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Alternating knots satisfy strong property P

Charles Delman and Rachel Roberts1

Abstract. Suppose a manifold is produced by finite Dehn surgery on a non-torus alternating
knot for which Seifert's algorithm produces a checkerboard surface By demonstrating that it
contains an essential lamination, we prove that such a manifold has ]R3 as universal cover and,
consequently, is irreducible and has infinite fundamental group Together with previous work of
Roberts, who proved this result in the case of alternating knots for which Seifert's algorithm does

not produce a checkerboard surface, and Moser, who classified the manifolds produced by surgery
on torus knots, this paper completes the proof that alternating knots satisfy Strong Property P

Mathematics Subject Classification (1991). Primary 57M25, Secondary 57R30

Keywords. Alternating knot, essential lamination, Dehn surgery, property P, 3-mamfold

1. Introduction

In this paper we complete the proof that alternating knots satisfy Strong Property
P A knot k is said to satisfy Property P if no finite surgery along k yields a simply-
connected 3-mamfold In [G7], Gabai introduced the following stronger notion
(which clearly implies Property P)

Definition 1.1. A knot k is said to satisfy Strong Property P if no finite surgery
along k yields a 3-mamfold with a simply-connected summand

Objects of co-dimension one have long been used to obtain information about
the fundamental groups of 3-mamfolds The notion of an essential lamination
was developed to bridge the gap between incompressible surfaces, at one extreme,
and taut foliations, at the other Briefly, a lamination is a closed subset which
is foliated by leaves of dimension two, it is essential if these leaves are suitably
embedded (as precisely described by Definition 3 1) Gabai and Oertel proved the
following theorem, which shows that existence of an essential lamination implies
Strong Property P

1 Research supported in part by an NSF Postdoctoral Fellowship
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Theorem 1.1. [GO] Let M be a closed oriented 3-manifold with an essential
lamination. Then M is irreducible and has infinite fundamental group and universal
cover R3.

For convenience in discussing the alterating knots, we make the following
definition.

Definition 1.2. We shall call an alternating knot k checkerboard if it possesses
a regular alternating projection tt such that one of the checkerboard surfaces
described by 7T is an essential (that is, both incompressible and d-incompressible)
Seifert surface for k. Otherwise, we shall call k noncheckerhoard.

The Tait fiyping theorem [MT] reveals that k is checkerboard if and only if
every reduced alternating projection for k yields an essential checkerboard Seifert
surface. Note that this is exactly the surface given by Seifert's algorithm. We also
observe that the only alternating torus knots are the (2,n) torus knots, all of which
are checkerboard knots.

In earlier work, Roberts proved:

Theorem 1.2. [R] Let fc be a noncheckerboard alternating knot. Then every
finite Dehn surgery along k produces a manifold containing a taut foliation.

In this paper, we extend the above result by proving the following

Main Theorem (4.1). Every finite Dehn surgery along a nontorus checkerboard

alternating knot "produces a manifold containing an essential lamination.

Together with Moser 's explicit categorization of the manifolds obtained by
surgery on torus knots [Mo], from which it is evident that they satisfy Strong
Property P, Theorems 1.1, 1.2 and 4.1 yield the conclusion claimed in the title.

The proof of the Main Theorem proceeds as follows. First, we reduce the
problem to the case of prime knots by showing that every composite knot (whether
alternating or not) satisfies Strong Property P. We do this by constructing, in
the exterior of each composite knot, an essential lamination without boundary
which remains essential after every Dehn surgery. Following [D2], we call such

a lamination persistent. The method of construction is very elementary and is

distinct from the methods used for prime alternating knots.
Next, let A; be a prime alternating knot with tubular neighborhood N(k). In

this case, we construct the essential laminations of the Main Theorem using one of
two methods, each of which begins with an essential spanning surface for k The
first method uses this spanning surface to generate a set of essential laminations

in S*3 \ N(k) meeting dN(k) in simple closed curves. These laminations cap off to
give essential laminations in the manifolds obtained by surgery on their boundary



378 Ch Delman and R Roberts CMH

Figure 1

Nugatory crossing

curves; for this reason, we extend the term "persistent" to apply to them. For a

family of examples, this first approach fails; for each knot in this family, we show
the existence of a persistent lamination without boundary, as developed in [D2].

The remainder of the article is organized as follows. In Section 2 we develop the

necessary understanding of spanning surfaces in alternating link complements. In
Section 3 we recall the necessary facts about laminations, present the proof that the
complement of every composite knot contains a persistent lamination, and describe
the two methods of constructing laminations using the spanning surfaces developed
in Section 2. In Section 4 we show the existence, in the complement of each
checkerboard nontorus alternating knot, of either a set of persistent laminations
with boundary (covering all surgery curves) or else a persistent lamination without
boundary, thus proving the Main Theorem.

2. Spanning surfaces

2.1. Checkerboard surfaces

A surface will be called essential if it is both incompressible and 9-incompressible.
(We additionally assume that its complement is irreducible and that the intersection

of the boundary of the ambient manifold with the complement of the surface
is incompressible in the complement of the surface; cf. Définition 3.1. These
additional conditons will be obvious for every surface we consider.)

Let / be a link in S*3 with regular projection n. n is called reduced if it contains
no nugatory crossing (see Figure 1).

Let S and T denote the two checkerboard surfaces associated with it. In general,
S and T are neither essential nor orientable. However, when / is alternating we
can say the following.

Lemma 2.1. Let I be a nonspht link with reduced alternating projection tt. Then
both checkerboard surfaces, S and T, for tt are essential.

Proof. We view /, S and T as lying in the projection sphere except near crossings.
S and T intersect at each crossing in a vertical arc (with endpoints on / at the
preimages of the crossing points and midpoint in the projection sphere); these
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\
Figure 2.

Arcs of T> n T with endpoints on d£.

arcs partition S and T into discs, naturally viewed as polygons, whose boundary
consists of arcs of SC\T alternating with arcs on dN{l). These polygons, or "tiles",
lie in the projection sphere except for small regions containing half of each arc of
S n T. We may assume that no tile has two sides lying on the same arc of S D T,
since the crossing corresponding to this arc would have to be nugatory.

Suppose, without loss of generality, that S is inessential. Since the boundary of
the knot complement is a torus, and S is not a 9-incompressible annulus, S must
in fact be compressible. By a standard innermost disc argument, we may assume
that a compressing disc for S intersects T in a collection of arcs. Among all such

compressing discs, let V be such that the number of arcs in V n T is minimal.
V intersects the tiles of T in arcs with endpoints in S l~l T. No arc of V n T

has endpoints on the same side of a tile, for, if there were such an arc, consider
an innermost one. This arc, together with an arc in S l~l T, bounds a disc in T.
Surgery along this disc produces two discs with boundary in S, each intersecting
T in a smaller number of arcs, and at least one of these discs must be essential,
contradicting our minimality assumption. Similarly, no arc of &D joins a side
of a tile to itself, since an innermost such arc could be removed by isotoping T>,

reducing the number of arcs in T> n T.
From the above description, we see that dV lies in the projection sphere

except, possibly, near some crossings. Let £ be an innermost disk bounded by the
projection of an arc of dV (or all of dV, if its projection has no se If-intersections).

We claim that no arc of V n T lies in £. Note that arcs with endpoints on dE
must alternately lie outside and inside £ (see Figure 2). Suppose there is an arc
lying in £; then some such arc would be innermost on T>, and its ends would of
necessity violate the alternation rule just stated.

From the above claim, it follows that d£ lies in a single tile, which is impossible
since it would have to be an arc joining two sides lying at the same crossing. Thus
we conclude that no compression exists and S is essential. D

Lemma 2.2. Let ir be a reduced alternating projection of a checkerboard link. Let
T be the checkerboard surface for tt dual to the one given by Seifert's algorithm.
Then T is nononentable.

Proof. If T is orientable, then it induces an orientation on the link it spans. This
is impossible since near a crossing we see the behaviour of Figure 3 (up to crossing
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Figure 3

Orientation of k near crossings

sign) Hence T is necessarily nononentable D

As well as checkerboard surfaces arising from alternating link projections, we
will consider Murasugi sums of two such surfaces We recall that a surface F is
said to be a Murasugi sum of surfaces F\ and F% if there is a 2-sphere S in S*3

bounding closed balls B\ and B<i such that S n F is a disc, F C\ B\ F\, and
F n B2 F2

Proposition 2.1. [G4] The Murasugi sum of two essential surfaces is essential

Given a regular projection it of a link / we can easily generate spanning surfaces
for / which are Murasugi sums of checkerboards (usually not essential) We proceed
as follows

Let 7 be a simple closed curve in the projection sphere meeting k transversely
away from the crossing points and having the property that each arc of j\k joins
distinct components of k \{crosstng points} Let A denote a disc bounded by 7
and lying below the projection sphere Then by making the opposite checkerboard
colouring choices on each side of 7, we describe a surface F which is the Murasugi
sum along A of two checkerboards (See Figure 4

Definition 2.1. Let T be a checkerboard surface for a link projection it Let 7
and A be as described above, and let T> be the disc in the projection sphere lying
above A If T' is obtained by making the colouring choices described above so

as to agree with T outside V, then we say that T" is obtained from T by local
duahzation on T>

Notice that if T is a checkerboard surface for an alternating link projection,
and T is obtained from T by local duahzation, then T is the Murasugi sum
of two checkerboards with alternating boundary, one with all twists positive and
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Figure 4.

Murasugi sum of checkerboard surfaces.

the other with all twists negative. This is our basic purpose in using the local
dualization operation.

When 7T is a reduced alternating projection we can say precisely when this local
dualization produces an essential surface. This result is most easily stated using
the language of rigid vertex graphs.

2.2. Graph descriptions of surfaces

If F is a checkerboard surface, then F consists of a collection of discs connected by
half-twisted bands corresponding to the crossings. Hence, there is a planar graph
TF naturally associated to F: vertices correspond to the discs and edges
correspond to the half-twisted bands. Note that if S and T are the two checkerboard
surfaces for a link projection it, then rs and TT are dual graphs.

More generally, a given disc and band decomposition of a surface corresponds
in a natural way to a rigid vertex graph, by which we mean a graph in which each

vertex is regarded as a tiny disc, so that the cyclic order in which the edges are
attached is fixed. Each disc in the surface decomposition corresponds to a vertex
in this graph, and every twisted band to an edge. We will often wish to label
each edge of this graph with a plus or minus sign in order to indicate whether
the corresponding half-twist is positive (right-handed) or negative (left-handed).
Conversely, any graph in S*3 with edges labeled in this manner clearly corresponds
to a unique surface embedded in S*3 with a particular disc and band decomposition;
for an unlabeled graph, we will follow the convention that all twists are positive.
Note that the graph corresponding to a surface is planar if and only if the surface
is a checkerboard surface for a diagram of the link that is its boundary.

In keeping with the correspondence between graphs and surfaces, we say that
a labeled rigid vertex graph is essential if its corresponding surface is essential.

Corresponding to the notions of Murasugi sum and local dualization for
surfaces, there are natural notions of Murasugi sum and local dualization for graphs.
Precisely, a graph is a Murasugi sum if there is a 2-sphere whose intersection with
the graph is a vertex (viewed as a disc) and which separates it into two nonempty
subgraphs, called its Murasugi summands. Clearly the surface corresponding this
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graph is the Murasugi sum of the two surfaces corresponding to these subgraphs.
Given a planar graph F, denote its dual graph by F*. Let V be the sphere

containing F and F*. Let 7 be a simple closed curve in V passing alternately
through vertices (here viewed as points) of F and F*, and let I? be a disk in V
bounded by 7. Let F^ and Tn be the planar graphs obtained from F* n T> and

F n (R2 \ V), respectively, by identifying 7 to a vertex, A, which we will view as

lying below V

Definition 2.2. The Murasugi sum (along A) of F^ and Yd is said to be obtained
from F by local duahzatton on V. (See Figure 5a.)

If F is a checkerboard surface with corresponding graph FF (viewed as lying in
the projection sphere), it is clear that the graph obtained from FF by local dual-
ization on a disc T> corresponds to the surface obtained from F by local dualization
on T>. (See Figure 5b.)

Now suppose that it is a reduced alternating projection with checkerboard
surfaces S and T. Suppose T is obtained from T by local dualization on a disc
T>. Let Sp and Tp be the surfaces associated to Ff, F^ and F^, respectively.
(Hence, T is the Murasugi sum of Sp and Tp.) Then, by Proposition 2.1, T is

essential if Tp and Sp are essential. This observation leads to a simple pair of
conditions on FT and T> which will ensure that T is essential.

Lemma 2.3. T is essential if both of the following conditions hold:
1. At least two edges of TT dD ernanate from each vertex lying on 7 &D).

(Equwalently, no edge of Vs C(D has both endpomts lying on •j.)
2. No edge ofTT n(R2\I?) has both endpomts lying onj. (Equwalently, at least

o

two edges of Vs n(R \ T>) emanate from each vertex lying on •j.)

Proof. As noted, it suffices to check that Sp and Tp are essential. It is easy to
check that this is equivalent to there being no loops (edges with both endpoints at
a common vertex) in the corresponding graphs F^ and F^. (A nugatory crossing
corresponds to either a loop or an isthmus. Isthmuses may be removed by an
isotopy of the surface to yield a checkerboard surface for an alternating projection,
which will then be reduced if there are no loops.) Conditions (1) and (2) precisely
exclude loops. D
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Figure 5.

Local dualization of graph and corresponding surface.

3. Laminations

The basic concepts needed to understand laminations and branched surfaces are
laid out in the introductory sections of [GO]. We include the following définition
for ease of reference.

Definition 3.1. A lamination is essential if it is fully carried by a branched surface

£, with fibred neighborhood jV(£), satisfying the following properties :

1. S contains no Reeb branched surfaces.

2. M \ AT(E) is irreducible, and dM \ N(Ti) is incompressible in M \ N(Ti).
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Figure 6

Persistent branched surface in composite knot complement

3 dhN(£) is incompressible and d-incompressible in M \ N(£), there are no
o

monogons in M \ jV(£), and no component of dhN(T,) is a sphere or disc

properly embedded in M (equivalently, S carries no sphere or disc)
4 S has no discs or half-discs of contact

Remark. A single branched surface may carry many different laminations We

construct essential branched surfaces which carry infinite families of laminations,
each lamination intersecting dN(k) in curves of a different slope We do this by
adding a disc to the spanning surface as described in Section 3 2

3.1. Composite knots satisfy strong property P

For a proof that every composite knot satisfies Property P, see Rolfsen [Ro], p
281 To prove Strong Property P, we use the decomposition of a composite knot
into non-trivial factors to construct a persistent lamination in its complement

Theorem 3.1. If k is a composite knot, then S \ k contains a persistent
lamination

Proof Let 5 be a sphere separating k into two factors, k\ and k% (That is,
S intersects k in two points, and (S3,k) (S3,ki)$s(S3,k2) Let F\ be the

o

(smooth) surface constructed by attaching to S \ N{k) a tube which follows k\
Note that F\ would simply be the boundary of a tubular neighborhood of k\ if k%

were collapsed to a point (For this reason, F\ is often called a "swallow-follow"
o

surface Similarly, let F<2 be the surface constructed by attaching to S \ N(k) a
tube which follows k<i Let S be the branched surface F\ U F% (see Figure 6), and
let A be the lamination obtained by splitting S along F\ ni^ (Thus, A consists of
a pair of closed surfaces and is fully carried by S We claim that A is persistent

Let Mr be the manifold obtained by Dehn surgery on k with slope r To prove
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the claim, we must show that A is essential in Mr for every rational number r;
hence, we must show that S, viewed as a subset of Mr, satisfies conditions 1-4
in Définition 3.1.

Conditions 1 and 4 are clear by construction. To verify 2 and 3, observe that
o

Mr \ N(£) consists of three components. The component containing the Dehn
filling is a solid torus. Since its vertical boundary consists of two annuli which are
meridional to k in S*3, a meridional disc in Mr for this solid torus intersects the core
of this vertical boundary at least twice. Hence, this disc cannot be a monogon

o

or a compression of dhN(£). Each of the other components of Mr \ N(£) is

homeomorphic to one of S*3 \ N(kt), i 1,2. Since k\ and k<2 are both non-trivial
knots, we see that conditions 2 and 3 are satisfied for these regions as well. D

Corollary 3.1. If k is a composite knot, then k satisfies Strong Property P.

Remark. The fundamental idea of this construction, which is to create two
meridional cusps in the branched surface, evolved from an idea of Menasco, who
showed that the existence of a pair of non-isotopic meridions ensures that a closed

incompressible surface in a knot complement remains essential in the manifold
produced by every non-trivial surgery on this knot; see [Ml], Theorem 4. (Also
cf.: [M2]; [M3]; [GO], Theorem 5.3; [GK]; [cD95], Proposition 3.1; [D2], Corollary
to Theorem 1; and [B].)

3.2. Persistent laminations from disc decompositions

With acknowledgement to Définition 1.6 of [G6], we make the following definition.

Definition 3.2. Let A; be a knot in S3, let M S3\N(k), and let F be a spanning
o

surface for k. Suppose V is an oriented disc in M, with its interior in M \ F and
its boundary in dM U F, such that dD n {dM \ F) is minimal (with respect to
isotopy of V) and consists of an even number of arcs. (In other words, dD "crosses
k" an even number of times.) Choose a normal direction for F along dV. Then,
as described in [G6], a branched surface S may be constructed from the union of
F and T> by choosing the branching direction at dT> so that the normal directions
to T> and F are consistent. (See Figure 7a.) S is said to be obtained from F by a
disc decomposition on T>.

Remark. Our définition is a special case of the definition of Gabai [G6] except
that we do not require that F be globally orientable.

Remark. The two choices of orientation for F along dD, relative to that of V,
generally give different results.
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Figure 7.

Disc decomposition.

We will further restrict attention to disc decompositions of the following type.

Definition 3.3. Let F be a checkerboard surface for some reduced alternating
projection (or else the Murasugi sum of two such checkerboards) and suppose that
T> lies on one side of the projection plane and dT> corresponds to an innermost
simple cycle of even length in TF (or one of its two Murasugi summands). Call
the corresponding disc decomposition simple. Call a simple disc decomposition
positive or negative according to whether the disc intersects positive (right-handed)
or negative (left-handed) crossings.

As first noted in [G6], a branched surface produced by a simple disc decompo-
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sition continues to "look like" a surface. (See Figure 7a.)
We formalize this observation with the following définition.

o

Definition 3.4. Let A; be a knot, let M S \ N(k) and let S be a branched
o

surface in M. Suppose that (dM\N(Ti))UdvN(Y;) is the union of disjoint annuli;
refer to this set as -A(E). Let U be a surface in S*3 with boundary / (not necessarily

connected) and fibred neighborhood N(U) ~ U x /. Let M' S3 \ N(l) and
o

A(U) dM' \ N(U). We say that S is of spanning type with underlying surface
U if there is a homeomorphism

(M \ NÇE), dhNÇE), AÇE)) -^ (Af' \ N(U), dhN{U), A{U)).

Remark. Heuristically, a branched surface of spanning type is simply a branched
surface which looks like a spanning surface for a link if the observer squints and
ignores the difference between arcs of "cusp points" coming from the branching
locus and arcs of the knot k. A spanning surface for k is clearly a special case of
a branched surface of spanning type; it is its own underlying surface.

Suppose that a branched surface S is obtained from a surface F by a simple
disc decomposition. Let 7 be the cycle in TF corresponding to dD. Let us say
that two vertices of 7 have the same parity if they are an even distance apart along
7, and let us divide the alternate vertices of 7 accordingly into two equivalence
classes. Then, as shown in Figure 7b, the underlying surface of S corresponds to
the graph obtained from TF by identifying one equivalence class of vertices of 7
to a single vertex and then collapsing each resulting pair of parallel edges, with
the choice of vertices to identify determined by the relative orientation of F along
&D.

If F is a Murasugi sum of checkerboard surfaces with reduced alternating
boundary, and no two identified vertices are joined by a single edge, then the
underlying surface of S will also be a Murasugi sum of checkerboard surfaces
with reduced alternating boundary, and therefore essential. This motivates the
following définition.

Definition 3.5. A good cycle in a uniformly labeled planar summand of a graph
is an innermost cycle of even length with the property that no two vertices of the
same parity are connected by an edge. We will call a simple disc decomposition
good if the cycle corresponding to dV is good.

Lemma 3.1. Suppose the branched surface S is obtained by a good disc
decomposition from a surface F which is a Murasugi sum of checkerboard surfaces with
reduced alternating boundary k. Then S is essential.
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Proof. The proofs of Lemma 1.6 and Proposition 1.9 of [R] apply to this situation
(with suitable modification of the boundary slopes obtained), showing that S fully
carries a lamination, contains no Reeb components, and has no discs or half-discs

o

of contact. Let M S \ N(k). Since S is of spanning type, it is clear that
o

M \ jV(£) is irreducible. Furthermore, as noted above, the conditions on a good
disc decomposition imply that the underlying surface of S is essential. It follows

o o

that dM\ N(T<) is incompressible in M\ jV(£), dhN(T<) is incompressible and d-
o o

incompressible in M\N(£), there are no monogons in M\N(£), and no component
of dhN(£) is a sphere or disc. D

Moreover, S satisfies the conditions of Theorem 2.3 of [R], from which we
deduce the existence of a family of persistent laminations.

Theorem 3.2. Suppose the branched surface S is obtained by a good disc
decomposition from a surface F that is a Murasugi sum of checkerboard surfaces with
reduced alternating boundary k. Let r denote the slope of the simple closed curve
S Pi dN(k). Then S fully carries a set £ of persistent laminations such that for
any rational number s in

[r, oo) if the disc decompostion is positive

\ (—oo,r] if the decomposition is negative

there is a lamination in £ which meets the boundary torus of M transversely in
parallel curves of slope s.

Proof. Lemma 3.1 guarantees that S is essential and Proposition 1.9 of [R]
guarantees that there are no planar surfaces of contact. The remaining hypotheses
of Theorem 2.3 of [R] are satisfied by construction. Since the boundary of the
decomposing disc for a positive (respectively, negative) good disc decomposition
intersects only positive (respectively, negative) crossings, the coefficients of ^fj
and x in the slope formula of Theorem 2.3 [R] are ±1 (respectively, =Fl), from
which the result follows. D

Corollary 3.2. Suppose the knot k possesses a spanning surface which is a Murasugi

sum of checkerboard surfaces with reduced alternating boundary and which
contains good cycles of both positive and negative type. Then each manifold
obtained by finite Dehn surgery on k contains an essential lamination.

In section 4 we will show that most nontorus checkerboard alternating knots
possess such spanning surfaces.

Remark. We note that the above définitions and theorems are certainly not stated

in full generality. Disc decompositions which are not simple, decompositions
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Figure 8.

by surfaces other than discs, and decompositions of branched surfaces or less
specialized spanning surfaces may be considered and, in some cases, produce similar
results for knots we have not discussed.

3.3. Persistent laminations from rational tangles

Delman [D2] shows how a persistent lamination may be constructed using a
rational tangle decomposition of a knot. We review the necessary elements of this
construction. Recall that the lamination constructed by this method is disjoint
from a tubular neighborhood of the knot, and persistence means that it remains
essential in the manifold obtained by every finite Dehn filling.

A tangle (B,t) is a pair of disjoint arcs t properly embedded in a ball B. We

say that a knot contains the tangle (B,t) if there is a sphere S which intersects
the knot transversely in four points and bounds this tangle on one side. Consider
a collar of S in B (that is, a neighborhood homeomorphic to S x /), and let Sx
denote the level corresponding to <S x {x}, with S S\. (B,t) is a rational tangle
if t can be isotoped to lie in this collar, intersecting each level Sx, 0 < x < 1,

transversely in four points and the level Sq in a pair of arcs. This pair of arcs (and
hence the rational tangle) may be described by a rational number, or slope, which
is obtained either by viewing Sq as a square "pillowcase" with the endpoints of the
arcs at the corners or, more formally, lifting the 2-sphere to its branched covering
by R2, branched at these endpoints. (See Figure 8.) The rational tangle of slope

r is denoted by R(r).
Note that in order to assign a well-defined slope, a convention on which arcs

have slope oo must be established.
For our purposes, we need only review the construction of an essential lamination

in a knot containing the tangle R(^), where n is an odd integer greater than
two. Let k be such a knot, and assume, in addition, that k is oriented as in Figure

8. Let F be a spanning surface for k which intersects the separating sphere,
<S, in arcs of slope oo. We now describe a branched surface without boundary,
S C S*3 \ k, constructed from these ingredients. It is easy to see that S fully
carries a lamination (refer to [D2] for details).
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Figure 9.

Branched surface in complement of knot with rational tangle.

In S3 \ B: X consists of dN(k) together with F\B, made tangential to dN(k)
along its boundary according to an orientation of k and the right-hand rule. (See

Figure 9a.)
In B: S is constructed by specifying its intersections with the "level" spheres

S%, proceeding from level i 1 down to i 0, as shown in Figure 9b. Note that
S has several saddle singularities; S is "finished off' with two minima in a level

just below Sq (which is why n must be odd).
^From a point of observation outside B, S looks like a spanning surface for a

simpler link, namely the surface E obtained by taking the union of F \ B with an
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View looking into B from outside

The spanning surface F The enveloping surface F

Figure 10.

Visualizing the enveloping surface.

untwisted band in B (that is, a band whose boundary is a tangle of slope 0). (See

Figure 10.)
o

Precisely, let C be the component of S \ N(£) which does not contain k and
has non-empty intersection with <S. Denote c)E by /, and let N{1) be a tubular

neighborhood of /. Let M' S3\ N(l) and A{E) dN{l) \ N{E). Then C looks
like the complement of F' in M' in the sense that there is a homeomorphism

(C,dhN(Z),dvN(Z)) ^ (M',dhN(E),A(E)).

E is called the enveloping surface for E. The enveloping surface plays a role
in the current construction analagous to that played by the underlying surface for
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a branched surface of spanning type. In particular, it is proven in [D2] that S
is essential and fully carries a persistent lamination if and only if its enveloping
surface is essential.

For alternating knots, we thus obtain the following:

Theorem 3.3. Let k be a checkerboard knot with reduced alternating projection
TV, and let T be the unonentable checkerboard surface for it. Suppose there is a disk
T> in the projection sphere whose intersection with n is the projection of a rational
tangle R(-), n odd and > 3, where the intersection ofT with the separating sphere
is taken to have slope oo. Furthermore, suppose thafD andT satisfy condition 2 of
Lemma 2.3. Then the complement of k contains a persistent lamination (without
boundary).

Proof. Construct the branched surface S from -R(^) and T as described above.

(Note that the orientation of k is correct, since T is dual to the Seifert surface.)
The enveloping surface for S is simply the surface T-p corresponding to the graph
obtained from TT by identifying I? to a vertex. By Lemma 2.3, T-p is essential.
Hence, by the Corollary to Theorem 1 of [D2], S is essential and fully carries a

persistent lamination. D

Corollary 3.3. Suppose k is a knot satisfying the hypotheses of Theorem 3.3.
Then every manifold obtained by finite Dehn surgery on k contains an essential
lamination.

In section 4 we show that any prime nontorus alternating knot which does not
have a spanning surface satisfying the hypothesis of Corollary 3.2 does have a

spanning surface and tangle satisfying the hypothesis of Corollary 3.3.

4. Proof of the main theorem

Let fc be a prime nontorus checkerboard alternating knot. Let S denote the
orientable checkerboard surface and T the nonorientable one for a reduced alternating
projection of k We begin with a preliminary lemma.

Lemma 4.1. For k S, and T as above, there exist simple cycles a and ß in TT

with the following properties.
1. a is innermost.
2. a \ ß is connected, and has a nonzero even number of edges.

3. Let T>ß be the disc bounded by ß which does not contain a. Then no two vertices

of a\ ß with the same parity are joined by an edge not contained in a.U T>ß.

4. No two vertices of ß are joined by a single edge not contained in T>r.
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Proof. Since T is nonorientable, FT contains a cycle (and hence an innermost one)
of odd length. Therefore there is a vertex v in Vs of odd valence. Since v has
odd valence it must connect to one of its neighbours, w say, by an odd number of
edges.

Let a and ß be the cycles dual to v and w respectively. Since k is not a torus
knot, a and ß are distinct. Furthermore, since k is prime, both a and ß are simple,
and ß cannot contain all edges of a.

If ß meets a in a disconnected set, then we rechoose ß as follows. We note
that a\ ß can be viewed as a union of disjoint open intervals. Let x and y be the
endpoints of one such interval. Suppose a is the simple cycle of edges a\a<2-..a<2m+l,
where a\a<i---a,r denotes the sequence of edges in a. \ ß describing a path from x to
y. Similarly, let b\b<2...bs denote the sequence of edges in ß \ a joining x to y. If
r is odd, then rechoose ß to be the cycle a\a2-..a,rbs...b2b\. Otherwise, rechoose ß
to be the cycle ar^\...a,'2m+\b\---bs. In either case, a\ß is a non-empty path with
an even number of edges.

Note that a and ß satisfy conditions 1 and 2, but possibly not 3 and 4.

Let Va be the disc bounded by a which does not contain ß. (Note that the
interior of Va contains no edges of TT since a is an innermost cycle.) Suppose
condition 3 fails to hold. This means there is an edge in the complement of
VaL)Vß whose endpoints are joined in a by a path p of even length. Let e be such

an edge which is innermost in the sense that the disc V bounded by e together
o

with p in the complement of Va contains no other such edge. Then replace Vß
with the complement of (the interior of) V U Va, and replace ß with the simple

cycle bounding this new Dß. (Hence, after this modification, o.\ ß p.) Now
conditions 1 and 2 are clearly still satisfied. Furthermore, since e was chosen

innermost, conditions 3 and 4 also hold.
Finally, suppose that a and ß are innermost and satisfy conditions 1-3 but not

4. Note that condition 2 guarantees that any edge not in Dß and yet joining two
vertices of ß is not contained in a. Thus, the following procedure does not violate
conditions 1-3 and may be repeated until 4 is satisfied: if there is a subpath of
ß which connects vertices joined by a single edge outside Dß, then replace that
subpath with this edge. D

Theorem 4.1. Every manifold obtained, by finite surgery on a nontorus alternating

knot contains an essential lamination.

Proof. By 3.1, we may assume that k is prime. Without loss of generality, suppose
that the edges of FT are negatively labelled.

Choose simple cycles a and ß in FT satisfying properties 1-4 of Lemma 4.1.
Let 7 be the simple closed curve which is disjoint from the edges of Vs UFT and
which passes alternately through vertices of ß and vertices of Vs lying outside Vß;
let T> be the disc bounded by 7 that contains Vß. The local dualization of FT on
V is the Murasugi sum of the two planar graphs F^ and F^, where all edges of
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Figure 11

Good positive cycle in Case 1

TTp are negatively labeled and all edges of Ff, are positively labeled Lemma 2 3

and condition (4) of Lemma 4 1 guarantee that both of the surfaces, Tj> and S-p,

corresponding to these graphs, are essential Let T" denote, as before, the essential
surface obtained by local dualization of T along V

Conditions 1 and 2 of Lemma 4 1 guarantee that a collapses in FT to an
innermost cycle, a of even length and condition 3 of Lemma 4 1 ensures that
a is good Hence, T" admits a good negative disc decomposition

We next look in the summand F^, for a good, positively labeled cycle If we
find one (and in most cases we do), then application of Corollary 3 2 completes
the proof If we don't find one, then we demonstrate instead that the hypothesis
of Corollary 3 3, from which the theorem also follows, is satisfied We divide the
proof into three cases

Case 1 There is a vertex, v, of FT which lies in the interior of T>

Let a be the cycle dual to v Since v is in the interior of T>, no vertex of a lies

on 7 Hence a is a cycle of Fs and, since S is orientable, must be of even length
Furthermore, no two vertices of a an even distance apart are joined by a single
edge not in a, since these edges would also produce an odd cycle in Fs Thus a is
good (See Figure 11

Case 2 No vertex of FT lies in the interior of Vß, and ß has more than two
vertices

In this case, the subgraph of FT contained in T> must consist of families of edges

parallel to those of ß Let x denote the vertex of Ff, dual to the innermost simple
cycle traversing the vertices of ß (which is well-defined since, by assumption, ß
has at least three vertices), let y denote the vertex obtained from V F^ consists
of unbranched paths joining x and y (see Figure 12) If any two adjacent paths
have odd length, then together they form a positively labeled good cycle

If not, rechoose a and ß as follows Since no two adjacent paths joining x and

y have odd parity, there must be at least two paths whose length is even and,
consequently, greater than one Choose ß to be the cycle of length two formed
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Figure 12

Tg in Case 2

Figure 13

Rational tangle in Case 3

by the outermost edges dual to one of these paths, choose a to be the innermost
cycle (which will also be of length two) dual to any vertex in the interior (that
is, neither x nor y) of the other It is easy to see that this choice of a and ß
satisfies the conditions of Lemma 4 1 Furthermore, after replacing V with the
disc determined by this new choice of ß and performing local dualization on it, we
see that the new F^, consists entirely of a good cycle
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Case 3 No vertex of FT lies in the interior of Vß, and ß has exactly two vertices

In this case, the subgraph of FT bounded by V consists of a single family of (at
least two) parallel edges, hence F^, consists of a single cycle Let n be its length
If n is even, then this cycle is good If n is odd, then consider the portion of k
whose projection lies inside V This is a rational tangle of type ^ when viewed so
that the surface T cuts its boundary in arcs of slope oo Since n is odd, Corollary
3 3 applies (See Figure 13 D

Corollary 4.1. Alternating knots satisfy Strong Property P, in particular, they
satisfy Property P
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