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The representation ring of a compact Lie group revisited

Bob Oliver

Abstract. We describe a new construction of the induction homomorphism for representation
rings of compact Lie groups a homomorphism first defined by Graeme Segal The idea is to
first define the induction homomorphism for class functions, and then show that this map sends

characters to characters This requires a detection theorem — a class function of G is a character
if its restrictions to certain subgroups of G are characters — which in turn requires a review of
the representation theory for nonconnected compact Lie groups

Mathematics Subject Classification (1991). Primary 22E45, secondary 55R40, 55R50

Keywords. Induced representations, class functions

In his 1968 paper, Segal [Seg] used elliptic operators to construct induction
homomorphisms R(i?) —? R(G) for an arbitrary pair H Ç G of compact Lie

groups, and then applied this to prove (among other things) a detection result for
when a class function on G is a character In this paper, we give new proofs of
these results, but in the reverse order We begin in Section 1 by showing that a
class function on G is a character if its restrictions to all finite subgroups of G are
characters Then, in Section 2, we first define induction homomorphisms Cl(H) —>

C1(G) for class functions, and afterwards apply the results of Section 1 to show that
they send characters to characters and hence define induction maps between the
representation rings This gives a construction of the induction homomorphisms
which is more elementary than that of Segal (though also less elegant), in that it
only assumes the standard theory of representations of a compact connected Lie

group
It is the results in Section 3 which, while more technical, provided the original

motivation for this work Let S-p(G) be the family of all p-toral subgroups of G
(for all primes p), where a group is called p-toral if it is an extension of a torus by a
finite p-group Let R-p(G) be the inverse limit of the representation rings R(P) for
all P G &p{G), where the limit is taken with respect to restriction and conjugation
in G This group R-p(G) was shown in [JO, Theorem 1 8] to be lsomorphic to the
Grothendieck group K(_BG) of the monoid of vector bundles over BG, and the
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"restriction" homomorphisin

rsG R(G) > RV(G) hm R(P)

is lsomorphic to the natural homomorphism R(G) —> K(_BG) which sends a
representation V" to the bundle {EGxGV)[BG

The mam result of Section 3 is a description, for arbitrary G, of the cokernel
of the homomorphism ysq In particular, we show that it is onto whenever G
is finite or tto(G) is a p-group, but that it is not surjective in general Precise

necessary and sufficient conditions for rsc to be onto are given in Theorem 3 10,
and several simpler sufficient conditions are given in Corollary 3 11 Note that rsc
is surjective if and only if bundles over BG have the following property for each

e,[BG there exist G-representations V,V such that £ 0 (EGxGV) (EGxGV)
(since by [JO, Theorem 1 8], every bundle over BG is a summand of a bundle

coming from a G-representation)
In the above discussion, we have for simplicity dealt only with the complex

representation rings But most of the results are shown below for real as well as

complex representations
I would like to thank in particular Stefan Jackowski for his comments and

suggestions about this work Originally, Sections 1 and 3 were intended to go
into our joint paper [JO], but then they grew to the point where we decided to
publish them separately I would also like to thank the colleague who, at the
1996 summer research institute in Seattle, showed me the references [Ta] and
[Vo] on representation theory for nonconnected compact Lie groups (After that
conference, I asked several people if they were the ones who had done so, but they
all denied it

Section 1. Detection of characters

The mam results of this section are Propositions 1 2 and 1 5 on detecting
characters among class functions They follow from Proposition 1 4, which describes
the representation theory of nonconnected compact Lie groups The first part of
Proposition 14 — the bijection between irreducible G-representations and certain
irreducible representations of Nq{T,C) — was proven by Takeuchi [Ta, Theorem
4], and is also stated in [Vo, Theorem 1 17] Since their notation is very different
from that used here, we have found it simplest to keep our proof, rather than just
refer to [Ta] Note that the group which we call N NG(T,C) is denoted T in
[Ta] and [Vo] (and called the Cartan subgroup in [Vo])

Throughout this section, G denotes a fixed compact Lie group, and Go is its
identity connected component Fix a maximal torus T Ç G, let Wq Nq(T)/T
denote its Weyl group, and let t Ç q denote the Lie algebras of T and G For any
Weyl chamber C Ç t, define

NG{T,C) {ge NG(T) \ Ad(g)(C) C},
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and

NG(T,±C) {ge NG(T) | Ad(ff)(±C) (±C)}
Here, Ad(<?) denotes the adjoint (conjugation) action of g on t and q We will see

in Proposition 1 1 that NG(T,C) has exactly one connected component for each
connected component of G, and that every element of G is conjugate to an element
of Na(T,C) Then, in Proposition 1 2 below, we show that a (continuous) class

function / G C1(G) is a character of G if and only if f\Na{T, C) is a character, and
that / is a real character of G (î e the character of a virtual RG-representation)
if and only if f\NG{T,±C) is a real character At the same time, we construct
(Proposition 1 4) a one-to-one correspondence between the irreducible representations

of G, and those irreducible representations of Nq{T, C) whose weights lie

in the dual Weyl chamber C* This generalizes the standard relationship, for a
connected compact Lie group G, between the irreducible representations of G and
those of T

Afterwards, the detection result is extended to show that an element / G C1(G)
is a character (real character) if and only if f\H is a character (real character) of
H for each finite subgroup H Ç G The classical theorem of Brauer for detecting
characters on finite groups can then be applied to further restrict the class of finite
subgroups of G which have to be considered

We first recall the definition and basic properties of the Weyl chambers of
a compact connected Lie group G The set of irreducible representations (or

irreducible characters) of T will be identified here with T* Hom(T, S*1), which
will in turn be regarded as a lattice in t* Hom(i, R)

The roots of G (or of Go) are the characters of the nontrivial irreducible sum-
mands of the adjoint representation of T on C(g)Rg They occur in pairs ±0 Let
R C T* Ç t* denote the set of roots of G Any element xq g t such that 9{xq) ^ 0

for all 6 G R determines a choice of positive roots

And this in turn determines a Weyl chamber

c {x g 11 o{x) > o ye g R+} ç t

and a dual Weyl chamber

c* {x g t* | (<9, x) > o ye g r+} ç t*

Here, in the definition of C*, (—, —} denotes any G-invariant inner product on q*
Note that C* is independent of the choice of inner product, since a G-invariant
inner product is uniquely defined up to scalar on each simple component of G

Proposition 1.1. Fix a maximal torus T Ç G and a Weyl chamber C Ç {, and
set N NG(T, C) Then N n Go =T, N Go G, and hence N/T G/Go
Also, any element of G is conjugate to an element of N
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Proof. Recall that the Weyl group WGo NGo(T)/T of Go permutes the Weyl
chambers of T simply and transitively (cf. [Ad, Lemma 5.13]). Hence each coset
of Nqo(T) in NG(T) contains exactly one connected component of N NG(T, G);
and soJVnG0 T, N-Go G, and N/T G/Go.

By [Bo, §5.3, Theorem l(b)], any automorphism of Go leaves invariant some
maximal torus and some Weyl chamber in Go- Hence, any element (?gG is
contained in Na(T', C) for some maximal torus T" and some Weyl chamber C Ç T";
and T' and T are conjugate in Go (cf. [Ad, Corollary 4.23]). Since NGo(T)/T
permutes the Weyl chambers for T transitively, there is a G Go such that T aT'a~^
and G aC'ar1; and agar1 € N NG(T,C). D

When dealing with real representations, we need to distinguish between the
different types of irreducible representations and characters. As usual, we say that
a G-representation V (over C) has real type if it has the form V C<8>kV for
some RG-representation V; and that V has quaternion type if it is the restriction
of an HG-representation. If V is irreducible and its character is real-valued, then
V has real or quaternion type, but not both [Ad, Proposition 3.56]. By a real
character will be meant the character of a virtual representation of real type (i.e.,
the difference of two representations of real type).

Proposition 1.2. Fix a maximal torus T Ç G and a Weyl chamber C Ç t. Then a

continuous class function f : G —> C is a character of G if and only if f\NG(T, C)
is a character of NG(T, C). And a continuous class function f : G —s- R is a real
character of G if and only if f NG(T,±C) is a real character.

The proof of Proposition 1.2 will be given after that of Proposition 1.4 below.
We first note some elementary conditions for / to be a character or a real character.

In the following lemma, we write as usual (<f,tß) fG<p(g)i(}(g) for any pair of
continuous functions if, ip : G —s- C (where the integral is the Haar integral on G
with measure 1).

Lemma 1.3. (a) A class function f G C1(G) is a character of G if and only if
(/i X) € Z for each character \ °f G.

(b) A class function f : G —s- R is a real character of G if and only if f is a

character, and (f,Xv) & 2Z for each G-representation V of quaternion type.
(c) A class function f : G —> R is a real character of G if f is a character, and

f\H is a real character of H for some H < G of finite odd index.

Proof. For any pair W, V of complex G-representations,

ixw,Xv) =dimc((W* <E)cV)G) dimc(HomCG(^ V)) G Z.

(Recall that xw*{g) Xw{g) for all g G G.) Also, if W has real type and V
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has quaternion type, then HomcG(VF, y) is a quaternion vector space, and so its
complex dimension is even. This proves the "only if" parts of points (a) and (b).

Conversely, assume that / G C1(G) is such that (/, x) € Z for each character

X of G. Since the irreducible characters form an orthonormal set, we know that
{It I) > 5Zî=i(/;Xî) f°r anY set Xli---iXfc of distinct irreducible characters.
Since each (/, x) € Z, this shows that (/, x) 0 for all but finitely many irreducible
chararcters x; an(i so / ^2 {f, x) 'X is a character of G by the Peter-Weyl
theorem (cf. [Ad, Theorem 3.47]).

We now consider conditions for a real valued character to be a real character;
or equivalently for a self-adjoint representation to be of real type. An irreducible
(^-representation (over C) is of complex type if its character is not real valued;
i.e., if V ^ V*. It follows from [Ad, Theorem 3.57] that a (^-representation V
(over C) is of real type if and only if it is a sum of irreducible representations
of real type, of representations CigiRVF M^©!^* for VF irreducible of complex
type, and of representations CigiRVF VF©VF for VF irreducible of quaternion
type. If v J2r=ini[Vi] € R(G) has real valued character, where the Vt are

distinct irreducible G-representations, then X!î=in*IX] 5Z»=i n»[(^»)*L an(i so
each pair Vt, (Vt)* occurs with the same multiplicity. Hence v has real type if 2\nt
for each i such that Vt has quaternion type. Since nt (xv,Xv this proves point
(b).

It remains to prove point (c): that an element v G R(G) with real valued
character has real type if v\H has real type for some normal subgroup H <\ G of
finite odd index; we may assume that v is the class of an actual C[G]-representation
V. Since all irreducible C[G/i7]-representations, aside from the trivial one, have

complex type (cf. [Ser, Exercise 13.12]), we can write C[G/H] C©VF©VF* for
some representation VF. Since by assumption, V\H has real type and V* V, the
isomorphism

Ind%(V\H) C[G/H] <g)C V V © (VF<g)CV0 © (VFigic^)* V © C<g>K(VF<g>cV)

shows that V has real type. D

By a weight of the compact Lie group G is meant an element of the lattice
T* Ç t*, regarded as an irreducible character of T. If V is any representation of
G, then the set of "weights of V" is defined to be the set of characters of
irreducible components of V\T. Consider the partial ordering of the weights of G,
where <f>\ < <f><2 if <j>\ is contained in the convex hull of the VF^-orbit of </>2 (cf. [Ad,
Définition 6.23]). One of the basic theorems of representation theory says that if
G is connected, then any irreducible (^-representation V has a unique VF^-orbit of
highest (maximal) weights, each of which occurs with multiplicity one. Furthermore,

distinct irreducible representations have distinct orbits of higher weights,
and every weight of G can be realized as the highest weight of some irreducible
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(^-representation. Thus, the irreducible representations of any connected G are in
one-to-one correspondence with the Wa-orhits of weights of G. And since any given

dual Weyl chamber C* Ç t* contains exactly one element in each WG orbit in
t* (cf. [Ad, Corollary 5.16]), the irreducible representations of G are in one-to-one
correspondence with the weights in C*. For more detail, see, e.g., [Ad, Theorem
6.33] or [BtD, Section VI.2].

Now assume that G is not connected. If V is an irreducible (^-representation,
and if Vo is any irreducible component of V|Go, then V is an irreducible summand
of Ind§o(Vo)- Hence each irreducible summand of V\Go is obtained from Vo by
conjugation by some element of tto(G); and there is still a uniquely defined WG-
orbit of highest weights for V. In this case, however, the highest weights can
occur with multiplicity greater than one; and there can be several irreducible G-

representations with the same orbit of highest weights.
In the next proposition, Irr(G) will denote the set of irreducible representations

of G. Also, if N NG{T,C) (for any maximal torus T Ç G and any Weyl
chamber C Ç t), then Irr(N, C*) denotes the set of irreducible representations of
N whose weights all lie in the dual Weyl chamber C* of C. For any V G Irr (G),
mxc*(V) C C* DT* denotes the set of those maximal weights of the irreducible
summands of V|Go which lie in C*. And for any N-invariant set of weights
$ C T*, V(Q) denotes the sum of all irreducible summands of V\T with weights
in $, regarded as an iV-representation.

Proposition 1.4. Fix a maximal torus T Ç G and a Weyl chamber G Ç t,
and set N Na(T,C). For any irreducible G-representation V, the subspace

V(mxc*(V)) is always an irreducible summand of V\N having multiplicity one.
This induces a bisection

ßG ; irr(G) ^L^ Irr(jV,G*) defined by ßG([V}) [V(mxc*(V))], (1)

and an isomorphism

^ defined by ßG([V}) [V{C*)]. (2)

Proof. Fix an irreducible Go-representation Vo, and let </> be the maximal weight
of Vo lying in C*. Set $ (N/T)-<f> Ç C*, the N/T-ovbit of </>. Let (Vo) Ç
Irr (Go) denote the G/G0-orbit of Vo, and let Irr(G, (Vo)) denote the set of all
irreducible G-representations with support in (Vo); i.e., the set of those irreducible
G-representations V such that all irreducible summands of V|Go lie in (Vo).

Let Vp denote the (1-dimensional) irreducible representation with weight
(character) </>; regarded as a subspace of Vq. Since G /Go N/T, the uniqueness of
maximal weights in C* shows that each irreducible component of (lndgo(Vo)) |Go
contains exactly one weight in $ [N/T)-4> (and with multiplicity one). Thus,

V* and Indgo(Vb)($)=Ind^(l/0). (3)
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So for any (^-representation V with support in (Vo) (i e for any [V] G Irr(G, (Vo))),
there is a commutative diagram

Fl\=

RomGo(V0,V') ——^ RomT(V^V'(

(4)

where F\ and F<i are the Frobenms reciprocity isomorphisms, and r\ and r<i are
defined by restriction to summands with weights m $ The one-to-one correspondence

between irreducible Go-representations and highest weights contained m C*
shows that r\ is an isomorphism, and thus that r% is also an isomorphism

Now assume that V and V are two irreducible (^-representations with support
m (Vo) By Frobenms reciprocity again (Homc(IndGo(Vo)j V) — Homc0(Vo, V) =/=

0), VisasummandofIndg0(Vo) So by (3) and (4), for any [V], [V] G Irr(G, (Vb)),

C if V W
0 it V ^ W

This shows that V{$) is N-irreducible for any [V] G Irr(G, (Vo)), and that V{$)
V ($} if and only \l V V And finally, any irreducible ^-representation with
support m $ is a summand of Indy (V^) Ind§o(\/o)(cI>}, an(i hence has the form
y($) for some V G Irr(G0, (Vo))

We have now shown that /3$ Irr(G, (Vo)) —? Irr(N, $), defined by setting
/3(j>([V"]) [y($)], is a well defined bijection Since the restriction to Go of any
irreducible G-representation is a sum of representations in just one G/Go-orbit
of irreducible Go-representations, ßa Irr(G) —> Irr (TV, C*) is the disjoint union
of the /3<j> taken over all Af/T-orbits $ Ç (G* n T*) and hence also a bijection
This proves point (1) At the same time, it shows that the homomorphism ßa
R(G) —s- K(N,C*) of (2) is an isomorphism, since its matrix with respect to the
bases of irreducible representations is triangular with 1 's along the diagonal D

We are now ready to prove that a class function is a (real) character if its
restriction to NG{T,C) (NG{T,±C)) is a (real) character

Proof of 1 2 Complex case Fix a continuous class function / G —s- C such
that f\N is a character of N We must show that / is a character of G Let
vo G R(AT) be such that \v0 f\N, let x be the character oîß^1 (vo{C*)) G R(G)
(Proposition 1 4(2)), and set /' /—x By construction, /'|./V is the character
of an element v G R(AT) such that v(C*} 0 We will show that v 0 It then
follows that /' 0 (since every element of G is conjugate to an element of ./V),
and hence that / x is a character of G
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Fix any </> G T*, and let N^, Ç AT denote the subgroup of elements fixing </>.

Choose any ^ G interior(C*)'/v (N/T acts linearly on t* and leaves the dual Weyl
chamber C* invariant). Then </> + Hip is not contained in the wall of any dual
Weyl chamber (since ip is not); and so there is a dual Weyl chamber GJ such that
4> + etp G interior(Cj') for small e > 0. Let w G Wq be any element such that
w(C\) C* (WG(J permutes the Weyl chambers transitively). Then wtf> G C*,
since </> G Cjf. Also, for any a G A^, a(^) ^ and a(</>) </> by assumption,
so a leaves GJ invariant, and hence wow"1 leaves C* w(GJ) invariant. Thus
wN^u)-1 Ç N; and so v(w<f>) 0 G R^A^w"1) since v(C*) 0 G R(AT). Since

Xv is constant on G-conjugacy classes (it is the restriction of a class function on
G), it now follows that v{4>) 0 G R(AT0).

Let 4>\,..., <f>k G T* be Af/T-orbit representatives for the support of w, and write
Nt N^ (the subgroup of elements which fix <f>%). Then v J2t=i l-nd^(v{(pt)).
We have just seen that v((pt) 0 G R(A^) for each i, and hence v 0.

Real case: Write N± NG(T, ±C), for short. Fix a class function / : G —s- C such
that /|A^± is a real character. Then / is a character by the above, and /(G) Ç R
since any element of G is conjugate to an element of N Ç A^± (Proposition 1.1).
By Lemma 1.3(b), we can assume (after replacing / by its sum with an appropriate
real character) that / \v, where V J2r=l ^%, the Vt are distinct irreducible
G-representations of quaternion type, and V^A^ is a representation of real type.
We claim that V 0 (i.e., that k 0).

Assume otherwise: that k > 0. Choose a W^j-orbit ^ of maximal weights in
one of the Vt — say V\ — which does not occur in any of the others except possibly
as maximal weights. Set $ * n C* and $± * n (±G*). By Proposition 1.4

(and the original assumption on ^), V\{<&) is irreducible as an ^-representation,
and does not occur as a summand of Vt\N for any i =/= 1. So the A^±-representation

def
V-[ Vi {$>-$-) is irreducible — since

v{\n Vi($) e Vi($±\$)
— and V[ does not occur as a summand of K|A^± for any i =/= 1. Also, since V\
is self-conjugate, the elements of 'J, and hence of $±, occur in pairs ±</>. This
shows that V( V\(^±) is invariant under the conjugate linear automorphism

j : V\ -^ V\, and hence that it also has quaternion type. Thus, V^A^ contains
with multiplicity one the irreducible summand V-[ of quaternion type, and this
contradicts the assumption that V\N± is a representation of real type. D

It remains to extend this critérium to a result which detects characters by
restriction to finite subgroups of G. As usual, a finite group is called elementary if it
is the product of a p-group (for some prime p) and a cyclic group. A finite group G
is called R-elementary if it is elementary, or if it contains a normal cyclic subgroup
C <\ G of 2-power index with the property that for any g G G, conjugation by g
acts on C via the identity or via (x h^ x"1).
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Proposition 1.5. For any class function f : G —> <C, f is a character of G if and

only if its restriction to any finite elementary subgroup of G is a character; and

f is a real character of G if and only if its restriction to each finite R-elementary
subgroup of G is a real character.

Proof. When G is finite, the proposition holds by the classical Brauer theorems
for detecting characters of finite groups (cf. [Ser, Theorem 21 and Proposition
36]). So it will suffice to show that / is a (real) character of G if and only if its
restrictions to all finite subgroups of G are (real) characters. By Proposition 1.2,
it suffices to prove this when the connected component Go of G is a torus.

Assume now that Go T is a torus. We can choose a sequence H\ Ç H% Ç
Hz Ç of subgroups of G such that each Ht intersects all connected components
of G, and such that the union of the Ht is dense in G. The simplest way to
see this is to set n \G/T\, let nT Ç T denote the n-torsion subgroup, and
note that the homomorphism H2(G/T\nT) —> H2(G/T\T) is surjective since
n-H2(G/T;T) 0. Hence there is a subgroup Ho Ç G such that Ho n T nT
and (Hq,T) G; and we can define Hk {Hq, „ i^T) for each k > 0.

Let / G C1(G) be any class function whose restriction to each Ht is a character.
For each character x of G,

</,X>G=f / f-X= Um (i^T J2 f(9>x(g)) Um (f,X)H,
¦IG j—s-oo

I »I
g^ff^ i—>oo

(by definition of the Riemann integral); and (/, x)H G Z for each i since f\Ht is

a character of Ht. Thus, (/, x)G G Z for each x, and so / is a character of G by
Lemma 1.3(a). And if f\Ht is a real character for each i, then / is real valued (the
union of the Ht being dense in G), (/, x) r lim (/, x) h € 2Z for each character

X of quaternion type by Lemma 1.3(b), and so / is a real character by Lemma
D

Section 2. Induction for representations of compact Lie groups

Again, throughout the section, G denotes a fixed compact Lie group. We construct
an induction homomorphism R(iî) —? R(G), for an arbitrary closed subgroup
H Ç G, by first defining it between the groups of class functions, and then using
the results of Section 1 to show that it sends characters to characters.

The following lemma is useful for constructing continuous functions on G, and
on certain closed subsets of G.

Lemma 2.1. Let T be any set of closed subgroups of G, closed, under conjugation

and closed, in the space of all subgroups (with the Hausdorff topology). Set

Gjr \JHejzH: the union of the subgroups in T. Then for any function f : Gjr —s-
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C invariant under conjugation, f is continuous on Gjr if f\H is continuous for all
HeT.

Proof. Fix any conjugation invariant function / : Gjr —> C such that f\H is

continuous for all H G T. It will suffice to show, for any sequence gt —s- g in Gp,
that some subsequence of the f(gt) converges to f(g). Since if / is not continuous
at g, then there is e > 0 and a sequence {gt} in Gjr converging to g such that
|/(<fc)-/(ff)|>e for alii.

Fix such gt and g; and for each i choose Ht G T such that gt G Ht. Since T is

closed in the space of closed subgroups of G, and since this space is compact (cf.
[tD, Proposition IV.3.2(i)]), we can replace the gt by a subsequence and assume
that the Ht converge to some subgroup H G ?'. By [tD, Theorem 1.5.9], there
exist elements at —> e such that atHta~ Ç H for i sufficiently large. And hence

lim f(gt) lim f{algla~1) f(g)
i—>oo i—>oo

since f\H is continuous. D

The next lemma is also rather technical, and will be used later to show that
the induction homomorphism we define for class functions is well defined.

Lemma 2.2. Fix a closed, subgroup H Ç G and an element g G G, and let
(G/H)9 be the fixed point set of the action of g on G/H. A coset aH G G/H
lies in (G/H)9 if and only if aT^ga G H. And if a\H and a^H lie in the same
connected component of (G/H)9, then a%H xa\H for some x G Ca(g). In
particular, in this situation, a^ ga\ is conjugate in H to a^ ga^.

Proof. For any a G G, a,H G (G/H)9 if and only if ga,H aH, if and only if
a~^ga G H. Also, if a^H xa\H for any a\,a,2 G G and any x G Ca(g), then

al 9al an(i a^gaz are conjugate by an element of H.
Now fix an element aH G (G/H)9. Let Ca{g)o be the identity connected

component of the centralizer of g. We must show that the connected component
of aH in (G/H)9 is Ca(g)o-aH. Equivalently, via translation by a^1, we must
show that the connected component of eH in (G/H)a ga is Ca{a~^ga)-eH. So

upon replacing a~^ga by g, we are reduced to the case where a e and g eH.
Let \) Ç q denote the Lie algebras of H Ç G. For all x G G, xH G (G/H)9

if and only if xH gxH gxg-xH. In particular, CG(g)-H Ç (G/H)9; and

the tangent plane at eH to the manifold (G/H)9 is (fl/f))Ad(fl) (the fixed point
set of the adjoint action of g on fl/fj). Also, the projection of q onto g/f) is split,
equivariantly with respect to the action of the compact group H, and so gAd(s)

surjects onto (fl/f))Ad(-s-1. Since gAd(s) is the Lie algebra of Ca(g), this shows that
the two submanifolds Ca(g)o-H Ç (G/H)9 have the same dimension, and hence
that Ca(g)o'H is the connected component of eH in (G/H)9. D



Vol. 73 (1998) The representation ring of a compact Lie group revisited 363

We can now define the induction homomorphism for class functions, motivated
by the formula given by Segal [Seg, p. 119].

Propositition 2.3. Let H Ç G be any dosed subgroup. Then there is a

homomorphism

Indg : Cl(H) > C1(G)

determined (uniquely) by the following formula. Fix any g G G, let F\,.. ,Fk be

the connected components of (G/H)9, and choose elements atH G Ft. Then for
any f G Cl(H),

k

Indg(/)(ff) Ydx{Fx)-f{a-lgat). (1)

i=\

Proof. Fix any / G Cl(H). By Lemma 2.2, for each g G G, Ind# (/)(#) is

independent of the choice of representatives atH for the components of (G/H)9. Also,
Ind^r(/) is conjugation invariant by definition; and it only remains to check that
it is continuous.

Let T be the family of abelian subgroups of G. Clearly, T is closed in the
Hausdorff topology, and its union is all of G. By Lemma 2.1, it will suffice to show
that f\A is continuous for each A G T. Let X be a connected component of some
subgroup A G T; we can assume that X generates tto(A). For any g G X, A/(g) is

connected (where (g) is the closure of the subgroup generated by g); and hence is a

torus (or trivial). If (G/H)9 Yit=i F%, where the Ft are connected components,
then (G/H)A Ljf=l(^)A/<s> and x((F,,)A/{9)) x(F,,) for each i. Thus, if we
write (G/H)A YlT=lFj (where the Eo are the connected components), and
choose elements b3H G E3, then

This formula holds for all g G X, and shows that Ind^(/) is continuous on X. D

The following double coset formula for induction and restriction of class
functions is analogous to that shown by Feshbach [Fe] for equivariant cohomology
theories. It was shown for representations by Snaith [Sn, Theorem 2.4], using
Segal's definition. We prove it here for class functions, using directly the definition
in Proposition 2.3.

Lemma 2.4. Fix closed, subgroups H,K Ç G, and, write

k

K\G/H =\[Ut



364 B. Oliver CMH

where each Ul is a connected component of one orbit type for the action of K
on G/H. Fix elements a\,...,a,k G G such that KatH G Ut. For each i, let
<pt : C\(H) —s- C\(K) denote the composite

<p,, : Cl(ff) -^ G\{a-lKatC\H) ^ "'
: C\(K n ^Ha'1) -^-> C\(K).

Then, as functions from Cl(H) to C\(K),
k

Res£oIndg ^X»(£4)-^; (1)

where for each i,

x\U%) X(ÏÏt, ÏÏl\Ul) x(Ût) - x(Üt \ Ut).

Proof Fix elements / G G\(H) and g G K. We will compare the two maps in (1),
when evaluated on a given class function / and a given element g.

Let Ul Ç G/H denote the inverse image of Ul under the projection to K\G/H.
Let Ft,..., Fm be the connected components of (G/H)s. Thus, G/H Tjf=i Ùt

and (G/Hy TJJli F3. For each i,j, set

Vl3 (K-atH) D F3 Ç Üt D F3 Ç G/H

(note that V%3 need not be connected). Then the Vt3 -^ Utr\F3 -^ Ut are fibration
sequences, and so

k „YK^ n F3)

for each j. Fix elements èjj G K, for each i, j, such that btJatH G Vy. Then by
définition of the induction map (and Lemma 2.1),

k m
(Res« olnd

And for each i, if we set if^ KC\a%Ha~ (the isotropy subgroup of the action of
K on a,H G G/ff), then {K/K%f {K-a.Hf TJ^Li Vl3 (Ç G/ff); and so

<pt{f){g).

D
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When G is finite, the formula given in Proposition 2 3 is just the usual formula
for the induction of characters (cf [Ser, Theorem 12]) Hence by the double
coset formula in Lemma 2 4, for each character (real character) \ °f H and each

finite subgroup K Ç G, (Ind^-(x)) \K is a character (or real character) of K The
detection result of Proposition 1 5 now applies to show

Theorem 2.5. The homomorphism lndH of Proposition 2 3 sends characters to
characters, and sends real characters to real characters It thus restricts to homo-
morphisms

Indg R(H) > R(G) and Indg RO(H) > RO(G)
D

These induction homomorphisms are in fact functonal, i e they compose in
the expected way

Lemma 2.6. For any closed subgroups K Ç H Ç G,

Ind£ Indgolndf C\(K) > C1(G),

and hence

Ind£ Indg o Indf R(K) > R(G)

Proof Fix any element g G G, and consider the projection (G/K)9 > (G/H)9
For any äff G (G/H)9,

pi-1(aH) {ahK \heH, h-1(a-1ga)h G K} a (H/K)a~lga

If a,H and a'H he in the same connected component of (G/H)9, then a'H xaH
for some x G Co (g) (Lemma 2 2), and so pr^1 (a'H) x pr^1 (aH) It follows that
pr is a fibration (fiber bundle) over each connected component of (G/H)9 The
result now follows from the definition of the induction homomorphisms (Proposition

2 3), together with the multiphcativity of Euler characteristics in a fibration
D

We leave it as an exercise to check that this induction homomorphism is the
same as that defined by Segal in [Seg] (use the formula given in [Seg, p 119])

It is not hard to prove Frobemus reciprocity for induction and restriction of
representations, using the definition given here And that in turn implies, for
example, that the induction map IndwT\ R(N(T)) —> R(G) is always surjective,
and split by the restriction map See also [Sn, Section 2 3] for the proofs of these
results using Segal's definition of induction
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Section 3. Representations supported by p-toral subgroups

Again, throughout this section, G will be a fixed compact Lie group, and Go will
denote its identity connected component. Let &p{G) denote the family of p-toral
subgroups of G, for all primes p. We now consider the groups

R/p(G) lim R(P) and ROV(G) lim RO(P),
PeSr(G) PeSr(G)

where the limits are taken with respect to inclusion and conjugation; and the
natural "restriction" maps

rs^ : R(G) > RV(G) and rsg : RO(G) > ROV(G).

These groups were shown in [JO] to be naturally isomorphic to the Grothendieck
groups K(P»G) and KO(P»G), respectively, of vector bundles over BG (and rs^ and
rs§ are isomorphic to the natural homomorphisms R(G) —> K(P»G) and RO(G) —>

KQ(BG)).
The homomorphisms ysq are shown here to split as a direct sums of homomorphisms

between finitely generated groups, one for each GjGo-orbit of irreducible
Go-representations, and the cokernel of each summand is computed (Theorem
3.9). In particular, this yields necessary and sufficient conditions for rsg! to be
onto (Theorem 3.10 and Corollary 3.11). The orthogonal case seems to be much
more complicated; but we do at least show that rs§ is onto whenever G is finite
or tto(G) has prime power order (Propositions 3.2 and 3.4), and then give some
examples which show that rs§ can fail to be onto even when rs^ is onto.

It will be useful to define the "character" of an element of R-p(G). For any
compact Lie group G, let Gp denote the union of the connected components in
G of prime power order in tto(G). Let Cl(G-p) denote the space of continuous
functions G-p —s- C invariant on conjugacy classes (i.e., the "class functions" on
Gp).

Lemma 3.1. There is a (unique) character homomorphism

X ¦ R;p(G) > Cl(Gp),

such that for any v (vp)peS ,G-> G R-p(G), xiv)\P XvP for all P in Sp(G).
Also, x sends R-p(G) (ROp(G)) isomorphically to the subgroup of those class

functions on Gp whose restriction to each p-toral subgroup P Ç G, for all primes
p, is a character of P (a real character of P).

Proof. Let T be the set of p-toral subgroups of G (for all primes p), whose identity
connected component is a maximal torus of G. Clearly, T is closed in the Hausdorff
topology (note that for P G T, the order of tto(P) is bounded by \NG(T)/T\). And
by Proposition 1.1, Gp is the union of the P G T.
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Now, for any v (vp) p s ,G-> G R-p(G), define x{v) '¦ G-p —> C to be the

union of the characters XvP ¦ This is well defined, and invariant under conjugation,
by definition of the inverse limit. Also, xiv) lii continuous by Lemma 2.1, applied
to the family J7; and so xiv) € Cl(G-p).

The character homomorphism x lii clearly a monomorphism, and the descriptions

of the images of R-p(G) and RO-p(G) are immediate from the construction.
D

We are now ready to study the groups R-p(G) and RO-p(G), beginning with
the following case.

Proposition 3.2. If ttq(G) has prime power order, then

rs^ : R(G) —=-> RV(G) and rsg : RO(G) —=-> ROV(G)

are isomorphisms. Furthermore, for any G,

RV{G) lim R(P) and ROr(G) lim RO(P); (1)

where J--p(G) denotes the family of subgroups H Ç G of finite index such that
H/Gq has prime power order (and the limits are taken with respect to inclusion
and conjugation).

Proof. If tto(G) is a p-group for any prime p, then G G-p, and so rs^ and rs§
are both monomorphisms by Lemma 3.1. To prove that they are isomorphisms,
we must show that a class function / G C1(G) is a (real) character if its restriction
to all p-toral subgroups of G is a (real) character.

Fix a maximal torus T and a Weyl chamber C Ç t, and set N Na{T,C).
Then N is p-toral by Proposition 1.1; and by Proposition 1.2 a class function

/ G C1(G) is a character of G if f\N is a character of N. This shows that rs^ is

an isomorphism. If tto(G) is a 2-group, then Nq(T,±C) is 2-toral, and the same
argument shows that rs§ is an isomorphism. Finally, if tto(G) is ap-group for an
odd prime p, then for any v G RO-p(G), xiv) lii a real valued character of G whose
restriction to Go is a real character of Go (since tto(Go) 1 is a 2-group); and so

x(v) is a real character of G by Lemma 1.3(c).
This finishes the proof of the first statement above. The formulas in (1) now

follow immediately (by the transitivity of inverse limits). D

The importance of the formulas in (1) above is that they show that the groups
R-p(G) and RO-p(G), and also the maps rs^ and rs§, split as sums of groups and

maps indexed by the irreducible representations of the identity component Go.
This will be made more explicit in Theorem 3.9 below.
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The next proposition describes how standard induction techniques apply to
study R-p(G) and rs^. Recall that a finite group F is p-elementary if it is a

product of ap-group and a cyclic group, and is elementary if it is p-elementary for
some prime p. Also, F is 2-R-elementary if it contains a normal cyclic subgroup
Cm of 2-power index such that any element of G either centralizes Cm or acts on
it via (a i—> a^1); and is R-elementary if it is elementary or 2-R-elementary.

Proposition 3.3. (a) For any subgroup H Ç G of finite index, there is an induction

homomorphism
Indg : R-p(H)

with the property that for any v G K-p(H) and any g G G-p,

xWa^ga). (1)

aHe(G/H)s

(b) Let £{G) and £r(G) denote the sets of subgroups E Ç G of finite index such
that E/Gq is elementary or R-elementary, respectively. Then restriction induces

isomorphisms

Coker(rsg) —=—> lim Coker(rsjî) and Coker(rsg) ~ : lim Coker(r.s'g);
Ee£(G) Ee£t(G)

where the limits are taken with respect to inclusion and conjugation in G.

Proof We regard Ind^ as a homomorphism Cl(H-p) —> Cl(G-p), defined via
formula (1). Note that this is just the restriction to G-p of the formula given in
Proposition 2.3 (though only in the case where [G:H] < oo). In particular, the
double coset formula of Lemma 2.4 applies in this situation.
(a) Fix any v G K-p(H), and let x x(v) € Cl(H-p) be its character. We must
show that Ind^-(x) is the character of an element of R-p(G); or équivalently (by
Lemma 3.1) that Ind^(x)|-P is a character for all p-toral subgroups P Ç G (for
all primes p). And for any such P, gPg~^ n H is p-toral for each g G G, so

x\{gPg^ H H) is a character, and hence lndH(x)\P is a character of P by the
double coset formula.
(b) Let J-'(G) be the class of subgroups of G of finite index. The functor H \-^

R(H/Gq) satisfies the double coset formula and Frobenius reciprocity relations for
induction and restriction, and hence is a Green ring over !F{G) in the sense of
Dress [Dr]. Also, the double coset formula of Lemma 2.4 says that H \-+ K-p(H)
and H h^ Coker(rs^) are both Mackey functors over !F{G) (again in the sense
of Dress); and both are modules over R(—/Go) satisfying Frobenius reciprocity.
Since R(G/G0) is generated by induction from the R(_E/G0) for E G £{G) [Ser,

§10.5, Theorem 19], the "fundamental theorem" of Mackey functors and Green

rings says that F(G) lim £(n)^^^ ^or an-^ sucn m°dule over R(—/Gq).
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This is shown in [Dr, Propositions 1 1' and 1 2], and a more direct proof is given
in [Ol, Theorem 11 1]

Similarly, H ^ RO-p(H) and H ^ Coker(rsg) are Mackey functors over T(G),
and modules over RO(—/Go) satisfying Frobemus reciprocity Since RO(G/Go) is

generated by induction from the RO(E/G0) for E G 5K(G) [Ser, §12 6, Theorem
27], the same argument applies to show that Coker(rs§) hm Coker(rs'g) D

Ee£t(G)

In fact, the induction map lndH R-p(H) —> R-p(G) is defined for any closed
subgroup H Ç G, using the formula for induction of characters in Proposition 2 3

To see this, one must check, for any / G Cl(H), that Indg(/)|G-p 0 if f\Hr 0

This would be immediate if we knew that HOG-p Ç H-p, but that is not the case

in general The existence of the induction map is thus slightly more tricky than
in the case where [G H] < oo, but is not difficult

We now turn to the case of finite groups

Proposition 3.4. If G is finite, then rs]l and rs§ are both surjective

Proof By Proposition 3 3(b), it suffices to show that rs^ is onto when G is elementary,

and that rs§ is onto when G is R-elementary We do this in the orthogonal
case only, the unitary case is similar (but simpler)

Assume that G is R-elementary, and fix an element v (vp) „ o ,„.. G

RO-p(G) In other words, vp G RO(P) for each p-subgroup P Ç G (for each prime
p |G|), and by subtracting a constant character we can assume that Xi>p(l) 0

for each P For each p||G|, write vp wSy| /G\ G RO(Sylp(G)) It will suffice to
show that each vp extends to an element v'p G R(G) whose character vanishes on
all elements of order prime top (then v rs^^t/,)) This is clear if Syl (G) has

a normal complement, since in that case v'p can be taken to be the composite of
vp with a surjection G -» Sylp(G)

The only case left to consider is that where p is odd, G is 2-R-elementary, and

Sylp(G) has no normal complement Set pk \ Sylp(G)|, then there is a surjection
G -» D(2pk), where D(2pk) is dihedral of order 2pk One easily checks that any
vp G RO(Gpfc) such that Xvp(l) 0 extends to an element v'p' G RO(L>(2pfc)) such
that Xv'^(g) 0 for all g of order prime to p And hence if v'p G RO(G) is the

composite of vp' with the surjection G -» D{2pk), then v'p\ Sylp(G) vp and Xv'p
vanishes on all elements of order prime to p D

Recall that for any torus T, we let t denote the Lie algebra of T, and regard
the group T* Hom(T, S*1) of irreducible characters of T as a lattice in t*
Hom(t, R) The following definitions establish some of the notation which will be
used when dealing with irreducible characters and representations of groups with
torus identity component
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Definition 3.5. If G is a compact Lie group with identity component T, then the

support of a G-representation V is the (G/T-invariant) subset Supp(V) Ç T* of
all characters of irreducible summands ofV\T. More generally, for any v G R(G),
Supp(-u) G T* is the union of the supports of the irreducible G-representations
which occur in the decomposition of v. For any G/T'-invariant subset $ Ç T*,
Irr(G,$) denotes the set of irreducible G-representations with support in $, and

R(G,$) Ç R(G) denotes the subgroup of elements with support in $. For </> G

T*, we write (</>) for the G/T-orbit of (p (and write Irr(G, </>), etc., if (p is G/T-
mvanant). Finally, ifV is any G-representation, thenV (Q) andV(<f>) denote the

largest summands of V with support in $ or (p, respectively.

The descriptions of Coker(rsg) in Lemma 3.8 and Theorem 3.9 below will be

given in terms of a certain function S(G), defined for compact Lie groups whose

identity component is a torus and central.

Definition 3.6. Assume that G lies in a central extension l^T^G^T^l,
where T is a torus and T is a finite group. For each 4>&T*, define

5{G,4>) gcd{dim(V) | V G Irr(G, </>)};

and set
5{G) |

The next lemma gives a partial description of this function, independantly of
representations; and also lists some of its more technical properties which will be
needed in later proofs.

Lemma 3.7. Assume thai Gq Ç Z(G); i.e., thai G lies in a central extension
1 -> T -> G -> T -> I, where T is a torus and T is finite. Set e expt (Tn[G, G]).
For each prime p \T\, let Gp be a maximal p-toral subgroup of G: the extension of
T by a Sylow p-subgroup ofT. Then

(a) S(G) 1 if and only if e 1, if and only if G T X T

(b) e\5{G) and (5(G)2||r|
(c) 5(G) Y\p\\V\5(Gp), and 6(G,4>) Y[p\^ö(Gp,4>) for all 4>eT*

(d) 5{G, </>') 5{G, 4>) for all </>', </> G T* with 4>' 4> (mod e)

(e) S(G, n(j>) S(G, <f>) for all <f>eT*, and all n G Z with (n, e) 1.

Proof. Note first that for any H Ç G of finite index, and any </> G T*,

ö(H,4>)\ö(G,4>)\[G:H]-ö(H,4>). (1)

The first relation holds since each G-representation with support in </> can be

regarded as an H-representation; and the second since Ind^-(V) has support in </>

for any iï-representation V with support in <f>.



Vol 73 (1998) The representation ring of a compact Lie group revisited 371

(b) Fix any </> G T*, and choose a G T l~l [G, G] such that </>(a) generates </>(T n
[G, G]) Then for any G-representation V^ with support in </>, a acts on V^ via
multiplication by </>(a), and since a G [G, G], </>(a) Idy has determinant </>(a)dim(v) 1

Thus, |</>(a)|| dim(V) for all such V, and so

\4>(a)\ \4>(Tn[G,G})\\ö(G,4>) (2)

In particular, e expt(T n [G, G]) divides S(G)
Now fix any </> G T*, and let V^ be the 1-dimensional irreducible T-representation

with character </> Let Vi, ,Vk be the irreducible G-representations with support
in <f> For each i, the multiplicity of Vt in Ind^V^) is

î)) dimc(HomT(V0, VJ) dimc V%

Thus, |F| dim(Ind£(V0)) ]Tf=i dim(V;)2 And so 5{G,4>), the greatest common

divisor of the dnn(V^), is such that (5(G,</>)2||F|

(a) We prove here the slightly more general equivalence that

5{G,<f>) l <s=^ 4>(TD[G,G}) 1 ¦«=> GI Ker(</>) T/ Ker(</>) x F (3)

The third statement clearly implies the first, and the first implies the second by
(2)

By the universal coefficient theorem, H2{T,T) Hom(ff2(T),T), and Tfl
[G,G] is the image of the homomorphism i]q H^ÇT) —s- T which corresponds to
[G] as an element of H2(T,T) So G T x F if T n [G, G] 1, and G/ Ker(</>)

T/ Ker(</>) x F if </>(T n [G, G]) 1

(c) This formula follows immediately from (1), and the fact that 5{Gp, </>)| |GP/T|
is a power of p for each p
(d) If 4> 0 (mod e), then </>(T n [G,G]) 1, and so 6(G,<j>) 1 by (3) If
4>' 4> ^ 0 (mod e), then the two composites

are equal Hence (G/ Ker(</>), </>) (G/ Ker(</>'), 4>') as pairs, and J(G, </>) J(G, </>')

(e) For any n G Z and any G-representation V^ with support </>, ipn(V) is a virtual
representation with support n<f> since x^nv{gt) Xv{gntn) X^nv{g) 4>{t)n f°r
any geG and tGT Cf [Ad, Lemma 3 61] for details Also, V and ipn(V) have
the same (virtual) dimension, and hence J(G,n</>)| J(G, </>) So by (d), 5{G,n4>)
5{G, </>) if n is mvertible mod e D

Ian Leary has pointed out to me that 5{G) is the greatest common divisor of
the indices [G H] of those subgroups H Ç G of finite index such that i? splits as

a product H T x (H/T)
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Whenever Go T is a torus, R(G) splits as the direct sum, taken over all G/T-
orbits (</>) Ç T*, of the subgroups R(G, (</>)) of finite rank. In a similar fashion,

rsg splits as the direct sum over all (</>) Ç T* of homomorphisms

rsGj(0) : R(G, (</>)) > Rp(G,(^)).

We are now ready to describe the cokernel of each of these summands for such G.
The key case to consider is that when T Go is central and </> is faithful.

(7

Lemma 3.8. Assume that G lies in a central extension 1 —> T —> G —> F —> 1,
where T S^, and where F is finite. Fix a faithful (mjective) character </> G T*.
Let S be the set of all conjugacy classes of elements g G F such that no two
elements in a~^g are conjugate; and let S-p Ç S be the set of conjugacy classes of
elements of prime power order. For each g G S-p, let rj(g) be the largest divisor of
ö(Ca(g),(t>) which is prime to the order of g. Then

Z|S|, Rv{G,4>)=tSr\, and Coker(rsGj0)

Proof. A character x of G has support in </> if and only if it satisfies the relation
x{gt) xig)^) f°r all g G G and t G T. In particular, since </> is injective,
x{g) 0 for any g which is conjugate to gt for some 1 ^ t G T. Thus, C1(G, </>)

is a complex vector space of dimension IS*!; and by the Peter-Weyl theorem (and
the independence of irreducible characters) R(G, </>) is a free abelian group of rank
IS*!. Also, R-p(G,4>) is torsion free (it is detected by characters defined on G-p),
and Ker(rsc,0) is the set of elements of R(G, </>) whose characters vanish on G-p.
So the image of rsc,0 is free of rank \S-p\; and once we have shown that rsc,0 has

finite cokernel it will follow that R-p(G, </>) is a free abelian group of the same rank.
The computation of the cokernel of rsc,0 will be carried out in two steps.

Step 1. Assume first that F is p-elementary for some prime p. Then we can write
G Cn x P, where Cn is cyclic of order n prime to p, and where P is p-toral.
In particular, R(G) ^ R(Gn) <g> R(P) and R(G, </>) R(Gn) <g> R(P, <f>). Let IR(-)
denote the augmentation ideal of R(—), and similarly for IR-p(—). Consider the
following commutative diagram with split short exact rows:

0 > IR(Gn)<g>R(P,</>) > R(G,<

rsCrl®augm. rsGj^,

0 > IRv(Cn)(E)Z > RV{G,

Here, \Rv{Cn) is the product of the IR(Sylq(Gn)) for q\n, and any wGlR(Sylq(Gn))
lifts to an element of IR(Gn) whose character vanishes on other Sylow subgroups.
Hence IR(Gn) surjects onto IR-p(Gn), and so

augm.
Coker(rsGj0) Coker(rsCri <g) augm.) \Rv{Cn) <g) Coker[R(P» > Z].
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The cokernel of this augmentation map is by definition Z/S(P, </>), and so

Coker(rsG0) lRv(Cn) <g> (Z/Ö(P,4>)) (f)

Step 2. Now assume that G is arbitrary Let £(G) be the set of subgroups of G
of finite index such that E/T is elementary, and (for each prime p |F|) let £p{G)
be the set of those E G £ (G) such that E/T is p-elementary By Proposition
3 3, Coker(rsc 0) is the inverse limit of the groups Coker(rs£ 0), taken over all
E G £{G) By (1), Coker(rsB0) is a finite p-group for all E G £p{G) Hence

Coker(rsc0) is finite, and (for each p) Coker(rsc <p)(p) ls the inverse limit of the

Coker(rsB0) for E e £p(G)
Fix a prime p |F|, we want to determine the p-power torsion m Coker(rsc0)

If K' Ç K are finite cyclic subgroups of order prime to p, then the composite

(P) -^U lR(K){p) -^^ lR(K'){p) (2)

is multiplication by [K K'], and hence an isomorphism Thus, if K is cyclic of
order prime to p, we can split

lRv(K){p) 0 IR(Sylg(20) © IR(K')(p)
q\\K\ l^K'CKT

(1 e taking the second sum over subgroups of prime power order) Here, ÏR(K') Ç

IR(K') is the kernel of the map given by restriction to the subgroup of prime index,
and is free with rank equal to the number of generators of K'

For each n |F| prime to p, let Cycn be the set of all cyclic subgroups if Ç F of
order n if n is a prime power, and set Cycn 0 otherwise By Lemma 3 7(c), for

any maximal p-toral subgroup P Ç H, ô(P, </>) is the largest power of p dividing
S(H, 4>) So with the help of (1) we now get

Coker(rsG0)(p) hm Coker(rsB 0)
Ee£p{G)

© ^ (3)

pfn|iri Ke°ycn

For each n qk (where q ^ p is prime), set

Cyc^ {K=(g)<E Cycn no two elts m a g conjugate m G}

Fix some K G Cycqfc \ Cyc^fc, and let K' Ç K be the subgroup of index q Then
there exists x G Na(cr~^K) such that for each g G a~^(K\K'), xgx~^ gt for

some l^ieT The character of any element v G ÏR{K) \R{a~^K, </>) vanishes
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on a~^K'; and hence (since Xv(gt) Xv{g)-4>{~t)) v is fixed by the action of x only
if v 0. Thus, x acts on IR(K) with trivial fixed point set; and in particular such
terms contribute nothing to the limit in (3).

Formula (3) thus reduces to a sum, over conjugacy class representatives for all
K G Cyc^, of the groups

The first factor here is free of rank equal to the number of F-conjugacy classes

of generators of K. The formula for Coker(rsG,0) now follows upon taking the
product over all primes p |F|. D

As an example, consider the group G Cnx(S^Xc2Q(8)), where n is odd, Q(8)
is a quaternion group of order 8, and the second product is taken while identifying
the central elements of order 2 in S*1 and Q(8). By Femma 3.8, if </> G T* is a

generator, then rsa,k<p ls onto for k even, while Coker(rsG,fc0) Z/2<g>IR/p(Cn) ^ 0

if k is odd.
The groups dealt with in Femma 3.8 seem quite specialized, but we are now

ready to show that the general case — for an arbitrary compact Fie group G —
can always be reduced to the cases handled there.

Theorem 3.9. Let G be any compact Lie group. Fix a maximal torus T Ç G and
a Weyl chamber C Ç t, and set N N{T, C) Ç G. Then rs]l splits as a direct
sum of homomorphisms

taken over all G/G^-orbits (Vo) Ç Irr(Go).
For any Vo € Irr(Go), let </> he the maximal weight of Vo vn C*, let N^ Ç N

be the subgroup of elements which fix (p, and set K^ Ker(</>) Ç T. Then the

assignment [[V] h^ [Vr(</>}]) induces isomorphisms

R(G,(Vb))

and

Coker(rsG(Vb))

Proof. By Femma 3.2, R-p(G) is the inverse limit of the representation rings R(-ff),
taken over all H Ç G of finite index such that H/Gq has prime power order. Since
each R(-ff) splits as a sum of finitely generated groups indexed by the G/Go-orbits
(Vo) G Irr(Go), we now see that R-p(G) also splits as such a sum. And hence rsG
also splits as a direct sum of homomorphisms rsG rv\.
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Now fix Vo e Irr (Go) and let </> be its maximal weight in C*. Write $ (</>)

for short: the N/T-oi\At of </> G C£. By Proposition 1.4, the assignment [V] i—>

|V(<I>)] defines a bijection from Irr(G, (Vo)) to Irr(N, $), and hence an isomorphism

R(G, (Vb)) —* R(AT, $). Similarly, it induces isomorphisms R(H,(Vo)) ^>
R(HC\N, $) for each H Ç G of finite index, and upon taking the inverse limit
over all such H for which H/Gq has prime power order we get an isomorphism

R-p(G, (Vo)) —> Rp(N, $). And this in turn induces an isomorphism between the
cokernels of rsG çv\ and rs^y $.

The homomorphism R(N,<5>) —> R(N,f,,<f>) R(N<f,/K<i,,(j)), defined by sending

[V] to [V{4>)\, is an isomorphism: its inverse is the induction map [V] i—>

\LndN (V)]. This same assignment also defines an isomorphism R-p(N,3>) —>

R-plN^/K^,^) (whose inverse is again the induction map); and hence defines an
isomorphism between the cokernels of rs^y $ and tsn^/k^,^- ^

The above general description of Coker(rsg) is rather complicated. In contrast,
the conditions for the map rs^ to be onto can be formulated more simply.

Theorem 3.10. Let G be any compact Lie group. Fix a maximal torus T Ç G
and a Weyl chamber C Ç t, and set N N(T,C) Ç G. Let £'{N) denote the set

of subgroups E Ç N of finite index such thai E/T is elementary but not of prime
power order. Then

expt(Coker(r^)) \cm{S(E/[E,T]) \ E e £!(N)}. (1)

In particular, tSq is surjective if and only if rsj^ is surjective, if and only if T C\

[E, E] [E, T] for all E G S'(N).

Proof It is clear from part (c) that the exponent of Coker(rsg) divides the number
given in (1). To show that these are equal, fix any prime p, and choose E Ç N
of finite index such that E/T is p-elementary but not a p-group. We must show
that Ö(E/[E,T])\expt(Coker(rs%)). Choose any </>' G (T/[E,T])* Ç T* such
that 5{E/[E,T},4>') 5{E/[E,T}). Since N/T acts linearly on t* and leaves C*
invariant, the fixed set (C*)E is a cone shaped subspace of (i*)E with nonempty
interior. Hence, we can choose </> G C* n (T/[E,T])* {C^)E such that <f> <f>'

modulo the exponent of i^ ^ ¦ If q ^ p is any other prime dividing \E/T\, then

ö(E/[E,T],q<t>) ö(E/[E,T],<t>)=ö(E/[E,T],<t>')=ö(E/[E,T])

by Lemma 3.7(d,e). And finally, if gT G E/T is the element of order q, then gT G S
in the notation of Lemma 3.8: no two elements in gT/ Kei(q4>) are conjugate. Thus,

6{E/[E,T]) ö(E/[E,T],q<f>)\ expt(Coker(rsBjg0))| expt(Coker(rSU))
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by Lemma 3.8; and this finishes the proof of formula (1). The necessary and
sufficient conditions for rs^ to be surjective now follow from Lemma 3.7(a). D

Since the general condition for rs^ to be surjective is still somewhat complicated,

we now list some special cases which are simpler to formulate.

Corollary 3.11. For any compact Lie group G, Coker(rsg) has finite exponent,
and

(1)

Furthermore, tSq is surjective if G satisfies any of the following conditions:
(a) G is finite or connected,.

(b) All elements o/tto(G) have prime power order.

(c) tto(G) is a periodic group: all of its Sylow subgroups are cyclic or quaternion.

(d) Z{GQ) 1.

(e) G is a semidirect product of the form G Go X F, where F Ç G normalizes
some maximal torus T and leaves invariant some Weyl chamber in T.

Proof. Fix a maximal torus T Ç Go, and a Weyl chamber C. Set N N{T, C).
As in Theorem 3.10, let £'{N) be the set of subgroups H Ç N of finite index such
that H/T is elementary but not of prime power order.

By Lemma 3.7(b), 5{H/[T,H})2\\H/T\\\ttq{G)\ for each HÇN of finite index.
So (1) follows from Theorem 3.10.

(a) ts1q is onto by Lemma 3.4 if G is finite, and by (1) if G is connected.

(b) If all elements of tto(G) iro(N) have prime power order, then £'(N) 0,

and so rs^ is onto by Theorem 3.10.

(c) Note that i?2(T) 0 for any finite periodic group F. Hence, if tto(G) is

periodic, then for any H G S'(N), H/[H,T] ^ T/[H,T] x H/T. So rs" and rs"
are onto by Theorem 3.10.

(e) The conditions on F imply that N is a semidirect product of T with F, and
hence that rs^ is onto by Theorem 3.10.

(d) By [Bo, §4.10, Corollaire], the surjection Aut(Go) -» Out(Go) is split by outer
automorphisms which fix T and C. Let F Ç G be the subgroup of elements whose

conjugation action lies in the image of any given splitting map. Then G Go x F

(since Go n F Z{Gq) 1); and so rs^ is onto by (e). D

We remark here that G being a semidirect product Go x F does not in itself
imply that rs^ is onto. As an example, set

G G3x(SU(2)xc2Q(8)),

where G3 is cyclic of order 3, Q(8) is a quaternion group of order 8, and the
product is taken by identifying the central subgroups of order 2 in SU(2) and
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Q(8) Then Theorem 3 10 applies to show that Coker(rsg) has exponent 2 But
SU(2)Xc72Q(8) is also a semidirect product of SU(2) with C2XC2 the splitting
comes from the diagonal subgroup

<(M)> x (Ü,J)> Q Q(8)xc2g(8) Ç SU(2)xc2Q(8)

So far, we have dealt mostly with the case of unitary representations The
general conditions for rs§ to be surjective seem to be much more complicated
For example, with a little more work, one can show that if G is a central extension
of a torus by a finite group, then rs§ is onto if and only if rs^ is onto In contrast,
the following example provides a simple way of constructing groups G for which
rs§ is not onto but rs^ is onto

Example 3.12. Fix any pair (G', V), where G' is a compact connected, Lie group,
and V an irreducible G'-representation of real type having the additional property
that some central element z£Z(G') of order 2 acts on V by (—Id) Choose any
odd prime power n > 1, and set G G1'xo2Ç;(4n) the central product of G' with
the quaternion group of order An, where z is identified with the central element of
Q(An) Then tSq is not onto

Proof Let W be any effective irreducible representation of Q{An), and set V
V'<S>cW Then V is an irreducible (^-representation of quaternion type, but its
restriction to any p-toral subgroup of G (for any prime p) has real type In
particular, [V] represents an element of RO-p(G), but since rs§ and rs^ are mjective
(all elements of tto(G) D(2n) have prime power order), it does not he in the

image of rs§ D

For example, we can take G' SO(2m) for any m > 2, and let V be the
standard (^'-representation on C2m Set G G'xc2Q(^n), for some odd prime
power n > 3 Then rsg RO(G) —> RO-p(G) fails to be onto, while rs^ is onto
(in fact, an isomorphism) by Corollary 3 ll(b) (all elements of tto(G) have prime
power order)
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