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On the deleted product criterion for embeddability of
manifolds in Rm

A Skopenkov*

Abstract. For a space N let N {(x, y) € N X N\x / y} Let Z2 act on N and on S™ x by
exchanging factors and antipodes, respectively For an embedding / N —> Rm define the map

Theorem. Let d 3n — 2m + 2 and N be a closed PL n-manifold
a) If d G {0, 1, 2}, N is d-connected and there exists an equwanant map F N —> S""1^1,

then N is PL-embeddable in Rm
b) If d e {-l,_0, 1}, m - n > 3, N is (d + \)-connected and f,g N -> Rm are PL-

embeddmgs such that /, g are equwanantly homotopic, then /, g are PL-isotopic
Corollary, aj Every closed 6-manifold N such that Hi(N) 0 PL embeds m R10,

b) Every closed PL 2-connected 7-manifold PL embeds m R11,
c) There are exactly four PL embeddmgs S2^1 X S2^1 C R6i+4 up to PL isotopy

Mathematics Subject Classification (1991). Primary 57Q35, 57Q37, secondary 54C25,
55S15, 57Q30, 57Q60, 57Q65

Keywords. Embedding, deleted product, engulfing, singular set, normal Whitney classes, quasi-
embedding, metastable case, highly-connected manifolds, isotopy, concordance

1. Introduction

To find necessary and sufficient conditions for a manifold N to be embeddable in
Rm for a given m is a classical problem in topology (see [Wu 65, RS 96]) All
manifolds and their embeddmgs are supposed to be PL, unless the contrary is

stated Let N {(x,y) eJVx N\x ^ y} be the deleted product of N (cf [Va
92]) Let Z2 act on Sm~^ by exchanging factors and antipodes respectively If
/ N —> Rm is an embedding then there exists an equivanant map / N —> S*™^1,

defined by /(x, y) w^\_wyL If ft K -^ Rm is an isotopy between embeddmgs

* Supported in part by the Russian Fundamental Research Foundation Grant No 96-01-
01166A, and the International Science Foundation Grant No a97-586
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/o, /l : N —> Rm, then there exists an equivariant homotopy ft between /o and f\.
However trivial these necessary conditions may seem, they are very useful [Hae
63, Wu 65, We 67]. Thus it is very interesting to find out, for which cases they
are also sufficient for embeddability and isotopy.

Theorem 1.0. ([Hae 63, We 67] see also [Har 69]) Suppose that N is either a Diff
n-mamfold or an n-polyhedron and m > ^^ ¦ Then

a) N is PL (Diff')-embeddable in Rm if and only if there exists an equivariant
map F : N ^S™-1.

b) (realization version) Moreover, for each equivariant 'map F : N —s- Sm~^
there exists an embedding f : N —s- Rm such that f is equivanantly homotopic to
F.

c) (boundary version) Suppose that A is a subpolyhedron of N, Bm is a PL
m-ball, g : N —> Bm is a PL-map such that g\A is an embedding into dBm and

g(N-A) C Bm. There exists an embedding f : N -> Bm such that f\A g\A and
°

~ 1f(N — A) C Bm if and only if the equivariant map g : A* —> Sm~ homotopically
extends to an equivariant map F : N —> S™

d) (relative version) Suppose that A is a subpolyhedron of N and g : A —s- Rm is
a PL-embedding. There exists an embedding f : N —s- Rm such that f\A 9 %f and
only if the equivariant map g : Ä -^ Sm~^ homotopically extends to an equivariant
map F-.N^S™-1.

e) (isotopy version) Suppose that m > ^"^~ '. Then PL (Diff)-embeddings fo,

f\ : N —> Rm are PL(Diff)-isotopic if and only if the equivariant maps /o,/i are
equivanantly homotopic.

For a subpolyhedron A C N we denote A* Ä U [A x (N - A)] U [(N - A) x A].
Note that the case (m,n) (3, f) of theorem f.O.b is not proved in [We 67],
but can be proved in the same ideas [Sk]. Theorem f.O can be summarized as

follows: the map / —> / from the set of embeddings of N —> Rm up to isotopy
to the set of equivariant maps N —> Sm~^ up to equivariant homotopy is a 1-1

correspondence for m > ^^ and a surjection for m ^^ ¦ It turns out

that the dimension restriction m > n^ ' (m > n^ ' is sharp in theorem
l.O.a (l.O.e) for polyhedra [SSS 97, MS 67, Hus 88, SS 92, FKT 94] (diffeotopy of
connected Diff-manifolds [Ha 62] and PL isotopy of non-connected PL-manifolds
[Ma 90, Proposition 8.3]). But these dimension restrictions can be weakened for
connected PL manifolds. Many corollaries of the Haefiinger-Weber theorem are
thus also strengthened.

Theorem 1.1. a) Suppose thai N is a closed PL n-manifold and either m
4? +1, or N is simply connected and m j~ or N is 2-connected and m 4?.
Then N is PL embeddable in Rm if and only if there exists an equivariant map
F :N -> S™-1.
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b) (boundary version) Suppose that N is a PL n-mamfold (possibly, nonclosed)
and either N is connected, and m 4p + 1 > 7, or N is simply connected, and,

m <j >8, or N is 2-connected and, m ^- > 9. Suppose further that A is a

subpolyhedron of N, containing dN, Bm is a PL m-ball, g : N —s- Bm is a PL-map
o

such that q\a is an embedding into dBm and g{N — A) C Bm. There exists an

embedding f : N -> Bm such that f\A g\A and f(N-A) C Bm if and only if the

equivariant map g : A* —> Sm~ extends to an equivariant map F : N —> Sm~
c) (isotopy version) Suppose that N is a closed PL n-manifold and either N is

connected and m j~ > 6, or N is simply connected and m 4p + 1 > 7, or
N is 2-connected and m > ^^- > 8. Then PL-embeddmgs /o,/i : N -^ Rm are

PL-isotopic if and only if equivariant maps /o, f\ are equwariantly homotopic.

We prove theorem 1.1.a and its corollaries for m > n + 3. For m < n + 3

they are known. Boundary version 1.1.b is necessary to prove the isotopy version
l.l.c. From our proof it follows that theorem 1.1.a (1.1.c) and corollary 1.2.abc
(1.2.d) are true even if there exists an equivariant map to Sm~^ only from the
(["if1] ~ 2)-skeleton (equivariant maps are homotopic only on [4"g~5]-skeleton) of

N, and N has singularities of dimension at most m — n — 2.

Corollary 1.2. Under assumptions of theorem 1.1.a,
a) embeddability of N into Rm does not depend on PL structure on N;
b) if N is Top-embeddable in Rm, then N is PL-embeddable in Rm;
c) if N is quasi-embeddable in Rm, then N is embeddable in Rm;
d) under assumptions of theorem l.l.c, if two PL-embeddings f,g : N —> Rm

are Top-isotopic, then they are PL-isotopic.

A polyhedron N is called quasi-embeddable in Rm if for each of its triangulations
T there exists a map / : N —> Rm (which is called an almost-embedding [FKT
94]) such that faC\fr $ for each a x t £ T, a C\t $. This définition is

non-standard, but equivalent to the standard one: for each e > 0 there is a map

/ : N —s- Rm whose preimages are of diameter less than e.

Corollary 1.3. a) (cf. [Bo 71, theorem 7.4, erroneously named in the introduction

as theorem 7.1], for k 2 cf. [Hi 65, BH 70, Fu 94, main theorem ii]) A
homologically (k — 2)-connected closed, PL 2k-mamfold N embeds in R3fc+1 if and

onlyifWk+1(N)=0.
b) (for k 1 [Hi 61, Ro 65, Wa 65], for k 2 cf. [Hi 61]) A (k - 1)-connected

closed PL (2k + \)-mamfold N embeds in R3fc+2 if and only ifWk+i(N) 0.

c) (cf. [Mi 65], for k 2 [CS 79, Ru 82]) A (k - 1)-connected closed PL
2k-manifold N embeds in R3fc if and only ifWk(N) 0.

Here Wt(N) denotes the i-th normal Stiefel-Whitney class of N with coefficients

Z (if i > 1 is odd and N is orientable), Z twisted (if i > 1 is odd and N
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is non-orientable) or Z2 (if i 1 or is even). Corollary 1.3 follows from theorem
1.1.a and [We 67, theorem on p.4], cited from [Hae 62]. Note that for n > 5,

m < 4p, a (2n — m — l)-connected closed n-manifold is a PL sphere, and therefore
embeds into Rn+1. From [We 67, theorem 4, Hae 63] and [Ma 60, corollary 2] it
follows that if n > 8 is even and n ^ 2fc(2'1 + 1) for each integers k, h > 2, then
every PL or Diff n-manifold N such that Ht(N) 0, PL of Diff embeds in R2n~2.

Corollary 1.3.a for k 2,3, corollary 1.3.b for k 3 and [Ma 62, theorem 1], [Ma
60, corollary 2, theorem lc] imply the following (from the proof [Ma 60, p. 100]
follows that the restriction [Ma 60, thorem lc] should be stated as 'the number of
ht's which are equal to hq + 1 is even').

Corollary 1.4. a) [Hi 65] Every orientable ^-manifold PL embeds in M ;
b) (cf. [Hi 61]) Every closed 6-mamfold N with H\(N) 0 PL embeds in
c) Every closed 2-connected PL 7-manifold PL embeds in R

In a) and b) it is not necessary to specify, which (PL or Diff) manifolds are under
consideration, because every PL manifold of dimension at most 6 is smoothable.
Note that every 2-connected closed 6-manifold is a disjoint sum of S*3 x S*3 [Sm
62, theorem B] and therefore is PL or Diff embeddable into R From the results
of [Zh 75, Zh 80, Zh 89] it follows that there exists a 1-connected 6-manifold N
with Ws(N) =/= 0, hence N is non-embeddable in R9.

Corollary 1.5. (cf. [Hu 69, Ch.11.4]) a) For each k > 1 and a connected
orientable homologicaly (k — 2)-connected closed PL (2k — l)-mamfold N, the set
of PL embeddings N —> R up to PL isotopy is in 1-1 correspondence with

b) For each k > 2 and a (k — l)-connected closed PL 2k-manifold N there is a

1-1 correspondence between the set of its embeddings N —> R + and H/.(N, T,ik\).
c) For each non-orientable connected closed PL 3-manifold N, the set of PL

embeddings N —> R up to PL isotopy is in 1-1 correspondence with H\(N, Z2).

Here Z/fc\ is Z2 for k odd and Z for k even. Note that the injectivity was not

proved in [Hu 69, Ch.11.4.1,2]. For k odd and for c) corollary 1.5 imply that the
set of embeddings is finite. Corollary 1.5 follows from theorems 1.0.e, 1.1.c, [Hu
69, theorem 11.9 and 'onto' part of theorem 11.4.2] and [We 67, theorem on p. 5],
cited from [Hae 62]. Note that for n + 3 < m < y + 1 we have n > 5, hence a

(2n — m)-connected closed n-manifold is a PL sphere and therefore has a unique
PL embedding into Rm. Corollaries 1.5.ab imply

Corollary 1.6. a) [Hu 63, theorem 1]) For each k > 1 the set of PL embeddings
Sk X Sk~ —> R up to PL isotopy is in 1-1 correspondence with I^uy

b) (cf. [Hu 63, corollary to theorem 1], [Hu 69, Ch.11.4]) For each k>2 there
is a 1-1 correspondence between the set of PL embeddings Sk X Sk —> R + (up
to PL isotopy) and Z/fc\ + ^(k) ¦
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Proof of Theorem 1.1.a is based on the extension of Weber's theorem, on the
Penrose-Whitehead-Zeeman-Irwin theorem and on engulfings. Our proof does

not yield relative, realization and approximation [We 67, theorem 3] versions of
theorem 1.1 (approximation theorem was proved in [Ch 69, Mi 70, Br 72] even
for embeddings of polyhedra in codimension at least 3 using different technique).
Isotopy version 1.1.c follows from the boundary version 1.1.b and the 'concordance
implies isotopy' theorem [Li 65, Hu 70]. Note that the relative version 1.0.c [We
67, theorem 7a] is not sufficient to prove the isotopy version 1.0.e [We 67, theorem
67, theorem 7a] is not sufficient to prove the isotopy version 1.0.e [We 67, theorem
1']. For in [We 67, §7] we obtain an embedding ip : K x / —> Rm+1 but not
(p : K x / —s- Rm x /. This is only a minor inaccuracy and we correct it in §3.

2. Proof of theorem 1.1.a

2.1. A reduction of theorem 1.1.a. Necessity in theorem 1.1.a was explained
in the beginning of section 1, so we are to prove sufficiency. For PL-topology we
follow the notation of [RS 72]. Since every 2-manifold embeds in R4, theorem 1.1.a
is true for m 4p +1 4. Since every 3-manifold embeds in R5 [Hi 61, Ro 65, Wa

65], theorem 1.1.a is true for m j~ 5. To see that theorem 1.1.a is true for

m 4p 6 recall that every 2-connected closed 4-manifold is a homotopy sphere.
By [Ker 69, corollary on p. 71] it is boundary of a conractible PL 5-manifold.
By the Van Kampen theorem and from the Mayer-Vietoris sequence, its double is

simply connected homology sphere. Hence it is a homotopy sphere [FF 89, §14,
exercise 6] and therefore a PL sphere [Ze 62]. Then this double minus a point is
R5 in which N is embedded. Therefore we may assume that m > n + 3. The
proof of theorem 1.1.a is based on the following results (which may be useful in
attacking of conjecture 4.3.a).

Theorem 2.1.1. Let N be an n-polyhedron with triangulation T. If m — n > 3

and there exists an equwanant 'map F : N —s- S™^1, then there exists a general
position PL-map f : N —s- Rm such that

a) f\a is cm embedding for each a G T;
b) /er n /t f(a Pi t) whenever dimr < dima and 2dim<r + dimr < 2m — 3.

The proof is analogous to [We 67, §5, Sk 97, §2]: the inequality 2m > 3(n+ 1)

can be relaxed to dim t < dim a and 2 dim a + dim t < 2m — 3 keeping the proof
unchanged (cf. [ST 91]).

Theorem 2.1.2. [Ze 62] Let S be a k-polyhedron in the interior of an n-manifold
N. If the inclusion S C N is null-homotopic, n — k > 3 and N is (2k — n -\- 2)-
connected, then S is contained in some PL n-ball in the interior of N.
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Theorem 2.1.3. Suppose that N is a closed (3n — 2m + 2)-connected, PL n-
mamfold, m — n > 3 and there is a map / : N —> Rm such that S(f) Cl{x € N :

f~^fx\ > 1} is contained, in some PL n-ball in N. Then N is embeddable in Rm.

Theorem 2.1.3. was actually proved in [PWZ 61, Ir 65, RS 72, theorem 7.12].
Let d 3n — 2m + 2. Take a small triangulation T of N and a map / :

N —> Rm given by theorem 2.2.1. By general position dim S(f) < 2n — m. Since

n — (2n — m) > 3 and N is 2(2n —m) —n + 2 d-connected, then by theorems 2.1.1
and 2.1.3 it sufficies to prove that the inclusion S(f) C N is null-homotopic. Since

N is d-connected (for d 0 we may assume that N is connected), it sufficies to
prove that the inclusion S(f) C N is homotopic to a map into some d-dimensional
subpolyhedron of N.

2.2. Idea of the proof and proof of the case d 0. Take a map / : N —> Rm

given by 2.2.1. If we assume additionally that / is a PL immersion (i.e. local
embedding), then by theorem 2.2.1., S(f) does not intersect the (2m — 2n — 3)-
skeleton of T. Hence it retracts to the n — 1 — (2m — 2n — 3) d-skeleton of a

triangulation, dual to T. But in general, S(f) does intersect the (2m — 2n — 3)-
skeleton of T. However, this approach works to prove the main theorem of [Sk].

Let us fix some notations. By small Greek letters we will denote simplices of
T. Their dimension will be sometimes indicated as an upper index. For a,ß G T
we denote by aß the ordered pair (a,ß) when a(~)ß 0 and the non-ordered pair
{a, ß} when a n ß ^ 0, a <£_ ß, a 7$ ß. For a <£_ ß, a 7$ ß let

[ aßl °'ß) \(aUßJ-1Cl[(fanfß)-f(anß)]), a n ß + 0

Since /^ is an embedding for each a and since each simplex of T is contained in
some n-dimensional one, then S(f) {J{Sor,ßn\an =/= ßn}. Since T is a triangulation

then each Aaß is contractible.
Now suppose that d 0. By 2.1.1.b Saß ^ 0 is possible only if dim«

dim/3 n. Since that and by general position, Saß n ^^ 0 when aß ^ ~/S.

Therefore contractibility of Aaß implies that the inclusion S(f) C N is homotopic
to a map onto a finite subset of ./V.

The cases d 1, 2 follow from 2.(d + 2) and 2.5.

2.3. Decomposition of S(f) for d 1. Lei N be a closed, PL n-manifold and

m -2 > n + 3. Then there is a triangulation T of N such that for every map

/ : N —> Rm, satisfying to (2.1.1.a,b) there are subpolyhedra S\,.. ,SS C N for
which S(f) S\U ¦ ¦ ¦ U Ss and,

a) St Pi Sj Pi Si~ 0 for distinct i,j,k= 1,. s;
b) For each i 1,. s there is a contractible polyhedron At C N, containing

St. If St Pi Sj =/= 0, then there is a contractible polyhedron A%3 C N, containing
AtUA0.
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Proof. Take a triangulation T of N such that for each igJV, the star st2 x st st x
is contractible. Enumerate by integers 1,..., s the union of the set of ordered pairs
of disjoint n-simplices of T with the set of non-ordered pairs {a, ß} of intersecting
n-simplices of T such that a ^> ß. Let S\,...,SS be as defined in 2.2. Then

5(/) SiU-U5s.
By 2.1.1.b S'aß ^ 0 is possible only when either dim« dim/3 n or

{dim a, dim/?} {n, n — 1}. By general position, / has no triple points. Therefore
each non-empty intersection of 3 of S\,... Ss can be only of the form

saiß n sa2ß n sa3ß saß (orSßai n Sßa2 n Sßa3 Sßa)

for some a", «21 a3i/5"j a é T, a ai n «2 n «3. Since S^ 7^ 0, it follows that
dim« n — 1. Since jV is a closed manifold, then no three distinct n-simplices of
T intersect by an (n — l)-simplex of T. This contradiction shows that a) is true.

Define At as in 2.2. If 5,(1^ =/= 0, then take a point alQ G StC\ So and let

An st2 a^. From définition oîSt and A^ it follows that S G A% and A^JA3 C Ajj
By the choise of T, At and AtJ are contractible.

2.4. Decomposition of S(f) for d 2. Let N be a closed PL n-manifold and

m 4p > n + 3. T/iera i/iere «s a triangulation T of N such that for every 'map

f : N —s- Rm, satisfying to (2.1.1.a,b) there are subpolyhedra S\,. ,SS G N such
that S(f) S\U ¦ ¦ ¦ U Ss and

a) The intersections St (~) Sj (~) S/~ are either disjoint or the same for distinct
sets {i,j, k} C {1,. s}.

b) For each i 1,. s there is a contractible polyhedron At C N containing
St. If St Pi Sj =/= 0 then there is a contractible polyhedron A%3 C N containing
At U Aj. If St (~\ Sj (~\ S/~ =/= 0, then there is a contractible polyhedron A%3k C N,
containing AtJ U A3]~ U A]~%.

Proof. Take a triangulation T of N such that for each x G N, the star st4 x is

contractible. Let S\,...,SS be as defined in 2.2. We shall prove an assertion,
equivalent to (2.4.a): if Stl l~l • • • l~l Stk ^ 0 for some k > 4, then every three of
Sn Slk have the same intersection.

By 2.1.1.b Saß =/= 0 is possible only when {dima,dim/3} is either {n,n\ or
{n,n — 1} or {n,n — 2}. By general position, / has no quadruple points and each

of its triple points is intersection of /-images of three n-dimensional open simplices
of T. Therefore each intersection of k > 4 of Si,..., Ss is of the form

^a 1/3 n • • • n sakß saß (or Sßai n • • • n sßak sßa)

for some a",..., oQ, ßna G T, a ai n • • • n a^. Consider only the first case, the
second is proved analogously. Since Saß =/= 0 then dim a > n — 2. If dim a n — 1,

then k 2, which is a contradiction. Therefore dim a n — 2. The intersection of
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every three distinct simplices ap,aqar from {a\,... ,otk} contains a and cannot
be (n — l)-dimensional, hence apC\aqC\ar a. Since / has no quadruple points,
it follows that SOpß n SOqß n SOrß Saß and we are done.

The polyhedra A% and AlQ are defined as in 2.3, 2.4. If S\ n So n Sk ^ 0, then
take a point ank G S%C\SjC\Sk and let A^ st4 a^. By the choise of T, we have
that At,AtJ and A^ are contractible. Then (2.4.b) is proved similarily to (2.3.b).

2.5. Homotoping S(f) onto its 'reduced' nerve. Let d G {1,2}, N be a

polyhedron and S\,.. Ss its suhpolyhedra, satisfying (2.d-\- 2.a) and (2.d-\- 2.6).
Then the inclusion Uî=i St G N is homotopic to a map in some d-dimensional
suhpolyhedron of N.

Proof. Proof for the case d 2 is analogous to that for d 1. Suppose that
d 1. From (2.3.1) it follows that the sets St D S3 are disjoint for distinct non-
ordered pairs i,j 1,..., s. Take disjoint regular neighborhoods UtJ of St D S3

in \Jl=-]_St. Since At is contractible, it follows that there is a homotopy Ft :

Cl I St — UJ7tj ^i-3 x I ^ At between the inclusion and a constant map to some

point at £ At.
Suppose that St D S3 ^ 0. Since AtJ is contractible, it follows that there is an

arc/jj C AtJ, joining at and a0. Also we can extend homotopies Ft and Fo over
UlQ to a homotopy FlQ : UlQ x / -^ N between the inclusion and a map of UlQ to llQ

(we can do this by simplices beginning with the 0-dimensional ones). Since all UlQ

are disjoint and all FlQ are extensions of Ft and Fo, it follows that all constructed
homotopies define a homotopy F : (U»=i S,) x / -^ N between the inclusion and a

map onto the subgraph (Uj=J a» u (Ul^j I1 <i < 3 < s and SlC\S0 ^ 0}) of AT.

3. Proof of theorems 1.1.be

Theorem 1.1.b is proved analogously to theorem 1.1. a, using the following theorems
3.1 and 3.2 instead of theorems 2.1.1 and 2.1.3, respectively. Theorem 3.1 is proved
analogously to theorem 2.1.1 by induction on pairs (a, t) of simplices of T — A.
Theorem 3.2 is proved analogously to theorem 2.1.3.

Theorem 3.1. Suppose that N is an n-polyhedron with triangulation T, A is a

suhpolyhedron of N, g : N —> Bm is a PL map such that q\a is a PL-emheddmg into

dBm and g(N - A) C Bm. If m -n> 3 and the equwariant map g : A* -> S™"1
extends to an equwariant map F : N —s- Sm~^, then there exists a general position
PL-extension f : N -^Rm of g\A such that

a) f\a %s embedding for each a G T;
b) /er n /t f(a Pi t) whenever dimr < dimcr and 2dim<r + dimr < 2m — 3;

c) f(N-A) <zBm.
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Theorem 3.2. Suppose that N is a d-connected PL n-manifold with boundary,
m — n > 3 and there is a PL map g : N —> Bm such that g\dN ** an embedding

o o

into dBm, gN C Bm and S(g) Cl{x G N : \g~ gx\ > 1} is contained, in some
o

PL n-ball in N. Then there is an embedding f : N —s- Bm such thai f\oN g\dN-

Theorem 1.1.c is deduced from theorem 1.1.b analogously to [We 67, §7], only
one should use boundary version 1.1.b (but not relative version). To cover the
inaccuracy of [We 67, §7], mentioned in the introduction, and for completeness,
we present the proof here.

Proof of theorems 1.0. e and l.l.c. Let g : N x / —> Im x / be the linear homotopy
between /o and f\. By lemma 3.3 below there exists an equivariant map H :

N x / —> Sm such that H<nxO\jnx1)* is equivariantly homotopic to gtNxOuNxl)*-
Applying theorem 1.0.c or 1.1.b for the PL-manifold N x /, its subpolyhedron
AfxOUJVxl and the map g, we obtain an embedding ip : N x / —s- Im x /
such that <p(x,0) fo(x) and <p(x, 1) f\{x). By définition, <p is a concordance
between /o and f\. By the 'concordance implies isotopy' theorem [Li 65] (see also

[Hu 70]), /o and f\ are isotopic. D

Lemma 3.3. (cf. [We 67, Lemma 7]) Suppose that N is a space, g : N x / —>

Im x I Im+1 C Rm is a map such that g(N x (0,1)) C Im x (0,1), g\Nxo and

q\nx1 are embeddmgs into Im X 0 and Im X 1, respectively, and there exists an
equivariant homotopy h : N X / —> Sm~ between g\iyxO and 9\nx1- Then g is
defined, over (N xOUN X 1)* and, there exists an equivariant map H : N X I —> Sm
such that ff|(ArxouATxl)* %s equivariantly homotopic to g\(NX0uNxl)* ¦

Idea, of the proof. The construction of H is illustrated by Figure 1. The deleted
product N x I is shown as the cube ABCDA'B'C'D' without the arcPQ. N x
(0,0) and N x(l,l) are shown as the arc AA! without the point P and the arcCC
without the point Q, respectively. The image of N x I under the standard inclusion
into N x I is N x diag/ and is shown as the section ACC'A' without the arcPQ.
The part (N xOUJVx 1)*, on which H and / should be homotopic, is shown as

the union of the four faces

ADD'A' U DCC'D' U CBB'C U BAA'B'.

The pyramid PQDD' without the arc PQ goes to the north pole R. The symmetric
pyramid PQBB' without the arc PQ goes to the south pole S. On the section
ACC'A' without the arcPQ, H equals to h. Then H is extended 'linearly' to the

upper (lower) half-cube AA'BB'CC (AA'BB'CC) and send it to the northern
(southern) hemisphere.

Accurate proof. We follow [We 67, proof of lemma 7]. Denote by R and S the
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north and the south pole of the sphere Sm, respectively For a vector r G Rm
let v(r) ^ Define a map H ifx I -> Sm C Rm+1 by

H(x,s,y,t)

r s,

V

I R,

s -t> \x,y\

0<s-t<\x,y\
0 < t-s < \x,y\

t-s> \x,y\

It is easy to see that H is equivanant Also, H(x,t,y,t) h(x,y,t), hence

H—- —- is equivanantly homotopic to g—- —- For (x,t,y,l) G N x [0,1) x

N x {1}, both H(x,t,y,l) and g(x,t,y,l) are in the northern open hemisphere
For (x,t,y,0) G N x [0,1) x N x {0}, both H(x,t,y,0) and g(x,t,y,O) are in the
southern open hemisphere Therefore for each

(x,s,y,t) G (N xOUJVx 1)* -(ifxOUlfxl),

points H(x,s,y,t) and g(x,s,y,t) are not antipodal Therefore
equivanantly homotopic to gtN

)* IS

D

(x,y)

B

Nxl sm

Figure 1
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4. Conjectures

It would be interesting to prove smooth analogue of theorem 1.1.a. It would also be

interesting to generalize theorem 1.1 to embeddings of a manifold with boundary
into a manifold with boundary, cf. [Har 69]. Theorem 1.0.b suggests

Conjecture 4.1. (cf. [Sk]) If N is an n-manifold and m 4p + 1 (in particular,
(m,n) (4,2)), then for each equwanant 'map F : N —s- Sm~^ there exists an
embedding f : N —s- Rm such that f is equwariantly homotopic to F.

Problem 4.2. (cf. corollary 1.4.b) Is every orientable 6-manifold embeddable in

Idea of proof of theorem 1.1 and [Hu 67] motivate

Conjecture 4.3. (cf. [Sk]) a) Suppose that m > n + 3 and N is a d-connected
closed, PL n-manifold. Then N is embeddable in Rm if and only if there exist an
equwanant map F : N —s- Sm~^ ;

b) the above is true even without the connectedness assumption.

The idea of §2 works to prove conjecture 4.3.a for d 3. Using finger moves as

in [ST 91], one can prove conjecture 4.3.a for d 4,5. But for d > 5 this approach
requires stronger connectivity assumption. Note that conjecture 4.3.a is true for
PL-embeddings when m < n + 3 since for this case N is either n-connected (which
is not possible) or a homotopy sphere. Then conjecture 4.3.a is true for n 3

by [Wa 65] and for n > 4 by JKer 69], cf case n 4 in the beginning of 2.1. For
PL-embeddings and if m < j~ we have d > § — 1, hence N is a homotopy
sphere, and conjecture 4.3.a, however true, is not interesting. In [Gor 72] it was
pointed out that the condition of (3n — 2m + 2)-connectedness is unnecessary in
[Hu 67]. This motivies conjecture 4.3.b.
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