A Kleinian group with contractible quotient not simply connected at infinity.

Autor(en): Cooper, Daryl / Long, Darren
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 71 (1996)

PDF erstellt am: 01.07.2024
Persistenter Link: https://doi.org/10.5169/seals-53834

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A Kleinian group with contractible quotient not simply connected at infinity

Daryl Cooper* and Darren Long**

Abstract. We give an example of a co-compact Kleinian group Γ which contains a subgroup Γ_{0} having the property that $\mathbb{H}^{3} / \Gamma_{0}$ is contractible but not simply connected at infinity.

1. Introduction

The purpose of this article is to prove the following theorem:
THEOREM 1.1. There is a hyperbolic 3-orbifold \tilde{X} homeomorphic to a contractible 3-manifold without boundary that is not simply connected at infinity. The singular locus of the orbifold \tilde{X} is a circle at which the cone angle is π. Furthermore \tilde{X} is an orbifold covering of a closed hyperbolic orbifold X which is homeomorphic to S^{3} and the singular locus of X is a link of two components at which the cone angle is π.

We recall that a hyperbolic 3-orbifold is the quotient of \mathbb{H}^{3} by a discrete group of hyperbolic isometries. The theorem may thus be reformulated as:

REFORMULATION. There is a co-compact Kleinian group Γ which contains an infinitely generated subgroup Γ_{0} having the property that $\mathbb{-}^{3} / \Gamma_{0}$ is contractible but not simply connected at infinity. There are two conjugacy classes of torsion element in Γ and each has order two.

This result is perhaps somewhat surprising. Of course Thurston [Th2] has shown that many closed 3-manifolds have hyperbolic structures. Furthermore, the fact that there is a universal hyerbolic link [Th3, HLM] implies that every closed orientable 3-manifold has a hyperbolic orbifold structure. However such general

[^0]results do not seem to predict the existence of an example of this type. The orbifold \tilde{X} is an irregular orbifold covering of a closed hyperbolic orbifold X which is S^{3} with a singular locus the link of two components shown in Fig. 1. The cone angle around each component is π. It is an unresolved question whether a closed 3-manifold can be covered by a contractible manifold other than Euclidean space. However, it has been shown that many contractible manifolds cannot do this [My, Wr]. Our examples shows that this can almost happen in the sense that the closed orbifold X has such an orbifold cover. Perhaps the most surprising feature of our example is that we could prove that is exists at all. It will be seen in the construction that several fortuitous accidents combine to enable the construction to succeed. For a more general definition of orbifold, see [Mo]. The authors thank the referee for finding errors in the original proof of 1.2(2) and for other helpful comments.

Figure 1

Figure 2

Let Γ_{1} and Γ_{2} be the pair of graphs embedded in S^{3} shown in Fig. 2. Each graph is homeomorphic to the graph shown in Fig. 3, which we call a theta-curve. We will denote by M the compact 3 -manifold $S^{3}-\operatorname{int}\left(N_{1} \cup N_{2}\right)$ where N_{i} is a regular neighborhood of Γ_{i}. Thus ∂M consists of two genus 2 surfaces $\partial_{i} M=\partial N_{i}$, for $i=1$, 2. The proof of the theorem depends on the following technical result the proof of which is deferred to section 2 .

PROPOSITION 1.2.

(1) M has incompressible boundary.
(2) $\pi_{1}(M)$ contains no $\mathbb{Z} \times \mathbb{Z}$ subgroup.
(3) Every properly embedded annulus A in M is isotopic rel ∂A into ∂M.
(4) M contains no essential 2 -sphere.

There is an involution τ of S^{3} given by rotation around the circle C shown in Fig. 4 which exchanges Γ_{1} and Γ_{2}. The restriction of this to M gives an involution, also called τ, of M which exchanges the boundary components of M.

Let $\phi: \partial_{1} M \rightarrow \partial_{1} M$ be a diffeomorphism with ϕ^{2} the central element in the mapping class group of $\partial_{1} M$ and such that ϕ exchanges the un-oriented meridians of Γ_{1} with the un-oriented longitudes. To be precise we require that $\phi\left(l_{i}^{1}\right)=m_{i}^{1}$ and $\phi\left(m_{i}^{1}\right)=l_{i}^{1-1}$ for $i=1,2$, where m_{1}^{1}, m_{2}^{1} are the meridians of Γ_{1} and l_{1}^{1}, l_{2}^{1} are the longitudes of Γ_{1} shown in Fig. 5. Similarly we define meridians m_{1}^{2}, m_{2}^{2} and the longitudes l_{1}^{2}, l_{2}^{2} of Γ_{2} to be the images under τ of the corresponding loops for Γ_{1}.

Figure 3

Figure 4

To see that such ϕ exists, consider the genus 2 surface $\partial_{1} M$ as the union of two punctured tori. A punctured torus is a punctured square with opposite sides identified. A quarter rotation of the square gives an order 4 symmetry of the punctured torus, see Fig. 6. Then ϕ is the map of $\partial_{1} M$ which restricts to the above map on each punctured torus.

Take 2 copies of M which are denoted by M and $h(M)$ where $h: M \rightarrow h(M)$ is a diffeomorphism. Define an involution $\bar{\tau}$ on the disjoint union of M and $h(M)$ by $\bar{\tau} \mid M=\tau$ and $\bar{\tau} \mid h(M)=h \tau h^{-1}$. Now construct a closed 3-manifold N by identifying the boundary of M with the boundary of $h(M)$ as follows. Identify $\partial_{1} M$ with $h\left(\partial_{1} M\right)$ via $\phi_{1}=h \phi$. Identify $\partial_{2} M$ with $h\left(\partial_{2} M\right)$ via $\phi_{2}=\bar{\tau} h \phi \bar{\tau}$. Then the involution $\bar{\tau}$ passes to the quotient to give a well defined involution, also denoted $\bar{\tau}$, of N. See Fig. 7.

Then proposition 1.2 implies that N is Haken. Suppose that $\pi_{1} N$ contains a $\mathbb{Z} \times \mathbb{Z}$ subgroup. The Torus theorem implies that N contains an essential torus T,

Figure 5

Figure 6
by $1.2(2) T$ cannot be isotoped into either copy of M. Thus $T \cap M$ contains an essential non-boundary parallel annulus which is impossible by 1.2(3). Thus N contains no $\mathbb{Z} \times \mathbb{Z}$ subgroup. Thus Thurston's uniformization theorem implies that N has a hyperbolic structure. It follows from Mostow rigidity that $\bar{\tau}$ is homotopic to an isometry of N. A complete proof of Thurston's Uniformization theorem has been published by McMullen [McM1, McM2]. In fact it can can be shown that N does not fiber over the circle, and so the particular case of the uniformization theorem which we appeal to is Haken manifolds that don't fiber.

If we knew that $\bar{\tau}$ was conjugate to an isometry by a diffeomorphism isotopic to the identity then we could conclude that $N / \bar{\tau}$ was a hyperbolic orbifold. Instead we argue as follows. The involution, $\bar{\tau}$ of N has 1 dimensional fixed locus $C \cup h(C)$, and

Figure 7
so by Thurston's Orbifold Theorem [Th, Ho], the quotient has a geometric decomposition. However since the 2-fold orbifold (branched) cover gives N back, the quotient $N / \bar{\tau}$ must in fact be a hyperbolic orbifold. Set $X=N / \bar{\tau}$, a closed, orientable, hyperbolic orbifold.

The referee has pointed out that we may avoid appealing to the Orbifold Theorem as follows. By a result of Tollefson [To] two involutions of a Haken 3 -manifold that are homotopic are in fact conjugate by a diffeomorphism isotopic to the identity provided that the manifold is not a Seifert fiber space and $H_{1}(M)$ is infinite. We may apply this to the manifold N and to $\bar{\tau}$ and the isometry provided by Mostow rigidity.

Now $X=(M / \tau) \bigcup_{\Phi_{1}} h(M / \tau)$ identified along $\partial(M / \tau)$ by the map

$$
\bar{\phi}_{1}: \partial(M / \tau) \rightarrow \partial(h(M / \tau))
$$

which is covered by ϕ_{1}. Let $\pi: N \rightarrow N / \tau$ be the projection; we will also use π for the restriction $\pi: M \rightarrow M / \tau$. Now N / τ is S^{3}, and Fig. 8 shows $\pi\left(\Gamma_{1}\right)=\pi\left(\Gamma_{2}\right)$ and $\pi(C)$. The graph $\pi\left(\Gamma_{1}\right)$ is easily seen to be isotopic in S^{3} to an un-knotted theta curve, thus $\pi(M)=S^{3}-N\left(\pi \Gamma_{1}\right)$ is a genus 2 handlebody H. The branch locus $\pi(C)$ is shown in a standard handlebody in Fig. 9. The following result is crucial to our construction, and appears to be a fortuitous accident:

LEMMA 1.3. $\pi\left(l_{1}^{1}\right)$ and $\pi\left(l_{2}^{1}\right)$ bound discs in H.
Proof. We sketch two proofs. First the curves $\pi\left(l_{1}^{1}\right)$ and $\pi\left(l_{2}^{1}\right)$ are shown in $H=S^{3}-N\left(\pi \Gamma_{1}\right)$ in Fig. 10. A little manipulation shows that these curves are unlinked from $\pi\left(\Gamma_{1}\right)$ and are unknotted. The second proof is to calculate the (free) homotopy classes of l_{1}^{1}, l_{2}^{1}. One then adds the relations which identify an element of

Figure 8

Figure 9
$\pi_{1}(M)$ with its image under τ_{*} and checks that l_{1}^{1}, l_{2}^{1} are killed by this. This calculation is shown in Fig. 11 where we have made the identifications induced by τ_{*} writing down the Wirtinger presentation of $\pi_{1}(M)$. Thus $\pi\left(l_{1}^{1}\right), \pi\left(l_{2}^{1}\right)$ are simple closed curves in the boundary of the handlebody H which are inessential in H and thus bound discs in H.

Figure 10

Figure 11

The curves $\pi\left(m_{1}^{1}\right), \pi\left(m_{2}^{1}\right)$ are longitudes of H, and it follows from (1.3) that X is topologically S^{3} since the handlebodies M / τ and $h(M / \tau)$ are glued together by identifying meridians to longitudes via ϕ_{1}. As a hyperbolic orbifold, H contains a singular locus, a topological circle, with cone angle π, shown in Fig. 8 and also in Fig. 9. Thus X has singular locus a link of 2 components $C_{1} \cup C_{2}$ each with a cone angle of π, this link is shown in Fig. 1. The linking number of C_{1} with C_{2} is zero, in fact since C_{1} bounds a Seifert surface in H, we see that $C_{1} \cup C_{2}$ is a boundary link in S^{3}. Thus there is a homomorphism from $\pi_{1}\left(S^{3}-\left(C_{1} \cup C_{2}\right)\right)$ onto the free group of rank 2 . This in turn maps onto $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ where the meridians of C_{1} and C_{2} map to the generators of order 2 in $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. This determines a homomorphism $G \rightarrow \mathbb{Z}_{2} * \mathbb{Z}_{2}$ where G is the orbifold fundamental group of X. Now let \tilde{X} be the irregular orbifold covering space of X corresponding to the subgroup $\left\langle\alpha_{1}\right\rangle$ of order 2 in $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ generated by the meridian α_{1} of C_{1}. Thus \tilde{X} is a hyperbolic orbifold.

LEMMA 1.4. Denoting the normal closure by $\langle\cdot\rangle_{N}$ we have:
(1) l_{1}^{1} and l_{2}^{1} are trivial in $\pi_{1} M \mid\left\langle m_{1}^{2}, m_{2}^{2}\right\rangle_{N}$.
(2) l_{1}^{2} and l_{2}^{2} are trivial in $\pi_{1} M /\left\langle m_{1}^{1}, m_{2}^{1}\right\rangle_{N}$.

Proof. Referring to Figs. 2 and 5, the manifold obtained from M by filling in

Figure 12
$N\left(\Gamma_{2}\right)$ is seen to be a handlebody in which l_{1}^{1}, l_{2}^{1} bound discs. From this it follows that after attaching 2 -handles to $\partial_{1} M$ along meridians m_{1}^{2}, m_{2}^{2} that l_{1}^{1}, l_{2}^{1} bound discs, this proves (1). Applying the involution τ of M proves (2).

Proof of Theorem. The orbifold \tilde{X} is obtained by glueing copies of M to a single copy of H using ϕ_{1} and ϕ_{2} to do the glueing, as shown in Fig. 12. We calculate the topological (not orbifold) fundamental group $\pi_{1}(\tilde{X})$ by applying Van Kampen's theorem to this decomposition to show that X is simply connected. For each positive integer n let M_{n} be a copy of M and let H_{n} denote the union of H and the first n copies of M with boundaries identified appropriately. Then \tilde{X} is the union of the increasing family of submanifolds H_{n}. The boundary ∂H_{n} is a component of M_{n}, a genus two surface with copies l_{1}^{n}, l_{2}^{n} of l_{1}, l_{2} marked on it.

Note that H is attached to M_{1} by the map ϕ_{1} which identifies the longitudes $\pi l_{1}^{2}, \pi l_{2}^{2}$ in H with m_{1}^{1}, m_{2}^{1} in M, but $\pi l_{1}^{2}, \pi l_{2}^{2}$ are trivial in $\pi_{1}(H)$ by the lemma 1.3, and so m_{1}^{1}, m_{2}^{1} are trivial in $\pi_{1}\left(H \cup_{\phi_{1}} M\right)$. By lemma $1.4, l_{1}^{2}, l_{2}^{2}$ are trivial in $\pi_{1}\left(H \cup_{\phi_{1}} M\right)$, and these are identified by ϕ_{2}^{-1} to m_{1}^{1}, m_{2}^{1} in the second copy of M in \tilde{X}. Thus these loops are trivial in $\pi_{1}\left(H \cup_{\phi_{1}} M \cup_{\phi_{-}^{-1}} M\right)$. Continuing in this way, we see that $\pi_{1}(\tilde{X})$ is trivial. A detailed argument will now be given.

We claim that H_{n} is a handlebody and that l_{1}^{n}, l_{2}^{n} bound discs in H_{n}. Indeed Lemma (1.3) implies this for the case that $n=0$. Suppose inductively this is true for H_{n} then since l_{1}^{n}, l_{2}^{n} bound discs in H_{n} it follows that H_{n+1} is obtained from M_{n+1} by attaching 2 -handles to M_{n+1} along the curves m_{1}^{n+1}, m_{2}^{n+1} in ∂M_{n+1} to which l_{1}^{n}, l_{2}^{n} are identified. One then caps off the resulting two-sphere boundary component with a 3 -handle to obtain H_{n+1}. This proves the claim.

Thus there is a homeomorphism $\theta: H_{n+1} \rightarrow S^{3}-\operatorname{int}\left[N\left(\Gamma_{1}\right)\right]$ taking H_{n} to $N\left(\Gamma_{2}\right)$ and taking M_{n+1} onto $S^{3}-\operatorname{int}\left[N\left(\Gamma_{1}\right) \cup N\left(\Gamma_{2}\right)\right]$. We show below that the map induced by inclusion

$$
\left(i_{n}\right)_{*}: \pi_{1}\left(H_{n}\right) \rightarrow \pi_{1}\left(H_{n+1}\right)
$$

has infinite cyclic image contained in the commutator subgroup of $\pi_{1}\left(H_{n+1}\right)$. It follows from this that $\left(i_{n+1} \circ i_{n}\right)_{*}=0$ and thus that \tilde{X} is simply connected.

Since H_{n} is a handlebody in which l_{1}^{n}, l_{2}^{n} bound discs it follows that $\pi_{1}\left(H_{n}\right)$ is freely generated by the copies m_{1}^{n}, m_{2}^{n} of m_{1}, m_{2} on ∂H_{n}. These are identified to copies of l_{1}, l_{2} on ∂M_{n+1}. Now $\theta\left(m_{1}^{n}\right), \theta\left(m_{2}^{n}\right)$ are l_{1}^{2}, l_{2}^{2} (recall the identification of
∂H_{n} with a component of ∂M_{n+1} swaps meridians and longitudes.) Referring to Figs. 2 and 5 (with τ applied which relabels Γ_{1} as Γ_{2}), one sees that the loops l_{1}^{2}, l_{2}^{2} in $S^{3}-N\left(\Gamma_{1}\right)$ are both homotopic rel basepoint to the loop E shown in Fig. 4. One also sees that E is homologically unlinked from Γ_{1} and thus lies in the commutator subgroup of $\pi_{1}\left(S^{3}-N\left(\Gamma_{1}\right)\right)$; This proves the claim and completes the proof that \tilde{X} is simply connected.

We next show that $\pi_{1}(\tilde{X}-\operatorname{int}(H))$ is not finitely generated. Now $\tilde{X}-\operatorname{int}(H)$ is obtained by glueing copies of M together using the maps $\phi_{1}, \phi_{2} . M$ has incompressible boundary, and it is clear that incl $\boldsymbol{*}_{*}: \pi_{1}\left(\partial_{1} M\right) \rightarrow \pi_{1}(M)$ is not surjective, otherwise it would be an isomorphism. This proves the claim. If \tilde{X} is simply connected at infinity then there is an open set U disjoint from the compact set H and which has compact complement and such that $\pi_{1}(U)$ maps to zero in $\pi_{1}(\tilde{X}-H)$. Thus $\pi_{1}(\tilde{X}-H)$ is the image of π_{1} of some compact submanifold of $\tilde{X}-\operatorname{int}(H)$, and is thus finitely generated, a contradiction.

2. Proof of $\mathbf{1 . 2}$

We now turn to proving proposition 1.2 We will consider a particular 2-fold branched convering $p: S^{3} \rightarrow S^{3}$ branched over the circle E contained in Γ_{2} shown in Fig. 4. The restriction of p to $\tilde{M}=p^{-1}(M)$ gives an unbranched 2 -fold cover $p: \tilde{M} \rightarrow M$. Set $\tilde{\Gamma}_{\mathrm{i}}=p^{-1}\left(\Gamma_{i}\right)$ and $\tilde{N}_{i}=p^{-1}\left(N_{i}\right)$ then \tilde{N}_{i} is a regular neighborhood of $\tilde{\Gamma}_{i}$ and the graphs $\tilde{\Gamma}_{i}$ embedded in S^{3} are shown in Fig. 13. Now \tilde{N}_{2} is a genus-3 handlebody and \tilde{N}_{1} is the disjoint union of genus- 2 handlebodies. The two

Figure 13

Figure 14
components of $\partial_{1} \tilde{M}$ will be denoted by G_{1} and G_{2}, each of which is a closed genus-2 surface. Note that $\tilde{M}=S^{3}-\operatorname{int}\left(\tilde{N}_{1} \cup \tilde{N}_{2}\right)$.

LEMMA 2.1. $\tilde{M} \cup \tilde{N}_{2}$ is diffeomorphic to $G_{1} \times I$.
Proof. Slide $\tilde{\Gamma}_{1}$ around to obtain the configuration in Fig. 14, which clearly gives $G_{1} \times I$.

From the lemma we see that $\pi_{1}\left(G_{1}\right)$ injects into $\pi_{1}\left(\tilde{M} \cup \tilde{N}_{2}\right)$ under the map induced by inclusion, and therefore also injects into $\pi_{1}(\tilde{M})$. Since $\partial_{1} M$ lifts to G_{1} in \tilde{M}, it follows that $\pi_{1}\left(\partial_{1} M\right)$ injects into $\pi_{1}(M)$. Thus $\partial_{1} M$ is incompressible, and by using the involution τ of M, one sees that $\partial_{2} M$ is also incompressible, proving 1.2(1).

If M contains an essential 2 -sphere S then S must separate Γ_{1} from Γ_{2} otherwise by the Schönflies theorem S would bound a ball. Now S lifts to a 2 -sphere \tilde{S} in \tilde{M} which separates $\tilde{\Gamma}_{1}$ from $\tilde{\Gamma}_{2}$. However inspection of Fig. 13 reveals that each component of $\tilde{\Gamma}_{1}$ and $\tilde{\Gamma}_{2}$ are algebraically linked in S^{3} thus \tilde{S} cannot separate them. This proves S cannot exist, establishing 1.2(4).

Consider the sphere S in S^{3} shown in Fig. 20, which meets $\left(\Gamma_{1} \cup \Gamma_{2}\right)$ in 4 points. Then S separates S^{3} into twe closed balls B_{1} and B_{2} and S may be chosen so that τ exchanges these balls. We may arrange that S meets $N\left(\Gamma_{1} \cup \Gamma_{2}\right)$ standardly in 4 discs, each of which contains one pont of $\left(\Gamma_{1} \cup \Gamma_{2}\right)$. Set $S_{-}=M \cap S$, a 4-punctured sphere, $Q_{i}=M \cap B_{i}$ for $i=1,2$. Then $S_{-}=\partial Q_{1} \cap \partial \mathrm{Q}_{2}$.

LEMMA 2.2. S_{-}is incompressible in both Q_{1} and Q_{2}.
Proof. Suppose D is a properly embedded disc in Q_{1} with $\partial D \subset S_{-}$. Then D separates B_{1} into two balls and if D compresses S_{-}then Γ_{1} must lie on one side of D and Γ_{2} on the other side of D. Thus $\pi_{1}\left(Q_{1}\right)$ splits as a free product. Now there is a loop γ in a neighborhood of Γ_{2} which is a commutator of meridians in Γ_{1} and Γ_{2}. Thus γ lies on the same side of D as Γ_{2} but such a commutator cannot be disjoint from D. Thus there is no compressing disc for S_{-}. Since S_{-}is incompressible in Q_{1}, applying the involution τ we see that S_{-}is also incompressible in Q_{2}.

LEMMA 2.3. Q_{1} is a genus-3 handlebody.
Proof. Q_{1} is the complement in S^{3} of an open regular neighborhood of the graph in S^{3} shown in Fig. 21. By sliding this graph, one obtains the graph in Fig. 22 , the complement of which is clearly a genus- 3 handlebody.

Now suppose that M contains an essential torus T. Then we may assume T is transverse to S_{-}and has the least possible number of circles of intersection with

Figure 15(a)-(c)

Figure 15 (d-f)

Figure 15 (g)
S_{-}. Since S_{-}is incompressible it follows that every circle of intersection is essential in T. Since a handlebody contains no essential torus, by (2.3) T must have non-empty intersection with S_{-}. Thus S_{-}separates T into components each of which is an annulus and none of these annuli can be isotoped rel boundary into S_{-}. Let A be such an annulus properly embedded in Q_{1} with boundary $\partial A=\alpha_{1} \cup \alpha_{2}$ two disjoint circles in the four punctured sphere S_{-}. These circles are essential in S_{-}. They cannot be isotopic in S_{-}because this would give a torus K consisting of the union of A and an annulus in S_{-}. But Q_{1} is a handlebody so K compresses and thus A can be isotoped into S_{-}a contradiction.

Figure 16

Figure 17

Now α_{1} is a simple closed curve on the 4 punctured sphere S_{-}and if α_{1} has 2 punctures on either side then since $\alpha_{1}=\alpha_{2}$ in $H_{1}\left(Q_{1}\right)$ one sees that α_{2} must also have 2 punctures on either side. But since α_{1} and α_{2} are disjoint this means that they are isotopic, a contradiction. It follows that α_{1} has one puncture on one side and 3 punctures on the other side. Again considering $H_{1}\left(Q_{1}\right)$ one sees that α_{2} must also have one punctured on one side and that there are only two possibilities for α_{1}, α_{2} up to isotopy. Either they are the two meridians of Γ_{1} on S_{-}or they are the two meridians of Γ_{2} on S_{-}. Referring to Fig. 20 we see that the first case is possible, there is an annulus in a neighborhood of Γ_{1} in Q_{1}. However the second case is impossible. One way to see this is to observe that the annulus provides a free homotopy in Q_{1} between the two meridians of Γ_{2} on S_{-}. One calculates these two

$\tilde{\boldsymbol{\alpha}}$

Figure 18

Figure 19
meridians using the Wirtinger presentation and since $\pi_{1} Q_{1}$ is a free group the fact that these two elements are not conjugate is visible.

It follows that every component of $T \cap S_{-}$is a meridian of Γ_{1} but using the involution τ the above analysis applied to Q_{2} implies that these curves must also be meridians of Γ_{2} and so $T \cap S_{-}$is empty, a contradiction. This proves 1.2(2)

Suppose now that M contains a properly embedded non-boundary parallel annulus A. Using the involution τ we may assume that A meets $\partial_{1} M$. Then $p^{-1}(A)$ consists of either one or two components each of which is a non-boundary parallel annulus properly embedded in \tilde{M}. Choose a component \tilde{A} of $p^{-1}(A)$, and note that

Figure 20

Figure 21
\tilde{A} meets $\partial_{1} \tilde{M}$. The covering $p: \tilde{M} \rightarrow M$ is regular and so there is a covering transformation exchanging G_{1} and G_{2}. Thus we may assume that a boundary component of \tilde{A} lies in G_{1}. The boundary of \tilde{A} consists of 2 disjoint essential simple closed curves, γ, δ in $\partial \tilde{M}$ and we label them so that γ lies in G_{1}. We will now distinguish 3 cases, according to whether the second boundary component δ of \tilde{A} lies in g_{1}, G_{2} or $\partial_{2} \tilde{M}$.

First suppose that δ is contained in G_{2}. By lemma 2.1, $\tilde{M} \cup \tilde{N}_{2}=G_{1} \times I$ and we may do an ambient isotopy of $G_{1} \times I$ so that $\tilde{A}=\gamma \times I$ is vertical in $G_{1} \times I$, where γ is some essential simple closed curve in G_{1}. The image of $\tilde{\Gamma}_{2}$ under this isotopy must be disjoint from $\gamma \times I$. Let Y be the graph in $G_{1} \times I$ shown in Fig. 15(g), and $p_{1}: G_{1} \times I \rightarrow G_{1}$ be projection onto the first factor.

LEMMA 2.4. $P_{1 *} \Pi_{1}(Y)$ is conjugae to $P_{1 *} \Pi_{1}\left(\tilde{\Gamma}_{2}\right)$ in $\Pi_{1}\left(G_{1}\right)$.
Proof. This is done in the sequence of figures $15(\mathrm{a})$ to $15(\mathrm{~g})$. First, $\tilde{\Gamma}_{2}$ is homotoped from the position in Fig. 13 to that in Fig. 15(a). Now observe that there are 2 distinct loops in $\tilde{\Gamma}_{2}$ which are homotopic to each other in $G_{1} \times I$. Let Y^{\prime} be the graph in $G_{1} \times I$ shown in Fig. 15(b). Then $p_{1 *} \pi_{1}\left(Y^{\prime}\right)=p_{1 *} \pi_{1}\left(\Gamma_{2}\right)$. Perform

Figure 22
the sequence of homotopies of Y^{\prime} in $G_{1} \times I$ shown in Figs. $15(\mathrm{c})$ to $15(\mathrm{~g})$ to transform Y^{\prime} into Y.

The graph Y shown in Fig. $15(\mathrm{~g})$ lies in a regular neighborhood of a component of $\tilde{\Gamma}_{1}$. The image of Y and G_{1} under the projection p_{1} is shown in Fig. 16. Topologically Y is a wedge of two circles, the projection of which are the two loops α, β in G_{1} shown in Fig. 16. The vertex of Y projects to the point v in Fig. 16 on the intersection of α and β. Thus $p_{1}\left(\tilde{\Gamma}_{2}\right)$ contains 2 loops which are homotopic to the 2 loops α and β in G_{1} shown in Fig. 16. The loops α and β fill G_{1} and so cannot be homotoped to be disjoint from any essential closed curve such as γ. This contradicts the disjointness of \tilde{A} and $\tilde{\Gamma}_{2}$, proving that no annulus \tilde{A} can exist in this case.

The next case that we consider is that δ is contained in G_{1}. Since $\tilde{M} \cup \tilde{N}_{2}=G_{1} \times I$, there is an annulus A^{\prime} in G_{1} with the same boundary as \tilde{A}. It follows that the torus $\tilde{A} \cup A^{\prime}$ bounds a solid torus T in $G_{1} \times I$ on one side. We may perform an isotopy of $G_{1} \times I$ so that $T=A^{\prime} \times[0,1 / 2]$. If T contains $\tilde{\Gamma}_{2}$ then $\gamma \times I$ is an essential annulus disjoint from $\tilde{\Gamma}$ which cannot exist by the previous case. Otherwise if T does not contain $\tilde{\Gamma}_{2}$ then T is a solid torus in \tilde{M} and so \tilde{A} is boundary parallel in \tilde{M}. But this implies that A is boundary parallel in M, a contradiction.

The last case is that δ is contained in $\partial_{2} \tilde{M}$.
LEMMA 2.5. γ is isotopic in G_{1} to the curve labelled α in Fig. 16.
Proof. We first observe that δ is an essential $G_{1} \times I$ and that δ can be homotoped in $G_{1} \times I$ into $\tilde{\Gamma}_{2}$, and thus homotoped into an essential loop in Y. It follows that $p_{1} \delta$ is freely homotopic into $p_{1}(Y)$. Let v be the point in G_{1}, shown in Fig. 16, which is the image under p_{1} of the vertex in the graph Y. We claim that the only non-trivial element of $p_{1 *} \pi_{1}(Y)$ which is homotopic to an essential simple closed curve is $\alpha^{ \pm 1}$. To see this, let $\pi: \tilde{G}_{1} \rightarrow G_{1}$ be the covering of G_{1} corresponding to the subgroup $p_{1 *} \pi_{1}(Y)$ of $\pi_{1}\left(G_{1}\right)$. Then \tilde{G}_{1} is a punctured torus, on which there are unique lifts $\tilde{\alpha}, \tilde{\beta}$ of α, β. Now $\tilde{\alpha}, \tilde{\beta}$ intersect in a single point lying over v as shown in Fig. 18. Also γ is homotopic to $p_{1} \delta$ and therefore lifts to a loop $\tilde{\gamma}$ on \tilde{G}_{1}. If $\tilde{\gamma}$ cannot be homotoped in \tilde{G}_{1} into $\tilde{\alpha}$, then $\tilde{\gamma}$ runs around $\tilde{\beta}$ and intersects other components of $\pi^{-1}(\beta)$ because β has an essential self-intersection on G_{1}, and therefore $\tilde{\gamma}$ intersects other components of $\pi^{-1}(\gamma)$. But this contradicts the simplicity of γ and proves the lemma.

We have shown that γ is isotopic in G_{1} to α and thus the boundary component of A on $\partial_{1} M$ is isotopic to $\varepsilon=p(\alpha)$. By tracing the loop α back through the Figs. $15(\mathrm{~g})$ to $15(\mathrm{a})$, we see that α is homotopic in $G_{1} \times I$ to the loop $p^{-1}(E)$ shown in Fig. 17. Thus α is homotopic in G_{1} to the loop labelled α in Fig. 17. Hence $\varepsilon=p(\alpha)$
is homotopic in ∂M_{1} to the loop labelled ε in Fig. 19. Applying the involution τ we see that the other boundary component of A must be isotopic in $\partial_{2} M$ to $\tau \varepsilon$. From Fig. 19 one sees that ε is contractible in $M \cup N_{1}$ and hence that $\tau \varepsilon$ is contractible in $M \cup N_{2}$. The annulus A provides a free homotopy from ε to $\tau \varepsilon$, and thus ε is contractible in $M \cup N_{2}$ also. We compute the homotopy class $[\varepsilon] \in \pi_{1}\left(M \cup N_{2}\right)$ from Fig. 19, and see that it is non-trivial. This contradicts the existence of the annulus A in this last case, and proves 1.2(3), completing the proof of the proposition.

REFERENCES

[He] J. Hempel, 3-Manifolds, Ann. Math. Studies 86, Princeton University Press.
[HLM] H. M. Hilden, M. T. Lozano and J. M. Montesinos, Universal Knots, Knot Theory and Manifolds, 1144, Springer-Verlag.
[Ho] C. Hogdson, Geometric Structures on 3-dimensional Orbifolds: Notes on Thurston's proof, preprint.
[McM1] C. McMullen, Iteration on Teichmuller Space. Invent. Math. 99 (2), 425-454.
[McM2] C. McMullen, Riemann Surfaces and the Geometrization of 3-Manifolds, Bull. Am. Math. Soc. 27 (2), 207-216.
[Mo] J. Montesinos, Classical Tesselations \& Three-Manifolds, Springer-Verlag.
[My] R. Myers, Contractible Open 3-Manifolds which are not Covering Spaces, Topology 27 (1988), 27-35.
[Th1] W. P. Thurston, Preprint on the Orbifold Theorem.
[Th2] W. P. Thurston, Three dimensional manifolds, Kleinian Groups and hyperbolic geometry, Bull. Am. Math. Soc. 6, 357-381.
[Th3] W. P. Thurston, Universal Links, preprint.
[To] J. L. Tollefson, Involutions of Sufficiently Large 3-manifolds, Topology 20 (1981), 323-353.
[Wh] J. H. C. Whitehead, A Certain Open Manifold whose Group is Unity, Quaterly J. Math (1935), 113-129.
[Wr] D. G. Wright, Contractible Open Manifolds which are not Covering Spaces, Topology 31 (2), 281-291.

University of California
Department of Mathematics
Santa Barbara, CA 93106-3080
USA

Received July 29, 1993; February 20, 1995

[^0]: * Research partially supported by NSF.
 ** Research partially supported by NSF and Sloan Foundation.

