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Platonic surfaces

Robert Brooks*

Abstract. If So is a Riemann surface with a complete metric of finite area and constant
curvature — 1, let Sc denote the conformai compactification of So We show that, under the
assumption that the cusps of So are large, there is a close relationship between the hyperbolic
metrics on So and Sc We use this relationship to show that hminffc^oo Xi(Pk) > 5/36, where
the Platonic surface P^ is the conformai compactification of the modular surface S^

Mathematics Subject Classification (1991). 58G99
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Let F PSL{2,X) be the group of linear fractional transformations

az + b
z —*¦

cz -\- d

with integer coefficients with determinant 1, and let T(k) denote the fcth congruence

subgroup

T(k) then acts on the upper half plane i?2 with quotient a hyperbolic surface
Sk of finite area According to a theorem of Selberg, we have

Theorem 0.1. ([Se]) The first eigenvalue Xi(Si~) of the Laplacian acting on Si-

satisfies
>3/16

In this paper, we will consider a family of compact surfaces Pf., which we
call the Platonic surfaces They may be described conformally as being obtained

* Partially supported by a Guastella fellowship, the Fund for the Promotion of Research at
the Techmon, and the M and M L Bank Mathematics Research Fund
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from Sk by "filling in" the punctures of Sk- For k 3,4, and 5, the surfaces Pk
correspond to the Riemann sphere with a tesselation by regular spherical A;-gons.
For k > 6, the surfaces Pk carry a similar hyperbolic tesselation, and are thus
natural generalizations to hyperbolic geometry of the classical Platonic solids. See

[BFK] and [SGCC] for some alternate descriptions of these surfaces in terms of
graph theory.

In this paper, we will show:

Theorem 0.2. The first eigenvalue of the Laplacian \\(Pk) satisfies:

lim inf Ai(Pfc) > 5/36.
fc^oo

The number 5/36 arises already in the work of Huxley [Hu] and Sarnak-Xue
[SX] in their geometric approach to the Selberg 3/16 Theorem, see also [TFSG].
Indeed, we will prove Theorem 0.2 by showing that the surfaces Pk are sufficiently
similar to the surfaces Sk for the Huxley-Sarnak-Xue argument to apply to them
as well.

More generally, we will consider the following situation: Let So be a Riemann
surface with a complete finite-area metric of constant curvature —1. Then there
is a unique compact Riemann surface So and finitely many points {pi,... ,pk},
such that So is conformally equivalent to So — {pi, ¦ ¦ ¦ ,Pk}-

A natural question is to relate the hyperbolic geometry of So with the hyperbolic

geometry of So- This would seem at first glance to be problematic, since

So need not in general carry a hyperbolic metric. Even if it does carry such a

metric, So and So will still have some striking differences — for instance, So will
be non-compact while So will be compact.

Nonetheless, our main technical result in §2 below will show that, in the case
where all the cusps of So are large in a sense to be defined in §2 below, there
is a close relationship between the hyperbolic metrics on So and So (and, in
particular, So carries such a metric). Namely, there are neighborhoods {B^(Ct)}
of the cusps Ct of So and {B(rt,pt)} of the points pt which depend only on the
size of the cusps, such that outside these neighborhoods the metrics are close.

The main idea in establishing that these metrics are close outside of these

neighborhoods is to use a variant of the Ahlfors-Schwarz Lemma [A] due to Wolpert
[W], which we will describe in §2 below.

We will give two applications of this result.
The first one, in §3 below, shows that, under the assumption of large cusps,

the lengths of short geodesies on So are bounded by the lengths of short geodesies
on So- This is the crucial step in applying the Huxley-Sarnak-Xue machinery to
the surfaces Pk-

The second application in §4 below shows that, under the assumption of large
cusps, the Cheeger constants h(So) and h(So) are bounded in terms of one another

^) < h(Sc) < C(l)h(So)
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by a constant C{1) which tends to 1 as the size of the cusps tends to infinity.
It follows from the inequalities of Cheeger [Ch] and Buser [Bu] that the first
eigenvalues of So and So are bounded in terms of one another.

In [BBD], a different method was employed to compactify the surfaces Sk to
obtain compact surfaces with Ai bounded from below. The present method
contrasts with the method of [BBD] in a number of ways. First of all, the surfaces

So obtained here can in general have large injectivity radius, as we show to be the
case with the surfaces Pu, so the compact surfaces So which can arise from this
construction can reach parts of the moduli space of surfaces not accessible by the
methods of [BBD]. This point of view is developed at length in the paper [TS].

Secondly, the method of [BBD] and the present paper can be used together
to construct families of surfaces of varying large genus whose Cheeger constants,
and hence first eigenvalues, are bounded uniformly from below, by applying the
present method to some of the cusps and the method of [BBD] to the remaining
cusps. We will pursue this line of thought in detail elsewhere.

1. Some curvature calculations

We begin by considering two metrics dsD and ds2-, on the punctured hyperbolic
plane H2 — pt. The metric ds2D is the standard hyperbolic metric on H2. If we
write the punctured hyperbolic plane as the punctured unit disk

D* {ze C:0< \z\ < 1},

then the metric ds2D may be written as

2 2 2 2

where we have set r \z

The metric ds2-, may be described as the unique metric in the standard conformai

class which is complete on H2 — pt and has constant curvature —1. It may be
realized by taking the quotient C of the standard hyperbolic metric on the upper
half-plane H2 given by

ds2 — [dx2 + dy2]

by the isometry A : z —s- z + 1, and by identifying the quotient H2/j4 with D* by
the map

From this, it is easy to write out the explicit expression for ds2-, given by
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The main goal of this section is the following:

Lemma 1.1. For every e, there exists an R and a 'metric ds\ on D* with the

following properties:
(i) ds\ is conformally equivalent to dsjj (and hence also ds^) on D*.

(n) Outside a ball of radius R about 0 in the 'metric dsjj, ds\ agrees with the
'metric ds^.

(in) The curvature of the metric dsj^ is everywhere between ~(jt^) and — (1+e).
(w) ds\ extends across z 0 to give a smooth metric on D {z : \z\ < 1}.

We begin the proof by considering radially symmetric metrics on D* of the
form

ds) f2(r)[dx2 + dy2} f2(r)[dr2 + r2d62}.

The curvature Kf of the metric ds'j is given by the formula

Setting Kj — 1, we have the solutions

corresponding to dsjj and

„ -1
rlog(r) rlog(l/r)

corresponding to ds^.
We will need some simple facts about f\ and fy:

Lemma 1.2. f\ and fy satisfy the following :

(a) linv^i y1=1-
(h) h>fl-

Proof. We first observe that as r —> 1, both f\ and fi blow up. Hence, by
L'Hospital's rule,

lim — li

lim ——

r ~2r
r™ -2(log(r) + 1)
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This establishes (a).
(b) amounts to the assertion that

1-r2 > -2rlog(r).

At 1, both sides are equal to 0, so this inequality will follow from the inequality

-2r < -2(log(r) + 1),

or
r > 1 + log(r).

Again, we get equality at r 1, so the assertion will follow from

1 < 1/r,

which holds when r < 1. D

We now transform the problem of constructing the metrics ds\ from a conformai

problem on the unit disk to a problem of metrics of the form

ds] g2{r)[dr2 + sinh2(r)d02].

The curvature of this metric is given by

When g 1, we obtain the standard hyperbolic metric dsjj. It follows from
our calculations above that the metric ds^ is given by the function

h{r) à(R(r)),

where R(r) tanh(r/2) is the Euclidean distance from 0 of a point whose hyperbolic

distance from 0 is r. We thus have

k<yr'
sinh(r)log(coth(r/2))'

It follows from Lemma 1.2 that h(r) —> 1 as r —> oo, and that h(r) > 1. We

will need some more properties of h:

Lemma 1.3. h{r) has the following additional properties:
(a) h'(r) is negative and tends to 0 as r —> oo.
(b) h"(r) is positive and tends to 0 as r —s- oo.
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Proof It is easily seen that h! is negative if and only if the same is true of its
logarithmic derivative

We may then compute

+
(coth(r/2))/ i

Lsmh(r) coth(r/2)log(coth(r/2)J
1

'smh(r) smh(r)log(coth(r/2))J

-[cosh(r) log(coth(r/2)) - 1]
smh(r)log(coth(r/2))'

From the fact that the curvature Kh is equal to —1, or by a direct calculation,
we see that

(\og(h))" (h2 - 1) - (log(/l))'coth(r)

We now claim that assertions (a) and (b) both follow from the assertion that
cosh(r) log(coth(r/2)) — 1 is positive, and tends to 0 as r —> oo This is evident m
part (a), while for part (b) we use the equation

-
to establish that if (log(/i))" is positive and tends to 0 as r —> oo, then the same
is true of h

The fact that cosh(r) log(coth(r/2)) — 1 is positive and tends to 0 as r —> oo
follows readily from L'Hospital's Rule, as above

This proves Lemma 13 D

We will now prove Lemma 1 1 according to the following scheme it is evident
from the formula for curvature that, for any e, there exists a ô with the following
property let h£ be any function which satisfies the following conditions

1 < he < 1 + ö

\ti£coth(r)\ <S
and

m < s,

then the metric
dsle h2[dr2 + smh2 {r)d62}

will have curvature between — (yxj) and —(1 + e) We must demand as well that
h£ —s- 1 as r -^ 0, m order to obtain a smooth metric at r 0



162 Platonic surfaces CMH

Given e, we will then construct h£ as follows: let k(r) be a smooth function
which approximates the discontinuous function ko(r) defined by

fco(r) 0 forO<r<flo-3
ci for Ro - 3 < r < Ro - 2

—c\ for Ro - 2 < r < Rq - 1

C2 for Ro - 1 < r < Rq

h"(r) for r > Ro,

where we will choose Rq,c\, and c<i later.
In order to have the anitderivative k\{r) of ko with &i(0) agree with h'(r)

for r > Ro, we must have

C2 h'(Ro).

We then let k^(r) be the antiderivative of k\(r) with k^iQ) 1. In order for this
to equal h(r) for r > Ro, we must have

C1 (h(R0) - 1) - | l
One may then choose A; to be a smooth function approximating ko, agreeing with
ko for R > Ro, and satisfying the same conditions at Ro as ko- Our desired
function h£ will then be the function which satisfies

h!'e k, ^(o) o, fte(o) i.

We may then choose Ro sufficiently large such that coth(i?o) and h(Ro) are
close to 1, and h!(Ro), h"(Ro) are close to 0.

This then completes the proof of Lemma 1.1. D

2. A comparison theorem

Let So be a Riemann surface with a complete metric ds| of finite area and
constant curvature —1. Then each cusp Ct has a neighborhood which is isometric
to a neighborhood of infinity in C H2/(z ~ z + 1).

For z in such a neighborhood, let l(z) denote the length of the shortest closed

horocycle through z. In terms of the coordinate C, we have that

We may compactify So to obtain a compact Riemann surface So in the
following way: for each cusp Ct, let

{zeC\:l(z)<l}.
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Then Bi{C%) is conformally equivalent to a punctured disk, with the equivalence
given by the map z —> e27rîz.

We may then replace each neighborhood Bi(Ct) with a solid disk to obtain Sc-
This construction defines a unique conformai structure on Sc, and exhibits So
conformally as

So Sc - {pi,--- ,Pk}-

Under the map C —> D given by z —> e27rîz, the distance r from e27rîz to 0 in
the hyperbolic metric on D is related to l(z) by

For each pt G Se, let ds^Sc denote the hyperbolic metric on Sc, assuming that
Sc carries such a metric, and let B{r,p%) denote the ball of radius r

Definition 2.1. The surface So has cusps of length > / if for each i, there is a

simple closed, horocycle ht about the cusp Ct, such that each ht has length > /, and
such that all the ht 's are disjoint,

In this section, we will prove:

Theorem 2.1. For every e, there is an I and r such that, if So has cusps of
length > I, then outside of Ut Bi(Ct) and Ut B(r,pt), we have

(j^—£)dslo <dslc<(l+£)d4o-

Proof. Given e, choose Rq as in Lemma 1.1, and assume that the cusps of So have

length at least
2

We may then replace the hyperbolic metric on each cusp by the conformally equivalent

metric given by Lemma 1.1. The resulting metric then extends across the
2

Rocusps to give a new metric ds2
Ro on Sc with the following properties:

(i) ds2
Ro agrees with the hyperbolic metric on So outside of UtBi0(Ct).

(ii) ds2
Ro is conformally equivalent to the hyperbolic metrics on So and Sc-

(iii) The curvatures of ds2
Ro are everywhere between — (-jij) an(i ~(1 + £)-

We now wish to compare the metric ds2
Ro with the hyperbolic metric on Sc-

This will be carried out using the following lemma of Wolpert [W], which is a

generalization of the Ahlfors-Schwarz Lemma [A]:
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Lemma 2.1. ([W]) Let S be a compact surfacce of genus at least 2. Let ds

and da détermine the same conformai structures. Provided the Gauss curvatures
satisfy

K(ds2) < «(der2) < 0,

then ds < da

To prove Theorem 2.1, we apply Lemma 2.1 to the metrics (1 +e)ds^. Ro (resp.

(TTë)^se flo) an<^ ^sSc' Since (1 + e)ds^ Ro has curvature satisfying

and similarly

we conclude that

Since ds2
Ro agrees

1

with

1

d4o outside the cusp neighborhoods Bio(Ct), we

have the same inequality with the metric ds^ Ro replaced by ds|o outside these

neighborhoods. Furthermore, the image of the neighborhood Bio(Ct) is contained
in the ball B{R\,pl) computed in the metric ds^ R where R\ (1 + e)i?o- But
this ball is contained in the ball of radius (1 + e)^/^R\ computed in the metric
ds^Sc, by the above inequality.

We may now take r (1 + e)^^R\ to complete the proof of Theorem 2.1. D

We remark that this argument shows as well that the image of Bio{C%) contains

3. Counting short geodesies

In this section, we will relate the lengths of short geodesies on So with the lengths
of short geodesies on So- We then use this to give a proof of Theorem 0.2.

We first observe that if 7 is a closed geodesic on So, then its image in So is

shorter, by the standard Schwarz Lemma, and hence the geodesic representing it
will be still shorter. It may indeed be a great deal shorter, and even nullhomotopic.

We will, however, give a bound for lengths of geodesies on So in terms of
lengths of geodesies on So of the following form:

Lemma 3.1. For I sufficiently large, there is a constant $(/) with the following
property: Let So have cusps of length > I. Then, for every geodesic 7 in So, there
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is a geodesic 7' in So, such that the image of7' in So is homotopic to 7, and

length^) < length^') < (1 + ö'(/))length^).

Furthermore, 3(1) —s- 0 as I ^ 00.

The idea of the proof may be paraphrased as follows: we will choose an r<i larger
than the r of Theorem 2.1, such that any geodesic which enters B(r2,p,) can be

"pushed out of the way" to avoid B{r,p%). The increase in length of the curve
will then be small compared to the legth involved in going from the boundary of
B{r<2,Pi) to the boundary of B{r,p%). The image of this "pushed away geodesic"
in So will then give the homotopy class for 7'.

We will need the following elementary:

Lemma 3.2. Given ö\ and r\, there is an r% with the following property: let 7
be any curve in the ball B{t<2,xq) of radius r<2 in the hyperbolic plane H2, whose

endpomts he in the boundary of B(r-2,xo) Then there is a curve 7 homotopic to 7
with a homotopy fixing the endpomts, such that 7 does not meet the ball B(r\,xo),
and

lengthily) < (1 + S\)lengthily).

Proof. Indeed, we may choose 7 to agree with 7 up to the first time 7 enters

B{r\,xo) and after the last time7 exits B{r\,xo), and to travel around the perimeter

of B{r\,xo) from the entry point to the exit point. Choosing r\ such that the
length l{r\) of the perimeter of B(r\,xo) satisfies

Kn) ^A
2(r2 -ri)

certainly gives r% with the desired properties.
We now can complete the proof of Lemma 3.1 as follows: Given S, let us write

for some e and S\. We then choose r\ as in Lemma 2.1 and r<i as in Lemma 3.1.

Then, if the cusps of So have length > /, where / is sufficiently large so that the
images of the Bi(Ct)'s all lie within the corresponding B(r2,pt)'s, then we may
modify the curve 7 to a curve 7 which does not meet any B(r\,pt), increasing its
length by a factor of at most 1 + S\. When we now measure the curve 7 in the
metric ds|o, its length increases by a factor of at most 1/I + e\. If we denote by
7' the geodesic in the homotopy class of 7 in So, then we clearly have that

length(7') < (1 + (5)length(7).

The inequality length^) < length^') then follows from the Ahlfors-Schwarz
Lemma, as mentioned above.



166 Platonic surfaces CMH

This concludes the proof of Lemma 3.1. D

We will now prove Theorem 0.2. As indicated in the introduction, it will follow
from the Theorem of Huxley [Hu] and Sarnak-Xue [SX], see also [TFSG] for a
discussion.

Suppose that Rk is a family of Riemann surfaces, such that PSL(2,Z/k) acts

on Rk- We then have:

Theorem 3.1. ([Hu], [Sx]) Suppose that there are constants c\,C2, and c%, and

for all e > 0 a constant c^[e) such that:
(a) cik3 < vol(Rk) < c3k3.

(b) If fk is an eigenfunction of the Laplacian on Rk invariant under the action of
PSL(2,Z/k) with eigenvalue X, then A > 5/36.

(c) For all e, the number of geodesies of length < (6 — e) log(fc) on Rk is at most
6

Then

liminf Ai(ßfc) > 5/36.

It is argued in detail in [Hu] that the surfaces Sk H2/F(A;) satisfy these
conditions. The only non-trivial part is to verify (c). This is done with an explicit
calculation with traces of matrices satisfying the congruence condition.

We now turn our attention to showing that (a)-(c) obtain for the surfaces Pk
as well.

Observing that the quotient of Pk by PSL(2,X/k) is the hyperbolic triangle
Tk with angles 7r/3,7r/3, and 2ir/k, while the quotient of Sk by PSL(2,Z/k) is the
hyperbolic triangle with angles 7r/3,7r/3, and one ideal vertex, we see that

from which (a) follows immediately.
Furthermore, if fk is an eigenfunction with eigenvalue A on Pk invariant under

PSL(2,X/k), then fk descends to a function on Tk whose Rayleigh quotient is A.

The lower bound A > 1/4 will then follow from Cheeger's inequality and the fact
that the Cheeger constant hN(Tk) with Neumann boundary conditions is > 1.

But the fact that hN (T) > 1 for any hyperbolic triangle is quite standard, see

[Bu2], establishing (b).
To establish (c), we observe that the surfaces Sk have cusps of length > k.

Lemma 3.1 then allows us to deduce (c) for the surfaces Pk from the analogous
statement for the surfaces Sk-

This completes the proof of Theorem 0.2. D
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4. The Cheeger constant

We first recall the Cheeger constant h(S) of a surface. It is given by

h(q) - length(C)
1 ' c min(vol(A),vol(S))'

where C runs over all curves dividing S into two pieces A and B.
According to the inequalities of Cheeger [Ch] and Buser [Bu], we have that

where c\ and c<i depend on a lower bound for the curvature of S. In particular, it
follows that, in the presence of a lower bound for the curvature, a bound for below
for Ai is equivalent to a lower bound for h.

Of course, as is discussed in [SGCC], the loss of strength in passing from an
estimate for the Cheeger constant to an estimate for Ai is significant, so that one
does not expect the constants that one obtains in Theorem 0.2 from this approach.
Indeed, it is shown in [SGCC] that the Cheeger constant h(Sk) is too small to give
Selberg's 3/16 bound for Ai(Sfc). On the other hand, passing through the Cheeger
constant allows us to obtain spectral estimates in more general situations than are
allowed for by the approach of §3.

We will show:

Theorem 4.1. For I sufficiently large, there is a constant C(l) with the following
property: if So is a Riemann surface with cusps of length > I, then the Cheeger
constants h(So) and h(Sc) satisfy

(c^MSo) < h(Sc) < C(l)h(So).

Furthermore, C(/) —> 0 as I —> oo.

Proof. Let 7 be a curve in So dividing So into two pieces A and B, such that the
ratio

length(7)

realizes the Cheeger constant. We may assume that vo1(j4) < vol(_B).
As in Lemma 3.1, if / is sufficiently large, we may choose r\ and r<i such that

7 may be pushed away from the neighborhoods B{r\,p%) to obtain a new curve 7
whose length is at most (1 + J(/)length(7).

In fact, we have a choice of how to push 7. For each i, we may consider the
neighborhoods B(r2,pt) and the sets

,X Bl=BnB(r2,pl).
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If 7 does not meet B{r\,p%), then we do not change 7 in B(r2,p,)- Otherwise,
we may push 7 so that, for each i, if vo\(At) < vo\(Bt), then 7 divides B(r2,p,)
into two pieces A't, B[ with

Similarly, if vol(_Bj) < vo\(At), then we choose 7 so that

S,'=S,US(ri,p,), Ai=At-B(n,Pl).

We now claim that 7 divides So into two pieces A' and _B' with

vol(A') > (1 - £')v°l(^), vol(S') > (1 - e')vol{B),

with

This is clear, since the only times a piece is taken from At (resp. Bt is when
vo\(At) is larger than (l/2)vol(_B(r2,Pi).

We now regard 7 as a curve in So, and compute

length(7)
min(vol(,4/),vol(S/))

in the metric ds^So.

But in passing from the metric ds^Sc to the metric ds|o, the length of 7 is

multiplied by a factor of at most 1/1 + e, while the volumes of the parts of A' and
B' not meeting B(r\,pt) are divided by at most 1 + e. Also, the balls B(r\,pt)
have larger volume in the metric ds|o than in the metric ds^Sc, as follows from
the Schwarz inequality, or can be seen directly.

We thus have that

length(7) (l+g)(l + (5)

vol(A')vol(S')) " e'

h{ßo) is less than the left-hand side, so we thus have

h(So) < (Ci

with

Cl(0= d-,0 •

To obtain an inequality in the opposite direction, we proceed in the identical
manner, switching the roles of So and So- We must make the following changes in
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the argument first of all, we must reprove Lemma 3 2m the case of a punctured
disk rather than a disk The proof is identical, except we no longer demand that
the resulting curve 7 is homotopic to 7 This allows us to retain the option of
pushing 7 in either direction around the puncture

Secondly, we need an estimate of the form

vol(S(l)ds2 > (const(/1))(vol(S(l)ds2
sc so

But the volume of B^ in the metric ds|o is precisely l\, while the metric of a
ball of radius r\ in the hyperbolic plane is 27r(cosh(ri) — 1) Choosing r\ so that

«1

and using L'Hospital's rule, we see that

vol{Bh)
1 as l\ —> oo

Passing from the metric dsSo to the metric ds^ Ro and then to the metric dsSc
introduces some factors of 1+e into this calculation to give us the desired estimate

Putting these together, we find a constant 6*2(7) such that

h{Sc) < C2{l)h{So),

with C2(0 ->¦ 1 as / -> 00
This then concludes the proof of Theorem 4 1 D
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