where V(x) is a subspace
transverse to the fibers of dimension that of H(x). Dénote by Jac/?^(A) the Jacobian
of the orthogonal projection of V(x) to H(x). Then the coarea formula yields:

f \J*cPmx}\dx= f \F(y)nN\dy,
Jn Jb

and more generally, if <f>: M-*E is an immersion transverse to the fibers, 7V

<f>(M), then

|Jac 0| \JacpH(x)\ |Jac^w| dx \F(y)nN\ dy.
JM JN JB
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Now we dérive the local formula for a surface M in R\ Let / be a Une in the

tangent space toieM, and let \k(x, ï)\ be the module of the normal curvature of
M at x in the direction /; i.e., k{x, l) is the curvature of the plane curve Mn(vv © /),
vv the normal line to M at x.

We define

JP,(7\(Af))

When M is convex at jc, hx{x) is the mean curvature of M at jc.

PROPOSITION 1.2. For M a surface in R\

LX(M) - hx{x)dx.

Proof. Let n\ E E(3, 2) -> G(3, 2) G be the tautological line bundle,

E={heG,xeh}.
Let </>: PX(M)^E be the map

and let (j){Px(M)) N. We know that

\yh | dh Jac

so we compute the Jacobians.

Let / be a line through jc in TX{M), vx dénote the line normal to M at x, h l1
the subspace of R3 orthogonal to / and W the orthogonal to vA in h; cf. Figure 1.

We choose a basis of T(xl)(Px(M)) as follows:

- Uf is a unit vector tangent to the circle flber of Pi (M) at jc,

- Ur is a horizontal lift of a unit vector tangent to Fh at x,
- Ut is a horizontal lift of a unit vector tangent to (l®vx)n M at jc.

Also, let £/y be a horizontal lift (in E) of a unit vector tangent to yh at >\
The volume of the parallelepiped generated by the first three vectors is |cos 0\

where 8 is the angle between Txfh and h.

The image d(j)(Ur) is the vector ±cos(0)C/r The vector d(j)(Uf) and d(p(Ui) are

projected by the differential tffa of the projection ^r: E(3,2)->G(3,2) on two
orthogonal vectors of Tnt^x)G(39 2); the fîrst unitary and the second of norm
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Hence

and 1.2 follows by integrating over the fibers of Pi (M).

Remark. A différent proof of this can be found in [L-S] based on a Meusnier
formula.

Now we define the fonctions ht(x) when McRwisa hypersurface. Let /= /' be

an /-dimensional subspace of TX(M), and let v(x) be the normal Une to M at x.
Dénote by \K\(x, l) the absolute value of the Gauss-Kronecker curvature at jc of the

hypersurface Mn(/©v(x)) of /© v(x). Then we define

Figure 1
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*,(*) v
* f |* |(*, /) dl9

where G(TXM, i) is the /-dimensional subspaces of TX(M).
Now 1.2 generalizes to R".

PROPOSITION 1.3. The functions hn_t(x) localize the functions A (M); more
precisely,

hn _ t (x) cLt (M
JM

where the constant c dépends only on the dimensions.

Proof. Let G be the bundle over M whose fibers are the spaces G(TXM, /), / an
n — l—i dimensional subspace of TXM, and let E — E(n, i 4-1) -> G(n, i + 1) be the

tautological bundle.
Define (f>:G-+Eby

Notice that the dimension of G(M, n — 1 — /) is equal to the dimension of
N=[jheG{n^l)yh, which is in + n + i2-i-l.

Now the proof proceeds as in 1.2; we leave the détails to the reader.

7.4. The cinematic formulae

We will show that the /?-length of a submanifold M<=RW is equal to the

(p — /)-length of the sections of M by affine subspaces of codimension / (up to a

constant only depending on dimensions; we will dénote such constants by c hère).

The idea is to use the Cauchy formula and a projection in cascade.

Let D dénote the flag of ail pairs (h, L) where g£Gnp + x and L is an affine

subspace of h of codimension /.

When L is transverse to yh9 the points of yhnL are the critical points of the

projection of Mn{L®hL) to the vector subspace / determined by L. Let H
L® h±; H is an affine subspace of codimension i in R".

Since y(MnHJ) yhnL, we hâve

\yh\ c[ \y(MnHJ)\.
JL e A(h,p + 1 - i)
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Hence

Lp(M) c\ ([ \y(MnHJ)\\
JG(n,p + 1) \jA(h,p +1-0 /

Notice that D can be thought of as {HeA(n,n — i), le G(H,p+ 1 — i)}, hence

D is a Riemannian fibration over A(n,n — i) with fiber G(H,p+ 1 — /).
Now

Lp_t(MnH)= I \y(MnHJ%
JG(H,p + 1 - /)

hence one has the cinematic formula:

LP(M)-,-cf
JA(n,n - i)

IL Surfaces in S3

In this section we will define the length functionals of surfaces in S3 and
establish the local and cinematic-type formulae. There are technical difficultés that
arise hère (in contrast to R3) due to the fact that the distortion of the projection in
S3 to a géodésie sphère dépends on the point.

We begin with L2(M) the area of M) and the spherical Cauchy-Crofton
formula [Sa].

THEOREM II. 1. For M a compact surface in S3,

2(M) - I \Mn!\dl,
71 JG(4,2)

where l is a great circle of S3 (which we can think of as a 2-plane through the origin
o/R4), |Mn/| is the number ofpoints of Mni.

Proof Consider the map (/>: P(TS3/M)->G(4, 2), <^(x, L) / where / is the

great circle whose tangent at jc is L
Write the tangent space to G(4, 2) at /0 as an orthogonal sum:

2) TtQ{llxe 1} ® Tl(){l±Zl{hX},
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where Ilx is the géodésie 2-sphere at x orthogonal to /.

Write T(xL)(PTS3/M) V®H where V is the tangent space to the fiber and

H F-1. Then

where pL± is the orthogonal projection of TXM to Tx{Ilx) ZA Then

r
|Jac d(f>\ |cos

JP2P2

Since

f
JG(4,2) JG(4,2)

we hâve

\lnM\ n\M\.
JG(4,2)

Now we discuss LX(M). Let a (x, -x)e G(4, 1), be a pair of antipodal points
of S3 which are not on M. This point a détermines a projection p£: M^I where

T is the géodésie 2-sphere of S3 conjugate to a (i.e. dist (x, I) n/2). By définition

pz(y) is the point of I which is the intersection with I of the géodésie of S3

through a and y. Let FL be the critical points of pE and yr the critical values.

DEFINITION. LX{M) - (1/2tt2) ^4t3) \yz\dl.
The constant is chosen so that the 1-length of an e tubular neighborhood of a

curve C tends to the length of C as s-+0. This choice will be justified once we hâve

established the cinematic formulae for Lx.
Now just as in R3 we define an extrinsic fonction hx on M. Let k(x, l) be the

géodésie curvature at x of the curve r,nMin Ih where Lt is the géodésie 2-sphere

at x tangent to / and vx TX(M)X. Then define

n jpx(t
\k{xj)\dl
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THEOREM II.2. For M a compact surface in S\

Ll(M) ï

Proof For jceM, let Zx be the géodésie 2-sphere tangent to M at x. Let P be

the bundle over M with fiber the projective space P2:

Dénote by Z* the géodésie 2-sphere conjugate to the pair a (y, —y), and let

E=E(4, 3) -? G(4, 3) G be the tautological bundle:

E {(J, j> )/!" 0 géodésie 2-sphere, j 6 I}.

Then define (f)\ P-+E by:

By construction N (f)(P) is the union of the critical values yz\ N= {Jz yz (cf.

Figure 2; the polar curve fz is the set of critical points of the orthogonal projection
on I, and the critical values Fz is in

Then

f \yz\dZ~ \
JG43 JP

so we must calculate the Jacobians.

To do this we décompose T(xa)P and TN.
As y varies on I, I* spans a sphère S(Z) contained in G.

Let F be the 3-dimensional orthogonal complément of TyE in TN, at the point
w {Z*9pzsix)\ Write F=Fl®F2 (at x), where /\ is the lift of T£*(S(Z)) to F and

F2 is the orthogonal complément of Fï in F. So TN FX®F2® Tyz, at x. Let Hx
be the horizontal lift to H(E) of Tr*(S(r)), and let H2 be ^f in H(E).

Now define a splitting of T{xy)P, non orthogonal in gênerai, as follows. Write
TxM=z TXFE* -f L, where L is the Une tangent to the circle / joining x to y (this is

not orthogonal in gênerai). Let hx and h2 be the horizontal lifts to P of TXF£* and

L respectively.
We shall see that the matrix of pH ° d(j) is then:
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Figure 2

foc * *

0 Id *

\0 0 k(x9L)\sin0[

hère a is the Jacobian of the projection of Fz on yz and 6 is the arclength on /
between x and y. This matrix is computed with respect to the basis vectors
{/*!, Tix,OZ\, /*2} of the domain and the basis vectors {Tyz, HUH2) of the range.
We calculate the matrix of pH o dcf) on HX@H2\ identifying //, ©//2 with TG.

By définition of T
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The coefficient on satisfies: a|sin 9\ a0, where a0 is the Jacobian of the projection

of FZo on yro, when the géodésie sphère Io is orthogonal to / at x. This foliows
from lemma II.3, which we prove shortly.

By définition of Tz*(S{Z)\ d(p(T^y)Ix) is of the form:

It remains to détermine the component of d{p o (j)){h2) on H2. For that, we
foliow a point on the circle tangent at £, where Ç is a point moving on the curve
C of intersection of M with the géodésie sphère at x containing / and the normal
géodésie circle to M at x (cf. Figure 3). Figure 3 shows the analogous map for a

curve on S2: the length of the arc of the evolute (image of the arc dl between x and

Figure 3
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f is &(x)|sin 0\, up to first order, where 0 is the arc length along / between x and

y (since k(x) dcp/ds).
The same analysis applies in S3; one gets A:(x, /)|sin 8\.
The décomposition of TP is not orthogonal; the volume of the parallelepiped

generated by hl9 T(xv)Zx and h2 is a0.
The volume density on P(ZX) is |sin 9 d6 /\dcp\ where (0, (p) are polar coordi-

nates at x on the space P(IX) of pairs of antipodal points on Z\.
Hence

-f f
JM JP(

2n hx(x) dx.
JM

To complète the proof of theorem II.2 we now prove Lemma II.3.

LEMMA II.3. Let C(t) be a curve on a surface M embedded in R3. Assume C(t)
is not in the kernel of y at C(t), y the Gauss map of M. Then the characteristic Une

of the envelope of the family of tangent planes to M along C(t) is dy(C)L.

Proof The équations of the envelope are:

As an immédiate corollary of this lemma we hâve: if K(x) # 0 (so dy(x) is non
singular), ail the curves C through x (C on Af), such that the characteristic line

through x of the envelope of the family of planes TCU)M is a given line Z>, are

tangent at x to the line A such that dy(A D.

The analogous resuit in S3, using envelopes of géodésie sphères tangent to M
along a curve, follows from the following remark concerning cônes in R4, over
M a S3 and C(t) a curve on M. Then the envelope of the family TC(t)(Z), contains
the 2-plane (dy(C{t)))L, (orthogonal in TC{t)Z to dy(C(t))) whenever C(t) is not
contained in Ker dcp. This remark is clear since the équations of the 2-plane are as

before:
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We finish this section with a discussion of L0(M). By définition:

l—— f \7l\dl
G(4, 2)) JW2)2 Vol(G(4

where |y/| is the number of critical points of the projection of M to the géodésie /;
the projection along the (singular) foliation &(l) of géodésie 2-spheres orthogonal
to /. Notice that \yt\ is the number of points of contact of M and #X0, for almost
ail /. The constant is chosen so that L0(dB(x, s)) 1, for s-+0.

THEOREM II.4. Let M be a surface in S3 and K(x) be the extrinsic Gauss

curvature of M at x. Then

L0(M) -

Proof Let E £(4, 2) -> G(4, 2) G be the tautological fibration and let P(M)
be the bundle over M of the géodésie 2-spheres tangent to M. Define <f> : P -? E by:

<fi(x, y) (y,l is orthogonal to Ix at y).

Hère Ix is the géodésie sphère tangent to M at x. Let iV= <t>{P) and H be the

horizontal field of the bundle E-+G.
Take a basis of T(xy)P composed of a unitary frame tangent to Ix at y and two

horizontal unit vectors that project to two unitary vectors tangent to the principal
directions to M at x. Then it is clear that the proof of II.4 foliows from Lemma IL5
below.

First we define the 0-length of a curve C on S2:

Then we hâve:

LEMMA II.5. Let kg be the géodésie curvature of a curve Ce: S2. Then
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Proof. Let E E(3, 2) -> G(3, 2) G be the tautological fibration and P(C) the
bundle over C with fibers the géodésie circles of S2 tangent to C. Define </>: P(C) -»

^) (y, / is orthogonal to Z\ at 7).

Hère Z\ is the géodésie circle tangent to C at x. We hâve

so integrating on the fibers of P(C) we hâve

Since

r
lim \kg | 2tt,

we see that C0 2n.

Now we dérive a cinematic-type formula satisfied by L, (M).

THEOREM II.6. Ler M be a surface in S3. Then

LX(M) - I Lo(Mnl).
n JG(4,3)

constant is obtained by considering small sphères Sr Then Lx(St)~4t and

Proof. By définition,

Cr(4,3)

2The Cauchy-Crofton formula in S2 says:

G(3,2)
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The inverse image of the orthogonal projection onto I of the great circle / is a

sphère Ih The points of yrn/ are the critical points of the orthogonal projection
of linM onto /. Hence

[ \y£nl\ ^-J \p\(Z,nM,P,),
G(3,2) 47r J/>(4,3,2)

where Pt is the (singular) foliation of ll by geodesics orthogonal to /. Hère
D Z)(4, 3, 2) is the space of flags (21, /), Id/. The map /) h-»D, (Z z> l) h-> (/c 2T),

is an isometry of Z). Hence

!(J|/) -L f 47rL0(rnM) - f L0(InM),
4^ JG(4,3) ^ Jg(4,3)

which complètes the proof of II.6.

III. The Fenchel theorem for surfaces in S3

Let D Z)(4, 3, 2, 1) be the space of flags A (y c / c I) where ^ is a pair of
antipodal points of a géodésie / contained in a géodésie sphère I of S3. Given A,
let «^(y) be the foliation (singular) of I by the geodesics of I passing through y
and let ^(l) be the foliation of S3 by the géodésie sphères of S3 containing /.

For M a compact surface in S3 we define the geometry of M with respect to A,
by

Geom(M, A)=

where \ju\(MnI, ^(y)) is the number of points of contact of Mnl and ^(y), and

|/i|(Af, #X0) the number of contact points of M and <#"(/). If M is transvere to A

(i.e. y $ M and / and I are transverse to M) and if Mn I is in gênerai position with
respect to !F(y\ M in gênerai position with respect to A, then Geom(M, A) is well
defined. This holds for almost every A e D.

Hence we can define the geometry of M:

Geom(M) rr-r-^r Geom(M, A
Vol(Z)) jD
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Figure 4

THEOREM III 1 Geom(M) > 2g + 2, g the genus of M, and if M is knotted in
S3 Geom(M) > 2g + 4 (M onented)

Proof It suffices to prove the inequalities for Geom(M, A whenever M is
transverse to A and in gênerai position with respect to !F(y) and J^(/) To do this
we shall construct a foliation ^ J*(0 of S3 - B(x, t) for t > 0 small, xey, B(x, t)
the ^-ball of S3 centered at x, satisfying

- Geom(M, A) \/u\(M,^)
- $F is smoothly équivalent to a foliation of R3 by parallel planes,

- M is in gênerai position with respect to 3*

Then the standard Morse theory apphes and the theorem follows
Let / > 0 be chosen so that B(x, t) is disjoint from M Let Ix be one of the

hémisphères of I bounded by /, I Ix ul2, Ixr\Z2 l Let ^ be a one-dimen-
sional foliation of Z1, — B(x, t) as in Figure 4) Notice that / is a leaf of J^ (actually
/— B(x, t)) We require the leaves of J^ to be geodesics of Ix through y, outisde of
a small tubular neighborhood of / in Z1,

This foliation of Ix has a "Reeb-type" component near an arc x /, of / going
from — x to 3J5(jc, 0 (the left side of / in Figure 4) Notice that if C is a curve on
Z, transverse to ll9 then the foliation J*\ can be constructed so that #(Cnlx) the

number of contact points of C and the Reeb-type component of J^ It suffices to
construct ^ so the Reeb-type component is close enough to /,

Similarly, deflne a foliation J^ of I2 — B(x, t), with the Reeb type component of
J^ close to the other arc of /, î e / — /,, cf Figure 4

Now derme J^O), the trace of ^(e) on I will be J^uJ^, s= t

Each leaf a of J^ bounds a 2-disk in Zx (more precisely, each leaf of J% together
with an arc on 2?(;c, £)nl, joining the extremities of a, bounds a disk in Z,) Let
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ocx be a leaf of £\ as indicated in Figure 4, and consider the leaves of a of 3FX inside
the disk of Ix bounded by ocx. Let D(a) be the disk of Ix bounded by a. Let F(a)
be a 2-disk in S3 which is a thickened Z>(a); imagine F(a) as a thin pancake over
D(a). F(oc) is orthogonal to Ix and F(a)nl! a. In S3, T séparâtes S3 into two
balls Bx and Z?2, and F(a) intersects each bail in a 2-disk close to D(a).

Choose the />(a), a inside /)(<*! so that the \JaF((x) foliate a part of S3, and
ail the F(oc) are sufficiently flat so the foliated set is close to D(a). (One can do this

by pushing one's thumb into S3 — B(x, s), starting at aeôB(x9 s) to create the Reeb

component. One keeps on pushing almost until x. The thumb starts out as a very
thin thumb and then spreads out as a thin pancake till ax.)

Let 1(1) be the géodésie 2-sphere of S3 containing /, which is orthogonal to I
along / (in the bail Bx for example, if one imagines Ix as the upper hémisphère, then

1(1) nBx is the equatorial plane). Now foliate the région of S3 — B(x, e) between

F(ocx) and 1(1) — B(x, l) by "blowing out" F(ax) to 1(1). More precisely, the région
in question is topologically F(ocx) x [0, 1]. One puts the product foliation in the

région. However one does this so ail the leaves outside a small tubular neighbor-
hood of J, are leaves of ^(l), i.e. they coincide with géodésie sphères containing /,

outside of a tubular neighborhood of I.
This defines ^(s) on half of S3 - B(x, s). To extend to the other half, one does

the same thing we just did, blowing down to the foliation by thin pancakes close to
the foliation J^ of Z2. In fact, if fi is the géodésie of S3 through y and orthogonal
to Z1, then one extends J*(e) by rotating ^(s) by n around p.

By construction, ail the leaves of ^(s), outside a tubular neighborhood of I,
are parts of the géodésie sphères of ^(ï). Now if M is a surface in S3, transverse

to I, y $ M (i.e. x $ M and — x $ M) and M in gênerai position with respect to ïF(y)
and ^(/), then constructing ^(e) so that the tubular neighborhoods of / (to define

&\) and of r, are small, one sees that Geom(M, A) |//|(M, ^(s)). A moments

inspection shows ^(e) is équivalent to a parallel foliation of R3. This complètes the

proof of Theorem III. 1.

THEOREM III.2. Let M be a compact surface in S3. Then Geom(M) is a linear
combination of L0(M), LX(M) and L2(M):

Geom(M) n3L2(M) + 4n3Lx(M) + 2n2 Vol G(4, 2)L0(M).

Proof We hâve

|/nM| 7r2

JD JG(4,
byll.l.
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Also

£>(4,3,1)
\ti\(Mn£,&(y)) n\

JD J£>(4,

n
JG(4,

by II.6.
G(4,3)

Finally

I [
G(4,2)

2tt2 Vol(G(4, 2))Lo(M) by définition of L0(M).

COROLLARY III.3.

Geom(M) n3 + 2&A, (*) 4- ^ Vol G(4, 2)|AT(jc)|.

This follows immediately from Theorem III.2 and the local foraiulae.

IV. Geometry of Mttl c 5"

Let D D(n, n - 1,..., 1) be the space of flags A (1° c I1 c • • • c In S")
each I1 and /-dimensional géodésie sphère of Sn. Define &(i, i + 2) to be the

(singular) foliation of Il + 1 by géodésie /+1 sphères that contain I1. Dénote

Mnl' + 2by M, when M is in gênerai position with respect to A (we subsequently
assume this).

We define the geometry of M with respect to A.

Geom(M, A)

As in the proof of III. 1 one has:

THEOREM IV. 1. Let Mn~x c5" be in gênerai position with respect to theflag
A, Then there is an s>0 and foliation & &(A ofS" - B(x, s), x e 1°, satisfying:
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- Geom(M, A) \n\(M9 &\ and

- ïF is smoothly équivalent to a foliation of R" by parallel hyperplanes.

THEOREM IV.2. Geom(M) is a linear combination of L0(M), L,(M),

r

JD
Geom(M)= Geom(M, A)=

JD

where c0,.. cn_, are dimension constants.

COROLLARY IV.3. For M"~x c S\ one has

/? (M) the sum of the Betti numbers of M.

V. The geometry of submanifolds MczS" of arbitrary codimension

Similar results can be obtained in higher codimension. The construction of the

foliation associated to a complète flag is unchanged. Therefore we can extend the

results obtained in R" (see [C-L], [Fe], [L-R]).

THEOREM V.l. Let V be a compact manifold immersed in S". Then

where the /?, are the Betti numbers of V.

If V is the sphère Sp and is embedded, the condition

Geom(F)<4

implies that V is an unknottedsphère (topologically and differentiably for p= 1, ail n;

p 2 n 4; p > 5, n =/? + 2).
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The intégral géométrie construction requires one more step For example, in the
codimension 2 case (V"~3 c S""1), we need to consider the "quasi flag space"
D(n, n-2,n-\,n-2) of

{hczk^l, dim(A) n - 2, dim(A:) n - 1, dim(/) « - 2}

Notice that the dimension of the fiber bundle D on V

£ {xe Mv c A: => /, dim(it) « - 1, dim(/) n - 2},

where /zx îs the vector space spanned by the géodésie sphère tangent at x to V, îs

2(n — 2), the same as that of the Grassmann mamfold G(n, n — 2)

THEOREM V 2 A curve C embedded in S3 satisfies

// C is knotted, and more precisely

kg | + 1 > 2n {bridge number of C)J>
The first resuit was already proved by Banchoff [Ba], the two others extend

results of Fenchel, Fary and Milnor [Fe], [Fa], [MJ, [M2], and Sunday [Su]
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