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Critical values of autonomous Lagrangian systems

Gabriel P Paternam and Miguel Paternam*

Abstract. Let M be a closed manifold and L TM —> R a convex superhnear Lagrangian We
consider critical values of Lagrangians as defined by R Mane in [5] Let cu(L) denote the critical
value of the lift of L to the universal covering of M and let ca (L) denote the critical value of
the lift of L to the abehan covering of M It is easy to see that in general, cu(L) < ca(L) Let
Cfj(L) denote the strict critical value of L defined as the smallest critical value of L — u> where
u> ranges among all possible closed 1-forms We show that ca(L) cq(L) We also show that
if there exists k such that the Euler-Lagrange flow of L on the energy level k' is Anosov for all
k' > k, then k > cu(L) Afterwards, we exhibit a Lagrangian on a compact surface of genus two
which possesses Anosov energy levels with energy k < ca(L), thus answering in the negative a

question raised by Mane This example also shows that the inequality cu(L) < ca(L) could be
strict Moreover, by a result of M J Dias Carneiro [4] these Anosov energy levels do not have

minimizing measures Finally, we describe a large class of Lagrangians for which cu(L) is strictly
bigger than the maximum of the energy restricted to the zero section of TM

Mathematics Subject Classification (1991). 58F05, 58F15

Keywords. Lagrangian systems, minimizing measures, critical values

1. Introduction

Let Mn be a closed manifold and let L TM -^Rbea C°° Lagrangian satisfying
the following hypotheses
• Convexity For all x G M, the restriction of L to TXM has everywhere positive

definite Hessian

• Superhnear growth Let | | denote a Riemanman metric on M Then

L{x,v)hm +oo,
|| I I \\ |

uniformly for x G M This condition is clearly independent of the choice of
Riemanman metric, since M is compact

*Both authors were supported by grants from CSIC and CONICYT # 301
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The Euler-Lagrange equation,

d

generates a smooth complete flow <pt TM —s- TM which is defined as follows
Given (x, v) G TM, consider the unique solution x R —> M of the Euler-Lagrange
equation with initial conditions

x(0) x, x(0) v

Now define yt TM -> TM by

Recall that the energy E TM —s- R is defined by

E(x,v) —— (x,v) v — L{x,v)

Since L is autonomous, S is a first integral of the flow <pt Observe that for all
x G M, E restricted to TXM is a function that achives its minimum at (x,0) Let
us set

e m&xE(x,0) — mm L(x,0)

For any k > e, the energy level E~^{k) is a smooth closed hypersurface of TM
that intersects each tangent space TXM in a sphere containing the origin in its
interior

One of our aims will be the study of Anosov energy levels, that is, regular
energy levels on which the flow <pt is an Anosov flow We showed in [7] that those

energy levels must verify that k > e and they are free of conjugate points In
the present paper we shall describe new relations between Anosov energy levels
and certain critical values recently introduced by Ricardo Marié in his unfinished
manuscript [5] We begin by summarizing Mané's results, proofs of these results
have been given by Gonzalo Contreras, Jorge Delgado and Renato Iturnaga in [3]

Recall that the action of the Lagrangian L on an absolutely continuous curve
u [a, b] —s- M is defined by

6

L(u(t),u(t))dt

Given two points, x\ and x<i in M, denote by C{x\,x<2) the set of absolutely
continuous curves u [0, T] —> M, with m(0) x\ and u(T) x<i For each k G R
we define the action potential $fc M x M —s- R by

$fc(xi,x2) mi{AL+k{u) u G C(xi,x2)}
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Mané showed [5, 3] that there exists c(L) G R such that
• if k < c{L), then $k{x\,xi) —oo, for all x\ and X2,
• if k > c(L), then $fc(xi,X2) > —oo for all x\ and X2 and $fc is a Lipschitz

function,
• if k > c{L), then

for all xi, X2 and x3 and

for all x\ and X2,
• if k > c(L), then for x\ ^ xi we have

i) >0

Observe that in general the action potential $fc is not symmetric, however

defining dk MxM^Rby

the properties above say that du is a metric for k > c(L) and a pseudometric for
A; c(L) The number c(L) is called the critical value of L

It is important for our purposes to indicate that the results above also hold
for coverings of M, l e suppose M is a covering of M with covering projection p
Take the lift of the Lagrangian L to M which is given by

L(x,v) L(p(x),dp(v))

Then we define for each k G R the action potential $fc just as above and the
results hold for L Thus we have a critical value for L It is immediate that

c(L) < c(L)

More generally, if M\ and Mi are coverings of M such that M\ covers Mi, then

(1)

where L\ and L2 denote the lifts of the Lagrangian L to M\ and M2 respectively
Also note that if M\ is a finite covering of Mi then

c(Li) c(L2) (2)

Among all possible coverings of M therejare two distinguished ones, the
universal covering which we shall the denote by M, and the abelian covering which we
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shall denote by M The latter is defined as the covering of M whose fundamental

group is the kernel of the Hurewicz homomorphism ir\{M) i—> H\{M, R) When

¦k\{M) is abehan, M is a finite covering of M
The universal covering of M gives rise to the critical value

/ j-n def /-?n
cu{L) c(L),

and the abehan covering of M gives rise to the critical value

ca(L)däc(L)

Let ß Hi(M, R) —>¦ R denote Mather's action function and a Hl{M, R) —>

R its convex dual Mané showed (cf Section 2) that

a(H) =c(L-lv),

for any closed 1-forin to whose cohomology class is [to], and he defined the strict
critical value of L as

cq{L) d= mm{c(L - co) [to] £ ff^M^)}
We shall prove in Section 2 the following theorem

Theorem 1.1.

ca(L) cq(L)

From inequality (1) it follows that

cu(L) < ca(L),

which naturally raises the question,

Question I. Is it true that
cu{L) ca{L)i

Mané posed us the following question,

Question II. If the energy level k is Anosov, is it true that

k > ca{L)f
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We shall see that the answer to both questions is negative, however we shall
show in Section 3:

Theorem 1.2. // there exists k such that for all k' > k, the energy level k' is

Anosov, then
k > cu{L).

In Section 4 we shall exhibit on a compact surface of genus two a Lagrangian
of the type kinetic energy plus a magnetic field which possesses an energy level
k with k < ca{L) and such that for all k' > k the energy level k' is Anosov. By
Theorem 1.2

cu{L) <k< co(L),

which gives negative answers to Questions I and II.
M.J. Dias Carneiro showed [4] that if /z is a minimizing measure (cf. Section

2), then its support is contained in a fixed energy level k with k > cq(L). Our
example and Theorem 1.1 show that Anosov energy levels do not necessarily
contain minimizing measures.

In [5] Mané describes an example of the form kinetic energy plus a magnetic
field and a potential for which e < cq(L). We shall describe in Section 5 a large
class of Lagrangians verifying the sharper inequality: e < cu(L) (we note that the
inequality e < cu(L) always holds, cf. Section 5). Actually we prove,

Theorem 1.3. Let 9 be the 1-form on M given by

If 9 is closed then
e cq(L).

Suppose in addition that L(x,0) 0 for all x € M. If e cu(L), then 9 is closed.

Let M be a closed manifold endowed with a Riemannian metric and let 9 denote
a smooth 1-form on M. Consider a Lagrangian of the type kinetic energy plus a

magnetic field, i.e.,

L(x,v) -{v,v)x + ex(v).

The energy function associated with L is

E(x,v) -{v,v)x,

therefore in this case e m&xxeM E(x,0) =0. If é? is not closed, Theorem 1.3

immediately implies that cu(L) > 0.
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Finally let us describe one more consequence of Theorem 1 2 Suppose that
the geodesic flow associated with the Riemanman metric is Anosov Then by
structural stability the Euler-Lagrange flow of L is Anosov for any sufficiently
large value of the energy However, Theorem 1 2 shows that it cannot be Anosov
for all values of the energy otherwise cu(L) 0 Let £ denote the smallest possible
value of the energy such that for all k' > £ the energy level k' is Anosov Theorem
1 2 immediately implies the following lower bound for £

Corollary 1.4.
£ > cu(L)

In [8] we obtained lower bounds for £ m terms of d6 and the curvature tensor
of M and we proved through different methods that £ cannot vanish if 9 is not
closed

We would like to thank Gonzalo Contreras and Renato Iturnaga for many
useful discussions and for making their manuscript [3] readily available to us

2. Proof of Theorem 1.1

We begin by recalling the mam ingredients of Mather's theory [6], results on
minimal geodesies on arbitrary Riemanman manifolds were previously obtained
by V Bangert [1]

Let M.{L) be the set of probabilities on the Borel a-algebra of TM that have

compact support and are invariant under the flow <pt Let H\(M, R) be the first
real homology group of M Given a closed 1-forin lu on M and p G H\(M, R), let
< to, p > denote the integral of lu on any closed curve m the homology class p If
H G A4(L), its homology is defined as the unique p(p) G H\(M, R) such that

>=

for all closed 1-forms on M The integral on the right-hand side is with respect
to \i with lu considered as a function lu TM —s- R The function p M.{L) —s-

i?l(M,R) is surjective [6]

The action of /x G M{L) is defined by

AL(p) Ldfj,

Finally we define the function ß H\{M, R) -> R by

mf{AL((j,) p((j.) 7}
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The function ß is convex and superhnear and the infimum can be shown to be

a minimum [6] and the measures at which the minimum is attained are called

minimizing measures. In other words, /x G Ai(L) is a minimizing measure if

ß(p(ß)) AL(p).

An absolutely continuous curve u : [0,T] —> M is called an L-minimizer if it
minimizes the action Aj- over the class of absolutely continuous curves defined on
[0,T] with the same end points as u.

Choose a basis 71,... ,7,, of H\(M, R) and let wi,...,wr be closed 1-forms
whose cohomology classes form a dual basis in H^{M, R). Given two points x and

y in M, their difference vector ~x — y G H\(M,R) is defined by

where t is a C1 curve in M connecting y to x and ZUj is the lift of uj% to M.
We shall need the following proposition due to Mather [6, Proposition 1].

Proposition 2.1. Let ut : \0,Tt] —* M he a sequence of L-mimmizers such that

Tt^oo and u^)~^°) ^ 7 e Ht(M, R) as i -> 00. Then

Mané [5, 3] established a connection between the critical values of a Lagrangian
as described in the introduction and the convex dual of Mather's ß function. He
showed that

c{L) -mml I Ldfj,: /iG M{L) \. (3)

Let us recall how the convex dual a : H^-(M, R) —> R of ß is defined. Since ß
is convex and superlinear we can set

a(M) max{< w,7 > -/3(7) : 7 G i?i(M, R)},

where w is any closed 1-form whose cohomology class is [lu]. The function a is also

convex and superhnear. Mather [6] showed that

f fa([iü}) - min <^ (L - lu) d/j : \i G
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and therefore using (3) we obtain the remarkable equality

c(L-ü;) a(M), (4)

for any closed 1-form lu whose cohomology class is [lu]. From the duality bewteen

a and ß we have

min{o;(M) : [w] G ff^
min{c(L - w) : [w] G ff^M,

Finally, Mané defined the sir«ci critical value of L as

co(L) =fmin{c(L-u;) : [to] G ff^
We shall use the following result of Mané [5, 3] that exhibits the relevance of

the critical values for variational problems on fixed energy levels.

Theorem 2.2. Suppose k > c(L). Then, given x\ ^ x% in M, there exists a

solution x(t) of the Euler-Lagrange equation with energy k such that for some

T>0, x(0) xi, x{T) X2 and

Theorem 2.2 also holds for coverings, i.e. if we replace M by a covering and L
by the lifted Lagrangian.

We state now the result of M.J. Dias Carneiro [4] that we mentioned in the
introduction.

Theorem 2.3. If fj, is a minimizing measure with homology 7, then its support
is contained, in a fixed, energy level k and, k o.([lu]), where [lu] is the slope of a

supporting hyperplane through (iy,ß(iy)). In particular, k > cq(L).

We now show,

Lemma 2.4. For any closed 1-form to on M we have

ca{L -u) ca{L).

Proof Let lu denote the lift of lu to the ahelian covering of M. Since the form lu is

exact, the action potential of L — U and the action potential of L coincide on the
diagonal of M x M. This readily implies the lemma. D
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Proof of Theorem 1.1. By equality (4) we can take a closed 1-form lu such that

cq{L) c(L - u).

By the previous lemma and (1) we have

ca(L) ca(L-u;)<c(L-u;) co(L). (5)

To complete the proof of the theorem we need to show

ca(L) > co(L).

We shall assume that M is non-compact otherwise M is a finite covering of M
and by (2), ca{L) c{L) > co(L).

Suppose that ca(L) < cq(L). Take k such that ca(L) < k < cq(L). Fix a point
7/ G M and take a sequence of points ~ql such that d(q, 7/J —> oo (we provide M
with a Riemannian metric and we lift it to M).

By Theorem 2.2 there exists for each i a solution xt(t) of the Euler-Lagrange
equations with energy k such that for some Tt > 0, ~xt(0) ~q, xt{T%) ~q% and

qt) (6)

Since the solutions have energy k, there exists a constant a such that ||xj(t)|| < a
for all i and all t. Therefore

d(q,qt) < aTt.

It follows that Tt —s- oo. Let \i% denote the probability measure uniformly distributed

along the projection of ~xt \ p Tj to M and let \i denote a point of accumulation

of /Xj. Equality (6) implies that Xj|rg Tj are L-minimizers and we thus can apply
Proposition 2.1 to deduce that

lim 7^r(^l[o,Tj) at(p)

Therefore \i is a minimizing measure. Since the support of \i is clearly contained
in the energy level k, Theorem 2.3 implies that k > cq(L) thus obtaining a
contradiction. D
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3. Proof of Theorem 1.2

The theorem is an immediate consequence of the following two propositions and
the fact that the Anosov energy levels form an open set.

Proposition 3.1. If k < cu(L), there exists a solution x : R —s- M of the Euler-
Lagrange equation with energy k' > k and T > 0 such that x(0) x{T).

Proposition 3.2. If the energy level k' is Anosov, then any solution x : R —> M
of the Euler-Lagrange equation with energy k' is one to one.

Proof of Proposition 3.1. By the définition of the critical value, if k < cu{L) there
exist To > 0 and an absolutely continuous closed curve u : [O,Tb] —>¦ M with

p m(0) u(Tq) such that

Let C{Tq) denote the set of all absolutely continuous closed curves w : [0,t] —>

M such that t <Tq andp w(0) w(t). The same arguments that prove Tonelli's
Theorem [6] allow us to conclude that the action A~ takes a finite minimum
value on the set C{Tq) and minimizers are solutions of the Euler-Lagrange equation.
In other words, there exists a solution x : R —s- M of the Euler-Lagrange equation
and T G [O,To] such that x\iq ti minimizes the action A~ on the set C{Tq). By
(7) the minimum value has to be negative and therefore T ^ 0. Let k1 be the

energy of the solution x. To complete the proof of the proposition we need to
show that k1 > k.

Let us define for each A > 0 the following function:

rXT ~
F(X)= (L + k)(xx,xx)dt

Jo

where xx(t) : [0,AT] -^ M is defined as xx(t) x(|). Let us compute F'(l).

F'{\) =T L(xx(XT),xx(XT)) + / — dt + kT,
JO oX

but
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therefore

~ 1'^ fiï 1'^ d ~TL(x(T),x(T))+Tk- -rrxdt- -{L)tdt
Jo ov Jo dt

~ I'T dJj I'T ~ ~ tTL(x(T),x(T))+Tk- —xdt + Ldt-Lt\n
JO ov Jo

Tk- f k1 dt
Jo

T{k-k')

Now observe that since x|ror] minimizes the action A~ on the set C(Tq) we

must have F'(l) < 0 and therefore k' > k as desired D

Remark 3.3. Note that the proposition also holds if we consider any covering of
M and its associated critical value and not just the universal covering

Also observe that if in the previous proof T ^ Tq then by the minimizing
condition F'(l) is actually zero and therefore the energy of x must be precisely k
If this were the case we could have had the same conclusion of Theorem 1 2 but
only assuming that the energy level k is Anosov

Proof of Proposition 3 2 A crucial ingredient in the proof of this proposition are
the results we obtained in [7] Let us recall them Let tt TM —s- M denote the
canonical projection and, if v G TM, let V(v) denote the vertical fibre at v defined

as usual as the kernel of d,nv TVTM -> Tv{v)M If the energy level S =f E~1{k')
is Anosov, let Es denote the weak stable subbundle and let Ws denote the weak
stable foliation We showed in [7] that for all v in the energy level k' we have

Es(v)DV(v) {0}

This is equivalent to saying that the weak stable foliation Ws is transverse to the
fibres of the fibration by (n — l)-spheres

Let M denote the universal covering of M with projection p M —s- M Let
Ë denote the lifting of S to TM via the map dp TM -> TM Observe that
Ê coincides with the energy level k' of the lifted Lagrangian L We also have a
fibration by (n — l)-spheres
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Let Ws be the lifted foliation which is_ in turn a weakjstable foliation for the
Euler-Lagrange flow of Lj-estricted to Ê The foliation Ws is also transverse to
the flbration tt|~ Ê —> M since the map dp is a local diffeomorphisin Since the

fibres are compact a result of Ehresman (cf [2]) implies that for every v G S the

map

is a covering map Since M is simply connected, tï\~s is m fact a diffeomorphism

and Ws(v) is simply connected Consequently, Ws(v) intersects each fibre of the
fibration tt|~ S^Mat just one point

Now let x R ^ M be a solution of the Euler-Lagrange equation with energy
k' Then for each t G R, (x(t),x(t)) belongs to Ws(x(0),x(0)) and therefore
x(0) x(T) for T =/= 0 if and only if x gives rise to a closed orbit of the Euler-

Lagrange flow of L But Ws(x(0),x(0)) cannot contain periodic orbits since it is

simply connected, and we conclude that x R —s- M is one to one D

4. The example

In this section we shall exhibit a convex superlmear Lagrangian L on a closed
orientable surface of genus two with energy levels k' which are Anosov for all
k' > 1/2 and 1/2 < cq(L) By Theorem 1 2, cu(L) < 1/2 and we obtain negative
answers to Questions I and II in the introduction

We start with a few preliminaries Let M be a closed manifold endowed with
a Riemannian metric and let 9 denote a smooth 1-forin on M Our Lagrangian
will be of the form

L{x,v) ^(v,v)x-6x{v) (8)

The energy function associated with L is

E(x,v) {v,v)x,

therefore in this case e maxieM E(x,0) 0 Let £ TM —>¦ T*M denote the
Legendre transform associated with L and let ivcan denote the canonical symplectic
form of T*M It is well known that the Euler-Lagrange flow <pt associated with L
can be obtained as the Hamiltoman flow of E with respect to the symplectic form
r**-' wcan

Let 7T TM —s- M denote the canonical projection Let lvq denote the symplectic

form on TM obtained by pulling back Locan via the Riemannian metric An
easy computation shows that

C*LUcan=LUQ+7r*de (9)
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The flow (fit models the motion of a particle of unit mass and charge under the
effect of a magnetic field, whose Lorentz force Y TM —s- TM is the bundle map
determined uniquely by

d6p(u,v) (Yp(u),v)

for all u and v in TM
We shall need the Jacobi equation associated with the Euler-Lagrange flow

of L, this equation was obtained in [8] but we include its derivation here for
completeness Take a curve Z (-e,e) -> TM with Z(0) v, Z'(0) £ and

consider the variation f(s,t) Tr(<pt(Z(s))) Set Je(t) =f |f (0,t), 7s =f f(s,t)
defand 7o 7 Let R denote the Riemann curvature tensor of the Riemanman

metric and let D denote covanant derivative Recall the well known identity

D_D_d£ D_D_d£ R(dl df\ d£
ds dt dt dtdtds \dt' ds dt

Since the Euler-Lagrange flow <pt can be obtained as the Hamiltoman flow of E
with respect to the symplectic form £*ivcan, it can be easily verified using (9) that
7s satisfies the following equation of motion (Newton's law)

Combining the last two equalities we obtain

Note that the map (p,v) —> Y{p,v) is a (l,l)-tensor Thus using the covanant
derivative V on (l,l)-tensors induced by the Riemanman connection we obtain

Y{ls) {V.hY){ls) +

and we deduce the Jacobi equation

0 (10)

Suppose now that M is a closed oriented surface and let fla denote the area
form associated with the Riemanman metric Any other 2-form Q can be written
as Q FQa for a smooth function F M —s- R The form Q is exact if and only if

M

We shall exhibit now a Riemanman metric on an orientable surface of genus
two and a smooth function F M —s- R such that FQa is exact and if we write
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FQa d6, then the Euler-Lagrange flow of the Lagrangian given in (8) is Anosov
on the energy level k' for all k' > 1/2 and 1/2 < cq(L)

To construct the Riemanman metric and the function F we proceed as follows
Let Si denote the one-parameter family of negatively curved compact surfaces of
genus two that is indicated m Figure 1, where / is the length of the unit speed
closed geodesic 7 Let Ki denote the Gaussian curvature of Si The curve 7
divides Si into two surfaces with boundary Sf~ and Sf We shall assume that
for each /, Si admits an isometric involution / that fixes 7 and interchanges S^~

with Sf Morever, we suppose that there exists a disk D+ contained in S^~ such
that the metric on it does not change with / and it has constant curvature -1 Let

def 1 4-D~ I(D+) We choose the orientation of 7 induced by Sy

<^^^ \ Lorentz Force \ ' ~"\, ~"v

/ \ J ~-~-- length I // \ j \

Figure 1 The surface Si and the magnetic field

Let / S~i~ -^Rbea non-negative function with support contained in D+ and
such that

-l + /2(x)±(V/(x),«,)<0, (11)

for all (x,v) in the unit sphere bundle of _D+, iv denotes the vector v rotated tt/2
according to the orientation of Si Set m JD+ ffla > 0 and note that m is

independent of / Finally our function F will be defined as

f(x) ifxeS+,

Clearly

Let Li denote the Lagrangian given by the metric on Si and a 1-forin 9 that
satisfies d6 FQa Note that we can express the Lorentz force associated to the
magnetic field dß as

Y{v) F{tt{v))iv (12)

F{x) ' -f(Ix)
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Let us compute the action of Li + cq(Li) on 7

By Stokes Theorem,

Observe that 7 is null-homologous and since by Theorem 1 1, cq(Li) ca(Li), it
follows from the definition of critical value that

ALl+co{Ll)h)>O,

therefore

Q -m>0,
which implies, since m is positive, that

hmco(Lj) oo (13)

We shall show now that for all /, the energy level k' for k' > 1/2 is Anosov
Combining this fact with (13) it follows that for / small enough we obtain a surface
Si and a function F with the desired properties

We are going to define for each v with energy k', the corresponding strong
stable space Ess(v) and the strong unstable space Esu Let c R —> Si denote the
solution of the Euler-Lagrange equation with energy k' > 0 and initial condition
v Since {c, ic} is an orthonormal basis of TcSi we can write any Jacobi field J as

J xc-\- yic

We only need to consider Jacobi fields arising from variations in the energy level,

that is (J(0),J(0)) G TvE~l{k') which is equivalent to saying that (j,c\ 0

Since J must also satisfy the Jacobi equation (10) a straightforward computation
using (12) shows that the functions x and y must satisfy the following scalar

equations
x Fy, (14)

y + fa'K^c) + F2(c) - (VF(c),ic}) y 0 (15)

Now the same proof that shows that the geodesic flow on a compact surface of
negative curvature is Anosov allows us to deduce that if any v with energy k'
satisfies

2k'Kl(TTv)+F2(Trv) -(VF(ttv),iv) < 0, (16)
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then there exist constants C, A > 0, and solutions ys, yu of the equation (15) such
that

\ys{t)\ <Ce-x\ forallt>0,
\yu(t)\<Cext, foralH<0

Since F is uniformly bounded, we can associate for each pair of solutions ys, yu
as above, a pair of solutions xs, xu of equation (14) by setting

F{c{t))ys{t)dt,
O

It is easily seen that

x\t) - F{c{T))ys{T)dT,
J

oo

xu{t)= f F{c{T))yu{r)dT
J — oo

Then xs(t) and xu{t) converge exponentially fast as t —> oo Let Js denote the

unique Jacobi field determined by the initial conditions (xs(0),ys(0), F(Trv)ys(0),
ys(0)) and let Ju denote the unique Jacobi field determined by the initial conditions

(x"(0),y"(0),F(7ru)y"(0),y"(0)) Then

Ess{v) R(Js(0),Js(0)),

Esu{v) R(J"(0), J"(

are clearly the strong stable and unstable spaces
Therefore if equation (16) is satisfied for all v with energy k', the Euler-

Lagrange flow on the energy level k' is Anosov Let us check that equation (16) is
satisfied for our choice of F

Observe that outside D+ and D~ the function F vanishes and therefore
inequality (16) reduces to

2k'Ki{Tvv) < 0,

which is satisfied since we have chosen our surfaces with negative curvature Inside
the disks the metric does not change with / and has constant negative curvature
-1, and thus (16) reduces to

-2k' + F2(nv) - {VF(irv),iv) < 0,

which is satisfied for any k' > 1/2 because of our choice of / in (11)
Finally we note that (13) implies that the gap between cu{L) and cq(L) can be

made as large as one wishes
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5. Proof of Theorem 1.3

Let us prove first that in general

e < cu{L) (17)

Take a point x G M such that e — L(p(x),0) Then by considering a curve

u [0, T]^M such that u(t) x for all t G [0, T] we have

which implies inequality (17)
def

We begin now with the proof of the theorem Let i/>(x) L(x, 0) and Lq(x, v)

L(x,v)-6x(v)-ip(x) ThenL0(z,0) L(x,0)-ip(x) =0 Note that Lo(x, *) is
a convex superlmear function and -^(x, 0) 0 Hence Lq{x, *) has its minimum
at v 0, therefore

and it vanishes if and only if v 0 Observe that

e — mm L(x, 0) — mm iJj(x) max(-i/)(i))
xEM xEM xEM

Suppose now that d6 0, then

Note that for all x G M, e + ip(x) > 0 and Lo > 0, therefore if u [0,T] -^ M is

any absolutely continuous curve we have

which implies that e > c(Lo + V7) ^ co(^O + V7) Therefore e co(L)
We shall show now that if tp(x) 0 for all x G M and dö ^ 0, then 0 e <

cu{L) If d6 ^ 0 there exists a smooth oriented embedded 2-disk D in M such
that

md= f d9 <0 (18)

Fix a Riemanman metric on M and let 7e [0, Te] -^- M denote the parametrization
of the boundary of D (with its induced orientation) with speed y^F The length of

the boundary of D -which is independent of e- equals ^/eT£ I Now we write

AL+s{ls)= I \L{lene)+e)dt= f \LQ{le,le) + e)dt+ f
Jo Jo Jo
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By Stokes Theorem we have

i-Te

Ah+ehe) (Lo(-f£,-f£) + e)dt + m (19)
JO

Since Lo(x,O) 0 and -J^-(x,0) 0 for all x G M, there exist constants C > 0

and_D > 0 such that for all (x,v) G TM with ||u|| < D we have L0(x, v) < C\\v\\2
Therefore for e small enough we have

[Te(L
Jo

Combining the last inequality with (19) we obtain

Therefore if e is small enough, the last inequality and (18) give

Al+e{1e) < 0,

which shows that cu{L) > 0 since the boundary of D is a contractible curve D

As an immediate corollary of Theorem 1 3 we have,

Corollary 5.1. If L is a Lagrangian of the form

L{x,v) - (v,v)x + ex(v),

with dß ^ 0, then
0 e < cu{L)

Without the hypothesis L(x,0) 0 for all x G M, the second assertion of
Theorem 1 3 is not true Endow M with a Riemanman metric and consider a
1-forin 9 with support in a neighborhood U of M and such that 9 is not closed
Note that there exists a constant a such that

-(v,v)x + 9x(v)+a>0,

for all (x,v) G TM Consider a smooth function ip M —s- R with support in a

neighborhood V disjoint from U and such that

a max(—ip)
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Our Lagrangian L will be

L{x,v) -(v,v)x + ex(v) + 4>(x)

Clearly e a max(—ip)
Since the supports of 9 and ip are disjoint we observe that if m [0,T] —> M is

any absolutely continuous curve then

AL+e(u) > 0,

and thus e > c(L) It follows that for this Lagrangian

e cu(L) =cq(L) c(L),

but the 1-forin 9 is not closed
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