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Preprojective algebras, differential operators and a Conze
embedding for deformations of Kleinian singularities

William Crawley-Boevey

Abstract. For any associative algebra A over a field K we define a family of algebras II*(.A)
for A G K <2>x Ko (A) In case A is the path algebra of a quiver, one recovers the deformed
preprojective algebra introduced by M P Holland and the author In case A is the coordinate

ring of a smooth curve, the family includes the ring of differential operators for A and the
coordinate ring of the cotangent bundle for Spec A In case A is quasi-free and Q1A is a finitely
generated A-A-bimodule we prove that II* (.A) is well-behaved under localization We use this
to prove a Conze embedding for deformations of Kleinian singularities
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If K is an algebraically closed field of characteristic zero and F is a non-trivial
finite subgroup of SL^-SQ then the coordinate ring of the Kleinian singularity
if2 /F has a family of deformations Ox where A G Z(KT) They have been defined
and studied in work of M P Holland and the author [5] If A has trace zero on
the regular representation of F, then Ox is a commutative ring, and it occurs as

the coordinate ring of a fibre of the semi-universal deformation of K^/T On the
other hand, if A has nonzero trace on the regular representation, then Ox is a

non-commutative ring
In this paper we construct an embedding ip\ Ox —> Cv where v is the trace of

A on the regular representation of F, and Cv K(x, y \ xy — yx v) This is an
embedding of noethenan domains, and we show that it induces an isomorphism
of quotient division rings In the commutative case Cv is a polynomial ring in two
variables, so the embedding is a birational map from the affine plane to a
deformation of the Kleinian singularity In the noncommutative case Cv is lsomorphic
to the first Weyl algebra, and the embedding is reminiscent of one constructed by
N Conze [3] We therefore call i/j\ a 'Conze embedding'

In the work of M P Holland and the author, the key idea for studying
deformations of Kleinian singularities was to relate them to a new class of algebras
which we introduced, the 'deformed preprojective algebras' associated to quivers

of extended Dynkm type In fact, in our earliest work we constructed Conze
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embeddings. By dividing into cases according to the different types of extended

Dynkin quivers, we constructed representations of the deformed preprojective
algebras over Cv. These representations induce maps Ox —> Cv, and we used
computer calculations to prove that these maps are injective. Instead of publishing
our work, we decided to wait for a better understanding of deformed preprojective
algebras, and a natural proof of the existence of Conze embeddings. This paper
is the result. Although M. P. Holland is not explicitly an author of this paper, he

has contributed a great deal to it.
Let K be an arbitrary field. For any if-algebra A (associative, with 1), and

any element A G K <g>z Ko (A) we define an algebra IIA (A). It is equipped with a

homomorphism A —> nA(j4). Note that an element v G K determines the element

v <g> [A] G K <g)Z Ko(A), and for simplicity we write W{A) rather than IF®M (A).
For finite-dimensional hereditary algebras this définition generalizes the preprojective

algebras of Baer, Geigle and Lenzing [2], which we denote here by IIbgl (-*4) •

Theorem 0.1. If A is finite-dimensional and hereditary then II (A) IIbgl (-*4) •

Our next result relates the new définition to the original deformed preprojective
algebras of [5], which we denote here by nc^H(<5), where Q is a quiver with vertex
set / and A G K1. We identify K1 with K®zKq(KQ), with A G K1 corresponding
to the element

A ^ A, <g> [KQet] G K <g>z Kq(KQ)
tel

(where et is the trivial path at vertex i).

Theorem 0.2. If Q is a quiver and A G K(g)ZK0(KQ) then UX(KQ) IIABH(Q).

Theorems 0.1 and 0.2 together imply that IIbgl(^Q) H-cimiQ)- This has
been known for some time—it was explained to the author by C. M. Ringel—and
it was used implicitly in [5]. An alternative proof has recently been written up by
Ringel [13].

Theorem 0.2 includes as a special case the fact that for a polynomial ring in one
variable, III'(Ä'[x]) =CV. It is this isomorphism which leads to the appearance of
Cv in the Conze embedding. When K has characteristic zero, the algebra n1(Ä'[x])
is the ring of differential operators for K[x\. This turns out to be no coincidence.
Indeed we prove the following result.

Theorem 0.3. If K is afield of characteristic zero and A is the coordinate ring of
a smooth affine curve over K, then II (A) is the coordinate ring of the cotangent
bundle of Spec A and II (A) is the ring of differential operators for A.

The first three theorems deal with examples of nA(j4). We now turn to the
functorial properties of nA(j4). In Section 5 we prove the following result.
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Theorem 0.4. Suppose that e is an idempotent in an algebra A with AeA A. If
A G K®zKo(eAe), thenUx(eAe) e(Uß(A))e, where ^ G K®zKq{A) corresponds
to A under the natural isomorphism Ko(eAe) Kq(A).

It follows that the algebras nA(j4) are well-behaved under passage to matrix
rings and under Morita equivalence. For example if A and B are Morita-equivalent
algebras, and X £ K <g>z Ko (A) corresponds to \i G K <g>z Ko(-B), under the
isomorphism Ko(-A) Ko(-B), then IIA(J4) and IP (5) are Morita equivalent. In the
next section we show that the algebras nA(j4) are also well-behaved under direct
products.

According to Cuntz and Quillen [6], an algebra A is quasi-free if the kernel &A
of the multiplication map A <g> A —s- A is a projective A-A-bimodule. Such algebras
are to be considered as coordinate rings of noncommutative manifolds. We say
that A is bimodule-finite if Q}A is a finitely generated bimodule. The following
result is perhaps already known to experts.

Proposition 0.5. An algebra A is bimodule-finite if and only if it has a finitely
generated subalgebra C, such that the inclusion C —s- A is a ring epimorphism.

It is easy to see that path algebras are both quasi-free and bimodule-finite.
Now any quasi-free algebra is hereditary, and over the complex numbers Cuntz
and Quillen observed that every finite-dimensional hereditary algebra is Morita
equivalent to a path algebra, so is quasi-free. In the general case, however, the
situation is slightly more complicated.

Proposition 0.6. A finite-dimensional algebra A is quasi-free if and only if it is
hereditary and A/ Y&dA is separable over K.

Our real reason for working in an abstract setting is in order to prove a
localization theorem. For any ring homomorphism 9 : A —> B, the functor B <%>a —

defines a homomorphism 6* : K <g>z Ko (A) —> K <g>z Kq(B). Following [1, §5], a

ring epimorphism A —s- B is said to be pseudoflat provided that Torf (B,B) 0.

See [15, Theorem 4.8] for a number of equivalent conditions.

Theorem 0.7. // 9 : A —s- B is a pseudoflat epimorphism and X £ K <g>z Ko (A)
then there is a natural map H^(A) —> H0*^' (B). If A is a quasi-free bimodule-

finite algebra, then so is B, and the diagram

A > nx(A)

B

is a pushout in the category of rings.
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Now suppose that Q is an extended Dynkin quiver with vertex set /, and for
simplicity suppose that K is an algebraically closed field. Let S G ZJ be the
minimal positive imaginary root for Q. By using universal localization one can
easily construct a pseudofiat epimorphism 9 : A —> MAr(if[x]) such that the general
representation of KQ of dimension vector ö is the restriction of a M.n(K[x\)-
module. (It follows that N J2t <*»•) If A G if <8>z Ko(KQ), by the theorem there
is an induced a pseudofiat epimorphism 9\ from HX(KQ) to

MN(W(K[x})) MN{CU)

where in fact v J^ Xl5l. By using the representation theory of Q we prove the
following result.

Theorem 0.8. If Q is an extended Dynkin quiver, K is an algebraically closed,

field and A G K <g>z K.q(KQ) then HX(KQ) is a prime noetherian ring of Gelfand-
Kinllov dimension 2. Moreover 9\ : II (KQ) —> Mj\r(Cj/) is mjective, and it
induces an isomorphism on simple artinian quotient rings.

In an appendix we use the methods of this paper to study the variety of
representations of H°(KQ) of dimension S.

We finally return to Kleinian singularities. Assume that K is algebraically
closed of characteristic zero, and let F be a finite subgroup of SL^-SQ. Let Q be

an orientation of the McKay quiver of F, and let 0 be an extending vertex. Recall
that there is an isomorphism Ox eoHx(KQ)eo, where A G Z{KT) is identified
with A G K1 by letting A^ be the trace of A on the ith irreducible representation
of F. Here is the result mentioned at the start of the introduction.

Theorem 0.9. There is an embedding ip\ : Ox —s- Cv where v is the trace of X on
the regular representation ofT. Moreover ip\ induces an isomorphism on quotient
division rings.

1. Definition of UX(A)

Let A be an algebra (associative, with 1) over a field K. Recall that A-A-bimodules
are the same as j4e-modules, where Ae A <g> Aop. (Unadorned tensor products
are always over the field K.) The universal derivation bimodule, or bimodule of
noncommutative differential 1-forms is the kernel Q A of the multiplication map
A (g) A —s- A. See for example [1] or [6].

If M is an A-A-bimodule, we write Der(A, M) for the space of derivations from
A to M. It is isomorphic to HomA'(&A,M), a homomorphism 9 giving rise to
the derivation d with d(a) 6(a <g> 1 — 1 <g> a).

The space Der(A,A <g> A) becomes an A-A-bimodule via adb (r^ <g> la)d
where £a, r^, : A —s- A denote left multiplication by a and right multiplication
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by b respectively. We write A (or A^) for the derivation A —s- A <%>k A with
A(a) a(g)l-l(g)a.

If M is an A-A-bimodule we write T^M for the tensor algebra of M over A.
For any a G A we define Ua(A) TA Der(A, A <g> A)/(A -a). We consider it as

an A-ring, that is, as an algebra equipped with homomorphism A —> na(j4). We
have the following elementary results.

Lemma 1.1. If u is a unit in the centre of A and a G A, then I[a{A) Hua(A).

Proof. Multiplication on the left by m^1 induces an automorphism of the bimodule
Der(j4, A® A), and hence there is an algebra automorphism of T^ Der(j4, A® A)
which is the identity on A, but sends A to u~^A. Under this automorphism the
ideal (A - a) is sent to (u~1A - a) (A - ua). D

Lemma 1.2. Up to isomorphism na(j4) depends only on the image of a in Ho(-A)

A/[A, A].

Proof Write M Dev(A,A <g> A). Given b, c G A, it suffices to construct an
automorphism of T^M sending A — a to A — a + [6, c]. By the universal property
of tensor algebras, the homomorphisms 9 : T^M —> T^M which are the identity
on A are in 1-1 correspondence with A-A-bimodule maps M —s- T^M. Taking the
bimodule map sending d to d + ^2tytcxt, where xt and yt are defined by d(b)

5Zjxi®yn it is clear that the resulting homomorphism 9 is an automorphism, and
that 6(A — a) A — a + [6, c], as required. D

Let tr : Ko (A) —> Ho (A) A/[A, A] be the trace map, sending the class of
a projective module P to the image in Aj [A, A] of the trace of any idempotent
e G Mn(A) with image isomorphic to P. This map extends to a linear map
K <8>z Ko (A) —s- Ho (A) also denoted tr.

Definition 1.3. If A G K <g>z K0(A) then

UX(A) Uax (A) TA Der(A, A <g) A)/(A - ax)

where a\ is any lift of tr(A) to A.

The previous lemma shows that nA(j4) does not depend on the choice of a\.
If a, b G A then aAb is the derivation with (aAb)(x) xb <g> a — b <g> ax for
x £ A. Thus the A-A-sub-bimodule of Der(A, A <g> A) generated by A is the set of
inner derivations. Therefore Der(A, A <g> A)/AAA Hl{A,A® A), which has the
following consequence.

Lemma 1.4. U°A T^H1^, A <g) A).

Any tensor algebra T^M is naturally graded, with (T/iM)n being the nth
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tensor power of M. Thus the lemma gives a grading of II0(A). On the other hand
the algebra IP (A) is filtered

na(A)<0 ç na(A)<i ç na(A)<2 c

where IP(.A)<n is the image in IP (.A) of ^™=0(Ta Der(A, Aig) A))». As usual one
can consider the associated graded algebra grIP(.A), and there is the following
result.

Lemma 1.5. There is a natural surjectwe graded algebra 'map II0(A) —s- gr IP (.A).

Proof. An algebra homomorphism </> : II0 (A) —> grIP(.A) is determined by an
algebra homomorphism A —> IP(.A)<o, which we take to be the natural map, and
an A-A-bimodule map g : H1 (A, A <g> A) —> (grIP(.A))i. For </> to be surjective,
we need g to be surjective, so it suffices to show that (grIP(.A))i is naturally a

quotient of H1^, AigiA). Now by definition (grIP(,4))i (A®Der(A, A(E)A))/S,
where S A+In(A®~Der(A, A®A)) and / is the ideal (A-a) in Ta Der(A, A®A).
The result follows since S contains A © AAA. D

2. Finite-dimensional hereditary algebras

Let D be the duality Hom^(-, K).

Lemma 2.1. For any algebra A there is a natural isomorphism F,xtA(DY,X)
H1(j4,X <g) Y) for X and Y left A-modules, with Y finite-dimensional.

Proof. Tensoring the defining sequence for Q}A with DY one obtains an exact
sequence

0 -> nxA (E)ADY -> A(E)DY -> DY -^ 0.

Since A (g) _DY is projective, if X is a left A-module one obtains

> RomA(A(g) DY,X) -+ YiomA{Q}A<g,A DY,X) -+ Ext(DY,X) -+ 0.

Now HomJ4(ü1J4 <g>A DY,X) can be identified with WomAe{Q}A,X <g> Y), so with
Der(A, X (g) y). Also we can identify HoniA^ (g) _DY, X) with Y ® X, and then
the map Y <g> X ^ Dei{A, X<g>Y) sends an element of Y <g> X to the corresponding
inner derivation. D

Lemma 2.2. If A is a finite-dimensional hereditary algebra then there is a natural
isomorphism Ext1 (DA, X) H1^, A <g> A) ®A X for X a left A-module.
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Proof. Since A is hereditary the functor Ext (DA, — is right exact. Since it
also commutes with direct limits it is naturally isomorphic to the tensor product
functor Ext1 (DA, A) <g>A -. D

If A is a finite-dimensional hereditary algebra then the inverse Auslander-
Reiten translation is the functor t~ defined by t~(X) Ext (DA,X). The
algebra nBGL(A) of [2, §3] is

RomA(A,T-n(A)),
n=0

with the product defined by uv T~m(u) o v for elements u G Hom.A(A,T~n (A))
and v G RomA(A, r~m (A)).

Theorem 2.3. If A is finite-dimensional and hereditary then H (A) IIbgl (-*4) •

Proof. Combine Lemmas 1.4 and 2.2 with [2, Proposition 3.1]. D

3. Deformed preprojective algebras

Let Q be a quiver with vertex set / and let KQ be its path algebra. Let et G KQ
be the trivial path at vertex i. Recall that K1 is identified with K <g>z Kq(KQ),
with A G K1 corresponding to the element

\l®[KQel] eK(E)zK0(KQ).
tel

Let Q be the quiver obtained from Q by adjoining an arrow a* : j —s- i for each

arrow a : i —> j in Q. The next result shows that HX(KQ) coincides with the

deformed preprojective algebra n^BH(Q) of [5].

Theorem 3.1. If X G K(g)ZK0(KQ) then HX(KQ) KQ/J where J is the ideal
generated by ]CaeQla>a*] ~ 52iei ^%e%-

Proof. There is a standard projective resolution of KQ as a KQ-KQ-bimodu\e

0^ PtA KQe. <gi etKQ-^ ÇfjKQet<gietKQ —> KQ —> 0

a:t^j in Q »£/

where / sends (e0 <%> et)a to (e^ <%> a)0 — (a <%> el)l. Identifying

ifg (g) ifg ^ ifger ® esKQ,
r,sEl
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one obtains an exact sequence

KQe3 <g> e%KQ 0 Q)KQer <g> esKQ -^ KQ ® KQ "^ KQ -^ 0, (f)

where # sends {e3 <g> et)a to e0 <g> a — a <g> e% and (er <g> es)rs to er <g> es.

If M is a ifQ-ifQ-bimodule, then RomKQe(KQet ®e3KQ,M) e%Me3, so if
M KQ (g) KQ the Horn space is isomorphic to etKQ <g> KQe3. Now this tensor
product is over K, so one can swap the order of the terms and write KQej<S)etKQ.
By doing this, one clearly sees the KQ-KQ-bimodu\e structure of this space.

Now the left hand term of the exact sequence (|) is Q}KQ, and computing its
homomorphisms to KQ <g> KQ one obtains

Bei(KQ,KQ(g)KQ)= ^ KQet®e3KQ 0 C£)KQes <g> erKQ.

Thus Tkq Dei(KQ,KQ <g> KQ) is identified with the path algebra of the quiver
Q obtained from Q by adding an arrow crs : r —s- s for each pair of vertices r =/= s.

Also A corresponds to the map g, so to the element

(a <8> e., - e% (g) a)a

Now with the identification of K1 and if <g>z Ko(ifQ), the element '^2l\e% is a

lift to KQ of tr(A) G KQ/[KQ,KQ}. Thus nA(ifQ) XQ/(0 where

Clearly the ideal generated by £ is also generated by the elements J^ et£et with
i £ I and es£er with r ^ s. These are ^aeQ[a'a*]~X/"=l ^*e* an(i crs respectively.
The result follows. D

The path algebra of the quiver with one vertex and one loop is a polynomial
ring K[x], so we have the following special case.

Corollary 3.2. If v e K then W{K[x\) K{x,y \ xy - yx v).

4. Differential operators on curves

Throughout this section A is the coordinate ring of a smooth affine curve. Thus
it is a commutative domain, finitely generated over K, of Krull dimension 1, and
it is smooth over K, so for any commutative if-algebra C and any ideal / in



556 W. Crawley-Boevey CMH

C with /2 0, any if-algebra homomorphism A —s- C/I lifts to a if-algebra
homomorphism A —s- C. A suitable reference for smooth algebras is [10, §§25—

30]. The following result is due to Schelter [14] (at least when K is algebraically
closed).

Lemma 4.1. Q}A is a rank 1 projectwe Ae-module. Thus A is quasi-free.

Proof. Since A is smooth over K, so is Ae, so for any maximal ideal m of Ae the
localization (Ae)m is regular of dimension 2. Localizing the defining sequence for
Ç)}A at m gives an exact sequence

0 - {nxA)m -+ (Ae)m -+ A ®Ae (Ae)m -+ 0,

and it suffices to prove that the ideal (Q1J4)m of (Ae)m is projective. This is

certainly true if m doesn't contain Q}A, for then some element of Q}A is invertible
in (Ae)m, so (Q1J4)m (Ae)m. Thus suppose that m contains Q}A, so m is the
inverse image under the multiplication map Ae —> A of a maximal ideal n of A.
This implies that A ig)^ {Ae)m An. Now if a is a nonzero element of n then
1 (g) a G m and since 1 <g> a acts as a non zero-divisor on An, the (j4e)m-module An
has depth at least 1. It follows that it has projective dimension at most 1, so that
(ü1j4)m is projective. D

Since Ae is commutative, any Horn space between A-A-bimodules is naturally

an A-A-bimodule. In particular Der(A, M) Hörnte(Ü1AM) is an ^4-^4-

bimodule for any M.

Lemma 4.2. Der(j4,^lj4) %s a free A-A-bimodule generated, by A.

Proof. It is the endomorphism ring of a rank 1 projective j4e-module. D

Applying HomJ4=(^1A —) to the defining sequence for &A, we obtain a

sequence

0 -> Der(A, Q1^) -^ Der(A, A(E)A)^ Der(A, A) -^ 0

so by the previous lemma Hi-(A,A>S)A) is naturally isomorphic to Der(A, A). Now
Der(A, A) is a rank 1 projective A-module, so its tensor algebra over A coincides
with its symmetric algebra, and we have the following result.

Theorem 4.3. II (A) is isomorphic to the coordinate ring K[T* Spec A] of the

cotangent bundle of Spec A.

We now investigate the relationship between II1 (A) and differential operators.
Let D{A) be the ring of differential operators for A. Elements of A are identified
with the differential operators of order 0, with a G A corresponding to the homo-
thety ald^- We write D<\(A) for the set of differential operators of order < 1. It
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becomes an A-A-bimodule by composition of maps, and there is an exact sequence
of A-A-bimodules

0 —> A —> D<i{A) -^ Dei{A,A) —> 0

where g sends a differential operator d to d — d(l) Ida- Note that Der(A,A) is a

subspace of D<\{A) complementary to Ald^, but it is not a sub-bimodule.

Lemma 4.4. The evaluation map A® Dev(A,A) —s- A is surjectwe.

Proof. If a G A and h G Hom^f^A A) then since A is commutative, the assignment

d(x) h(ax (g) 1 — a <g> x) defines a derivation A —> A. Now the assertion
follows since firstly Q}A is generated as a left A-module by elements of the form
x (g) 1 — 1 (g) x, and secondly the natural map

Q1A (E)A- HomAe (Q1A,A)^A

is an isomorphism (since Q}A is a rank 1 projective j4e-module). D

Lemma 4.5. Ald^ is a superfluous A-A-sub-bimodule of D<\(A). That is, if M
is an A-A-sub-bimodule of D<\(A) and M-\- AldA D<\(A), then M D<\(A).

Proof. By assumption any derivation d G Der(A, A) can be written as the sum of an
element m G M and a homothety a Id^- Now if x G A then d{x)y d{xy) — xd{y)
for y G .A, so

d(x) IcU do (x IcU) - (x IcU) od mo (x ldA) - (x IcU) o m G M.

Thus A Id^ Ç M by the previous lemma. D

Lemma 4.6. There are surjectwe bimodule maps 9, </> giving rise to a commutative
diagram with exact rows

0 > DerCAQ1^) > Bei(A,A(g)A) > Dei(A,A) > 0

0 > A > D<t(A) —9—^ T)er{A,A) > 0

Proof. Since Der(A, A® A) is a projective bimodule, the map from Der(A, A® A)
to Dei{A,A) lifts to a map 9. Now 6> is surjective since Ald^ is superfluous in
D<t(A). The result follows. D

Theorem 4.7. If K has characteristic zero and A is the coordinate ring of a

smooth affine curve, then II (A) is isomorphic to the ring D(A) of differential
operators for A.
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Proof. Since the map </> in Lemma 4.6 is surjective and Der(J4,Q1J4) is generated
by A, the element u </>(A) must be a unit in A. Now 9 induces a homomorphism
ip : II" (A) —> D(A) of filtered rings, and there is a commutative square

U°(A) > K [T* Spec A]

grn«(A) -^ grl^A)
where the top map is the isomorphism of Theorem 4.3, the left hand vertical map
is as in Lemma 1.5, and the right hand vertical map is the natural isomorphism
resulting from the fact that A is smooth and K has characteristic zero. It follows
that gr-i/' is an isomorphism, and then the result follows since II1 (A) II" (A) by
Lemma 1.1. D

5. Morita equivalence

In this section A is an algebra and e G A is an idempotent with AeA A, so that
A is Morita equivalent to eAe. We define / 1 — e.

Lemma 5.1. If M is an A-A-himodule, then the assignment sending d to the map
a i—» ed(a)e induces a surjective linear map Der(j4, M) —> Dei(eAe, eMe) whose
kernel is the set of inner derivations a i—» am — ma with m € fMe © eMf © fMf.

Proof Let X (Af <g> eA) © (Ae <g> fA) © (Af <g> fA). Since AeA A, it follows
that A (g) A Ç)}A + Ae <g> eA. Thus the projection A <g> A —> X induces an exact
sequence

0 -> Q1A n Ae <g> eA -> Q1A -> X -> 0.

This is split exact since X is a projective bimodule, so it induces an exact sequence

0 -> HomAe(X,M) ^> HomAe(Q1J4,M) ^> Honiieffi'^nAe <g) eA,M) -> 0.

Now e (Q1(j4) Pi Ae (g) eA) e Q-'-(e.Ae), so by Morita equivalence the last term can
be identified with the space of eAe-eAe-bimodule homomorphisms from Q}{eAe)
to eMe, and hence with Der(ej4e,eMe). Identifying also the middle term with
Der(A, M), the map </> is as stated. Now the left hand term is isomorphic to
/Me © eMf © fMf, and the map 9 sends an element m of this direct sum to the
inner derivation a \-+ am — ma, as required. D

Lemma 5.2. If J is the A-A-sub-bimodule of Der(j4, A <g> A) generated, by eA/,
/Ae and /A/, and L Der(j4, A <g> A)/ J, then there is an isomorphism of eAe-
eAe-bimodules

ehe —s- Der(ej4e, eAe <g> eAe)
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sending eAe to AeAe-

Proof. One can identify eDer(A,A <g> A)e with Der(A,Ae <g> eA), and then the
lemma follows from the previous one. D

There are inverse isomorphisms between Ko (eAe) and Ko (A) induced by the
functors P i—> Ae <S)eAe P and Q i—> eQ on projective modules. This enables one to
identify K <g>z Ko (eAe) and K <g>z

Theorem 5.3. If X G K <g>z K0(eAe) then IIA(eAe) e(IP(A))e7 where \i is the

corresponding element of K <g>z Ko (A).

Proof. It suffices to show that Ha(eAe) e(HaA)e for a G eAe, as there is a
commutative square

K (g)zKo(eAe) > if(g)ZKo(A)

tr tr

eAe/[eAe, eAe] —-—> A/[A, A]

where i is induced by the inclusion of eAe in A, and the top map is the bijection
mentioned above. Now

IP(A) (TA Der(A, A <g) A))/(A - a)

(TA Der(A, A <g) A))/(eA/, /Ae, /A/, eAe - a)

^ TAi/(eAe - a)

where L is as in the previous lemma. Thus

eIIa(A)e e[TAi/(eÄe - a)]e ^ e(TAI)e/(eÄe - a)

TeAe(eLe)/(eÄe - a) na(eAe)

by the previous lemma. D

If A and B are Morita-equivalent algebras, then there is an equivalence from
the category of left A-modules to the category of left _B-modules. This induces
a bijection from K <g>z Ko(A) to K <g>z Ko(-B). In particular this applies to the
algebras A and Mn(A).

Corollary 5.4. If X G if <g>zK0(Mn(A)) then IIA(Mn(A)) Mn(IP(A)) where fj,

is the corresponding element of K <g>z Ko (A).

Proof. The matrix units elQ (1 < i,j < n) for Mn(A) induce matrix units in
nA(Mn(A)). Thus nA(Mn(A)) Mn(R) where R ennA(Mn(A))en, and then
R W(A) by the theorem. D
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Corollary 5.5. If A and B are Monta-équivalent algebras, and A G K <g>z Ko(j4)
corresponds to ^ G K <g>z Ko(-B), then H (A) and IP(_B) are Monta equivalent.

Proof. It suffices to prove this in two cases, when B Mn(A), and when B eAe
with e an idempotent with AeA A; see for example [11, Proposition 3.5.6]. The
first corollary deals with the case of a matrix ring. The theorem deals with the
other case, for e is an idempotent in UX(A) with Ux(A)eUx(A) UX(A), so that
nA(,4) is Morita equivalent to enA(,4)e W{eAe). D

6. Products

In this section we suppose that A decomposes as a direct product of two algebras,
A B x C. We identify B and C as subsets of A with A B © C and BC CB
0. This leads to a decomposition 1 e + / with e G B and / G C idempotents.
There is a natural isomorphism Ko (-A) Ko(-B) x Ko(C), and if A G K <g>z Ko(-B)
and (j, G K<S>i'Kq{C) we write (A, jj) for the corresponding element of K<S>

We prove that rtx^{A) HX(B) x IP(C).

Lemma 6.1. /// «s the A-A-sub-bimodule of Dei{A, A <%> A) generated by eA/
/Ae i/iera there is an isomorphism

Der(A, A <g> A) 11 Dei(B,B <g) B) 0 Der(C, C <g) C)

A^e corresponding to Aß and /A^/ corresponding to Ac

Proof. Clearly Der(S, S <g> B) 0 Der(C, C <g> C) can be identified with
D {de Der(A, A <g) A) | d(e) 0},

so it suffices to prove that D and / are complementary. Now / consists of all
inner derivations of the form s(a) a(p + q) — (p + q)a with p G eA <g> Af and

g G /A (g) Ae, and since s(e) q — p, it follows that _D n / 0. On the other
hand, if d : A —> A (g) A is any derivation then the fact that e is idempotent implies
that d(e) G eA <g> A/ © /A <g> Ae. Thus there is an inner derivation d! G / with
{d + d'){e) 0. It follows that D + I Der(A, A® A). D

Theorem 6.2. IfA BxC,XeK(g)Z K0(B), fj, G if <8>z Ko(C), ararf (A,

the corresponding element of K <g>z K0(A), i/iera n(A^)(A) UX(B) X

Proo/. It suffices to prove that if a G A then na(A) II"(S) x 11^(C) where
m eae and w faf. Now

TA Der(A, A <g) A)/(eAf, /Ae, eAe - m, fAf - v)

(S,S <g) S)©Der(C,C <g) C)]/(AeAe - u, AfAf - v)
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by the previous lemma. Now this last tensor algebra is isomorphic to

TB Der(B, B <g B) x Tc Der(C, C <g C),

and the result follows. D

7. Bimodule-finite algebras

Lemma 7.1. If A —> B is a ring epimorphism then there is an exact sequence of
B-B-bimodules 0 -> Torf (B,B) -^ B (E)A ^A ®AB -> QXB -> 0. Thus if A is

bimodule-finite then so is B.

Proof. Take the defining exact sequence for Q}A and tensor each side with B. Now
use the fact that multiplication induces an isomorphism B <S)a B —s- B. D

There is the following obvious consequence.

Lemma 7.2. IfA —> B is a pseudoflat ring epimorphism then Q B is isomorphic
to B (£>A Q A (£>A B. Thus if A is quasi-free then so is B.

Proposition 7.3. An algebra A is bimodule-finite if and only if it has a finitely
generated subalgebra C, such that the inclusion C —* A is a ring epimorphism.

Proof. If there is such a subalgebra C then Q}C is known to be finitely generated
(see for example [1]), and the short exact sequence of Lemma 7.1 shows that Q}A
is finitely generated. For the converse, choose generators of Q}A, and choose a

finitely generated subalgebra C sufficiently large so that the generators all lie in
C (g) C Ç A (g) A. Now there is a commutative diagram with exact rows

By construction / is surjective, and it follows that g is injective. In other words
the inclusion C —> A is a ring epimorphism. D
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8. Finite-dimensional quasi-free algebras

Lemma 8.1. Let M be an A-A-himodule which is flat as a right A-module. If
M <8>a X is flat for all left A-modules
A-modules X and right A-modules Y.
M (g>AX is flat for all left A-modules X, then Torfe(X <g> Y, M) =0 for all left

Proof. Fix an exact sequence O^L^P^M^O with P a projective A-A-
bimodule. Tensoring first with X and then with Y, the hypotheses imply that the
tensor product sequence

0 —s- Y (g>a L <E>a X —s- Y (g>A P <£>a X —s- Y <E>a M <E>a X —> 0

is exact. But this sequence is identified with the sequence

0 —>¦ {X (g) Y) (£>A' L —>¦ {X (£>Y) (£>Ae P —> {X (£>Y) (£>Ae M —>¦ 0

soToif(X(g)Y,M) 0. a

Lemma 8.2. Suppose that A is a finite-dimensional algebra, and that Aj rad A
is separable over K. Let M be an A-A-bimodule which is projective as a right A-
module. If M <S)a X is projective for any left A-module X, then M is a projective
bimodule.

Proof. Since rad A is nilpotent, every simple A-A-bimodule occurs as a composition

factor of (A/ rad A) <g> (A/ rad A), and the separability hypothesis implies
that (A/r&dA) <g> (A/ rad A) is semisimple. The previous lemma now shows that
Torj1 (S, M) 0 for all simple j4e-modules S. Since Ae is finite-dimensional, it
follows that M is a projective j4e-module. D

Lemma 8.3. If A and B are finite-dimensional self-mjective algebras, then so is
A(E)B.

Proof. If D is duality with the field, then D(A) is a projective A-module and D(B)
is a projective _B-module. Now the isomorphism D(A<S)B) D(A) ® D(B) shows

that D(A (g) B) is a projective A <g> _B-module, so A <g> B is self-injective. D

Lemma 8.4. If A is a finite-dimensional self-mjective algebra then every A-
module is either projective, or has infinite projective dimension.

Proof. Looking at the last two terms in the minimal projective resolution of a
module of finite projective dimension, there must be an injection of one projective
into another which is not split. This is impossible if all projective modules are
injective. D
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Proposition 8.5. A finite-dimensional algebra A is quasi-free if and only if it is
hereditary and Aj radA is separable over K.

Proof. If A is hereditary, the bimodule Q}A satisfies the hypotheses of Lemma 8.2.
Thus if A/ i&à A is separable over K then Q}A is a projective bimodule, so A is

quasi-free.
Now suppose that A is quasi-free. Certainly this implies that A is hereditary.

Let S be a simple A-module, and let B be the corresponding simple factor of
A/radA. Since A is hereditary, its Gabriel quiver has no oriented cycles (since

any nonzero map between indecomposable projectives must be injective). It follows
that F>xt\(S, S) 0. Now the projection A —s- B is a pseudofiat epimorphism by
[15, Theorem 4.8], since the the restriction to A of any _B-module is isomorphic to
a direct sum of copies of S. Thus B is quasi-free, so B has projective dimension
< 1 as a _Be-module. Now Be is self-injective by Lemma 8.3, so actually B is a

projective module. Thus B is separable. Repeating for each simple A-module it
follows that A/radA is separable. D

9. Localization

Lemma 9.1. If 6 : A —s- B is a pseudoflat epimorphism and M is a B-B-bimodule,
then restriction induces an bisection Der(_B,M) —s- Der(j4,M).

Proof. We have isomorphisms

using Lemma 7.2. D

Lemma 9.2. If 9 : A —s- B is a pseudoflat epimorphism and A G K®zKo(Ä) then
there is a natural homomorphism H^(A) —> H0*^'(B). Moreover the diagram

commutes.

Proof. The question of naturality is slightly delicate, since the définition of nA(j4)
depends on the choice of a lift of tr(A) to A, and for the homomorphism from
nA(j4) to He*(x)(B) one should choose compatible lifts. The map 6 induces a map
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6 : A/[A, A] -^B/[B,B], and the square

K(g)ZK0(A) °*
: K<g)

A/ [A, A] —e—^ B/[B,B]

commutes. If a is a lift to A of tr(A) we use 6(a) as a lift of 0*(A). Thus it suffices

to construct a natural map na(j4) —> Ile(a'(B). Now there is a natural map

Der(A, A <g> A) -> Der(A, B (g) B) Der(S, B <g> B)

which is in fact a homomorphism of A-A-bimodules, and it sends AA to Aß.
Combining this with the algebra map A —s- B one obtains an algebra map

TADei(A,A<g)A) -^ TB

This map sends A^ to Ab and a to 6(a). The result follows. D

Theorem 9.3. Suppose that 9 : A —> B is a pseudoflat epimorphism and that
A € K <g>z Ko(-A). If A is a quasi-free himodule-finite algebra, then so is B, and
the diagram

A > UX(A)

B > n
is a pushout in the category of rings.

Proof. We hayeB(g)ARomA4Q1A,A(g)A)(g)AB HomAe(Q1 A,B<g>B) since QlA
is a finitely generated projective A-A-bimodule. Thus the induced map

B <g)A Der(A, A <g) A) <g)A B -> Der(S, S <g) S)

is an isomorphism of _B-_B-bimodules, sending 1 <g> A^(g) 1 to Aß. Let a be a lift of
tr(A) to A. Since na(A) (TA Der(A, A <g) A))/{AA - a), the pushout of A -> S
and A ^ na (A) is isomorphic to

and this is isomorphic to IIe*(A)(_B). D

Corollary 9.4. Under the hypotheses of the theorem, the map HX(A) —s- IIe* (A) (_B)

is a pseudoflat epimorphism.
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Proof. Use [1, Proposition 5.2]. D

We shall also need one further observation.

Corollary 9.5. Under the hypotheses of the theorem, the map WX(A) —s- IIe* M (B)
preserves filtraüons, that is it sends T[x(A)<n into He*(x>(B)<n for all n. Moreover,

it induces a commutative square

One of the main examples of a pseudofiat epimorphism is given by universal
localization, see [1]. Here we consider just the special case arising from perpendicular

categories. If A is hereditary and A" is a collection of finitely presented
left A-modules, then the perpendicular category X^ is the category of modules M
with RomA(X,M) Ext1(X, M) 0 for all X G X. Considering the universal
localization of A with respect to projective presentations of the modules in X,
one obtains a pseudofiat epimorphism A —> Ax with the property that restriction
induces an equivalence between the category of left A^-modules and XL. The
theorem now implies the following.

Corollary 9.6. Suppose thai A is quasi-free and bimodule-finite and A G K <g>z

Ko(-A). If X is a collection of finitely presented, left A-modules and 9 : A —s- Ax
is the corresponding universal localization, then restriction via the natural map
induces an equivalence from the category ofUe*yx>(Ax)-modules to the category of
Hx (A)-modules whose restriction to A is in X^.

10. Module varieties

Let K be an algebraically closed field, let A be a finitely generated if-algebra and
let e% (i G /) be a complete set of orthogonal idempotents, so e^ =0 for i ^ j and
^2t et 1. If a G NJ, we write Rep(A, a) for the variety of A-module structures
on Ka 0t Ka* under which each et acts as projection onto the ith summand.
Thus Rep(j4,a) consists of all algebra maps A —> Endx(ifa) sending et to the

projection onto Ka%. Elements of Rep(A, a) are representations of A of dimension
vector a. The group GL(a) F|^GL(aj) acts naturally on this variety, and the
orbits correspond to isomorphism classes of representations. The stabilizer of a

representation X can be identified with the automorphism group of X. It follows
that the orbit of X has dimension J2t at ~ dimEnd(X).



566 W. Crawley-Boevey CMH

Lemma 10.1. If ß < a then the set of elements of Rep(A,a) such that the

corresponding représentation has a suhrepresentation of dimension vector ß, is
closed.

Proof. It is the image of a closed set under the projection Rep(A, a) x P —>

Rep(A, a), where P is the product of Grassmannians of subspaces of dimension ßt
in Ka%. Now use the fact that P is a projective variety. See [16, Lemma 3.1]. D

We write Rep(A, a)s for the GL(a)-stable subset consisting of simple A-modules.
By the lemma it is open.

Lemma 10.2. IfA is a finitely generated K-algebra of GK dimension d, then for
any a we have dimRep(j4, a)s < J2t a^ + d — 1.

Proof. Passing to the quotient of A by the intersection of the annihilators of all simple

representations of dimension vector a, we may suppose that A is a semiprime
PI ring, satisfying the identities of N x N matrices, where N ^2la%. By [11,
Theorem 13.4.4], A has only finitely many minimal prime ideals, so we may assume
that it is prime. By [11, Proposition 13.7.4] there is a central localization Ac which
is an Azumaya algebra. Now each simple A-module is either an j4c-module, or an
j4/(c)-module, so by an induction we reduce to the case when A is an Azumaya
algebra, say with centre Z.

Now there is a natural map / : Rep{A,a)s —> maxspecZ sending a simple A-
module to its central character. For, Z is finitely generated by [11, Lemma 13.9.10],
and if z\,..., zr are generators, they identify maxspecZ with a closed subset of
Kr. Now if N ]T^ then EndK{Ka) MN(K), and if 6 : A -> MN(K) is

an element of Rep(A,a)s then the map z \-^ 9(z)\\ is the central character of 9.

Thus we can define / by sending 9 to (#(21)11, • • • ,9(zr)n) G Kr.
Now each fibre of / meets only finitely many GL(a)-orbits, and each orbit has

dimension J2t °^ ~ 1- The result follows since Z has Krull dimension at most d. D

Now let Q be a quiver with vertex set / and let a G N1. Clearly Rep(KQ, a)
can be identified with the affine space

Also, by Section 3 and [5], one can identify Rep(II0(Ä'(5),a) with the fibre over 0

of the moment map

jjL : Rep(KQ,a) —> End(a)o, x \-

where End(a) HtEnd{Ka*) and End(a)0 {{0l) G End(a) | £» tr(<?0 0}.
Recall that a module M is called a brick if End(M) K.
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Lemma 10.3. The map \i is smooth at a point x € Rep(Ä"Q, a) if and only if the

corresponding module is a brick.

Proof. Identifying Rep(KQ, a) and End(a)o with their tangent spaces at x and
/x(x) respectively, /x induces the map

dfj,x : Rep(KQ,a) -> End(a)0, y ^ ^([xo,yo*] + [ya,xa*]).
a£Q

Now if D is duality with the field, there is a trace pairing which identifies the vector
spaces D(Rep(KQ,a)) Rep(KQ,a) (with arrows a and a* being interchanged),
and identifies _D(End(a)o) End(a)/K. Then D(d/j,x) is the map

End{a)/K -> Rep(KQ, a),

so if X is the n°(ifQ)-module corresponding to x, then Ker D(d/j,x) End(X)/K.
Now X is a brick if and only if D(d(j,x) is injective, so if and only if \i is smooth
at x. D

Now let Q be an extended Dynkin quiver and let ô be the minimal positive
imaginary root for Q.

Lemma 10.4. The restriction map n : Rep(H0(KQ), S) —> Rep(KQ, S) is onto,
and the fibre over a point x € Rep(KQ,S) is irreducible of dimension dimEnd(X),
where X is the KQ-module corresponding x.

Proof The fibre over x is isomorphic to the fibre c~1(0) in [5, Lemma 4.2], so it
is isomorphic to D~Ext (X,X). Now since X has dimension ö the Ringel form
implies that this has dimension dimEnd(X). D

Lemma 10.5. The variety Rep(II0(Ü'(3), S) is irreducible and Cohen-Macaulay
of dimension 1 + Y2i^> and ^e general element is a simple if1 {KQ)-module.
Moreover, if Rep(II0(Ü'(3), 5) is considered as a scheme using the natural scheme

structure on the fibre /x~1(0), then it is reduced.

Proof. Equip Rep(lfi(KQ), ö) with the scheme structure. The argument of [5,

Lemma 8.3] shows that Rep(lfi(KQ), ö) is irreducible of dimension 1 + ^2%^7
hence a complete intersection, so Cohen-Macaulay.

Supposing that the general element is not simple, it follows from the irreducibil-
ity and Lemma 10.1 that there is 0 < ß < ö such that every II0(Ä'(5)-module of
dimension ô has a subrepresentation of dimension ß. Now any ifQ-module of
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dimension ö can be considered trivially as a n0(if(3)-module, so has a submodule
of dimension ß. Similarly any KQop-modu\e of dimension S can be considered as

a n°(Ä'(5)-module, so has a submodule of dimension ß. Dualizing, this implies
that any KQ-modu\e of dimension ô has a submodule of dimension ô — ß. This is

impossible by [16, Theorem 3.4].
Now n is smooth at the general point of Rep(no(if(3),(5) by Lemma 10.3,

so Rep(n°(Ü'(3),(5) is generically smooth, hence generically reduced. With the
Cohen-Macaulay property, this implies that it is reduced. D

11. A Conze embedding

Let Q be an extended Dynkin quiver with vertex set / and let ô G 7L1 be the
minimal positive imaginary root for Q. Let K be an algebraically closed field.

Lemma 11.1. There is a pseudoflat epimorphism 9 : KQ —> Mn(K[x]) such that
the general representation of KQ of dimension S is the restriction of a Mn(K[x])-
module.

Proof. If Q is of type An, oriented as a cycle, then X should consist of n of the
n + 1 one-dimensional simple modules. If Q has no oriented cycles then X should
contain all the regular simple modules in one tube in the Auslander-Reiten quiver
of KQ, and all but one regular simple module in every other tube. Localizing at
a set which contains all but one regular simple in each tube, one obtains by [4,

Theorem 4.2] a tame hereditary algebra with two simple modules. Since the base
field is algebraically closed, this algebra is Morita equivalent to the Kronecker
algebra. Now localizing at one further regular simple module, one obtains an
algebra Morita equivalent to K [x\. D

Henceforth we suppose that 9 : KQ —> MAr(if[x]) is a pseudoflat epimorphism
such that the general representation of KQ of dimension ö is the restriction of a

Mjv(.K'[x])-inodule. If A G K®zKq(KQ) there is a corresponding element A G K1.
See Section 3.

Lemma 11.2. We have N ^2,ôt! and if P is the indecomposable protective
module for MN(K[x\), then 0*(A) J2t -^A ® [P] for X e K <g>z Kq{KQ).

Proof. The general representation of KQ of dimension S is a brick, so it must be
the restriction of a simple Mjv(.K'[x])-inodule. The result follows. D

Recall from the introduction that 9 induces a map 9\ from HX(KQ) to Mn(C„)
for some v. The previous lemma and Corollary 5.4 show that v J^ Xtôt.
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Lemma 11.3. The map 6q is mjective.

Proof. We factorize 6q as a product

U°(KQ) -I U°(KQ)/Kev(e0) ± MN(C0).

Both of these maps are ring epimorphisms, so we obtain injective morphisms

Rep(MN(C„),ö) -^ Rep(n°(KQ)/Ker(60),ö) -^ Rep(H° (KQ),Ö).

The image of the composition of these is the open set of representations whose
restriction to KQ is in XL. Now Lemma 10.5 implies that Rep(H° (KQ)/ Ker(6>0), ö)s
has dimension 1 + V 6^. Thus 11°(KQ)/ Ker(6>0) has GK dimension at least 2 by
Lemma 10.2. Now Tl (KQ) is prime of GK dimension 2 by [2], and it follows that
Ker(6>o) 0, as claimed. D

Theorem 11.4. The map 9\ is injective, the natural map H°(KQ) —> grHx(KQ)
is an isomorphism, and II* (KQ) is prime of GK dimension 2.

Proof. By Corollary 9.5 there is a commutative square

H°(KQ) —^ MN(C0)

I i
grUx(KQ) -^^ grMAKC,).

The associated graded algebra for the first Weyl algebra is the polynomial ring
in two variables, so the map Mn(Cq) —> grMAr(CJ/) is an isomorphism. Now the

map H°(KQ) —> gr HX(KQ) is surjective, so the fact that 6q is injective implies
that iß(KQ) —> grHx(KQ) is an isomorphism and gré^ is injective. It follows
that 9\ is injective. Finally, HX(KQ) is prime of GK dimension 2 by [2]. D

Lemma 11.5. The ring HX(KQ) has Goldie rank at least N.

Proof. Let M be the restriction to HX(KQ) of the simple module for its quotient
ring. Letting E End(M)op we consider M as a IIA(Ä'(5)-i?-bimodule. One can
consider M as a representation of the quiver Q by right E-vector spaces and E-
linear maps, satisfying the usual relations for the deformed preprojective algebra.
Now these vector spaces are finite dimensional over E, and lead to a dimension
vector a G NJ, and the Goldie rank of HX(KQ) is J2t «*•

If i is a loop free vertex and Xt ^= 0 then the reflection functor of [5, Theorem
5.1] evidently defines an equivalence from the category of Hx(KQ)-E-bimodu\es to
the category of IIA (KQ)-E-bhnodules, for some A', which acts as st on dimension
vectors.
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By applying a sequence of reflection functors to M we pass to a IIA (KQ)-E-
bimodule M' of dimension vector a' (for a new A'), and we choose the sequence
to ensure that a' is minimal. This implies that for any vertex i, either A' 0 or
(a',e,) <0.

If i is a vertex with A' 0, the 1-dimensional simple module St at vertex i has

projective resolution

a:i—>j in Q

Now M is an injective module over HX(KQ), so M' is injective over IIA (KQ), so

applying dim^Hom( —, M') we deduce that (a',et) 0.

Thus a' is in the fundamental region for Q, so is a multiple of the vector S.

Now ô is unchanged by the reflections st, so a must have been a multiple of S.

The result follows. D

Let D„ be the quotient division algebra for Cl

Theorem 11.6. The map 9\ induces an isomorphism from the simple artinian
quotient ring ofUx(KQ) to MN(D„).

Proof. First observe that if k < N and D and E are division rings, then there
can be no homomorphism Mjy(E) —> Mk(D), for if S is the module obtained by
inducing the simple Mjv(i?)-module up to Mk(D), then SN Mk(D) is semisimple
of length k.

By [11, Proposition 3.1.16], the quotient ring of HX(KQ) embeds in Mfc(A,)
for some k < N. By the discussion above we must have k N, and inspecting
the proof of the cited result we see that Mn(D„) is simple as a Hx(KQ)-Mn(Du)-
bimodule, and then that it is torsion free over HX(KQ). This means that 9\ does

induce a map from the quotient ring of HX(KQ) to Mn(D„). Moreover this map
is an isomorphism since it is a ring epimorphism. D

We now apply this to Kleinian singularities. Let K be an algebraically closed
field of characteristic zero, and let F be a finite subgroup of SL^iK). Let Q be

an orientation of the McKay quiver of F. Recall that there is an isomorphism
Ox eonx(KQ)eo, where A G Z(KT) is identified with A G K1 by letting
Xt be the trace of A on the ith irreducible representation of F, and hence with
A G K®z~Ko(KQ).

Corollary 11.7. There is an embedding ip\ : Ox —> Cv where v is the trace of
A on the regular representation of F. Moreover ip\ induces an isomorphism on
quotient division rings.

Proof. It suffices to observe that if e is an idempotent in a prime Goldie ring R
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with simple artinian quotient ring Q(R), then eRe is prime Goldie with quotient
ring eQ(R)e. D

Appendix

In this appendix we use the methods of the paper to prove the normality of a
certain variety. This result is used in the article [9] by M. P. Holland. If K is

an algebraically closed field and Q is an extended Dynkin quiver with minimal
imaginary root ö, then the variety Kep(H0(KQ),ö) need not be normal (see
below). Here we prove the normality of the open subvariety Kep(H0(KQ),ö)ss of
semistable n°(Ä'(5)-modules, where the semistable modules are defined as follows.
If M is a KQ- or a n°(A'(5)-module of dimension vector a, then its defect is

defined by the formula d(M) (ö,a). One says that M is semistable if d(M) 0

and d(N) < 0 for all submodules N Ç M. It is well known that the semistable

ifQ-modules are exactly the regular modules.

Lemma 12.1. A H (KQ)-module is semistable if and only if it is semistable as

a KQ-module.

Proof. Certainly if M is semistable as a KQ-module then it is as a II0(A'(5)-module,
for any n°(Ä'(5)-submodule N is also a ifQ-submodule, so d(N) < 0.

Now suppose that M is semistable as a II0(A'(5)-module. To show that it is

semistable over KQ, it suffices to show that all indecomposable ifQ-submodules of
M are preprojective or regular. For a contradiction, let N be an indecomposable
preinjective submodule. Now by Theorem 2.3,

U°(KQ) ®KQ N N(& t~N 0 t~2(N) e
and since N is preinjective this sum terminates, so it is a finite-dimensional
preinjective KQ-module. Now the n°(Ä'(5)-submodule N of M generated by N is

a quotient of this sum, so it is preinjective as a KQ-modu\e. Thus d(N) > 0,

contrary to the assumption. D

Lemma 12.2. IfQ is an extended Dynkin quiver then any semistable KQ-module
M of dimension S can be extended, to a if1 (KQ)-module which is a brick.

Proof. Certainly this is true if Q has type An, so that öt 1 for all vertices i. One
considers the KQ-modu\e M as a representation of Q in which the vector space
at each vertex is 1-dimensional. Now one extends this to a representation of Q

by letting a* be a non-zero map if and only if a is zero. Clearly this defines a
n°(Ä'(5)-module, and it is easy to see that it is a brick.

To deal with other quivers, we first formulate the assertion in a Morita-invariant
way, and then we use universal localization to reduce to type An.
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Observe that a KQ-modu\e M is semistable of dimension S if and only if it
is regular, and its regular composition factors are exactly the regular simples for
some tube in the Auslander-Reiten quiver of KQ, each with multiplicity one. For
simplicity we call this property (*).

In view of the Morita equivalence property for II0(A), the lemma may be
formulated as the following claim: if A is a tame hereditary algebra and M is an
A-module with property (*), then M can be extended to a n°(j4)-module which
is a brick. We prove this claim by induction on the number of simple modules for
A. Let M be a module with property (*).

If there are no inhomogeneous tubes in the Auslander-Reiten quiver for A,
except possibly the one containing M, then A is of type An, and we have checked
the claim at the start of the proof.

If there is such an inhomogeneous tube, choose a regular simple module X
contained in this tube, and let A —s- B be the corresponding universal localization.
Then B is a tame hereditary algebra with one fewer simple module than A by
[4, Theorem 4.2]. Now M is in the perpendicular category to X, so it is the
restriction of a _B-module M1, and clearly M' has property (*). By induction
M' can be extended to a II (S)-module M" which is a brick, and then since
U°(A) —> U°(B) is a ring epimorphism, the restriction of M" to U°(A) is a brick.
The claim follows. D

Theorem 12.3. If Q is an extended Dynkm quiver then Rep(Jl°(KQ), ö)ss is a

normal variety.

Proof. It is Cohen-Macaulay by Lemma 10.5, so it suffices to prove that its singular
locus S has dimension at most — 1 + J2t <?• Consider the projection

7T : Rep(n°{KQ),6)ss -+ Rep(KQ,S)ss.

Now the general element r of Rep(KQ,S)ss is a brick, so every element x of the
fibre 7r~1(r) is a brick. Thus by Lemma 10.3 the map \i is smooth at x, so
Rep(H0 (KQ), ö)ss is smooth at x. Besides the bricks, there are only finitely many
GL((5)-orbits of non-bricks in Rep(KQ, S)ss. If Ox is one of these orbits, then

diimr^iOx) dimEnd(X) + dimOx dimGL((5)

Now the general element of 7r~1(öx) is a brick by the previous lemma, and so

-K {Ox) H S has dimension at most — 1 + J^ öf, as required. D

Finally we justify our claim that Rep(Jl°(KQ), ö) need not be normal. By Lemma

10.5 the natural scheme structure on Rep(Jl°(KQ),ö) is reduced, and hence
in the notation of Section 10, the tangent space at a point x G Rep(Jl°(KQ),ö)
can be identified with Ker(dfj,x). It follows that Rep(Jl°(KQ),ö) is smooth at x if
and only if x is a brick.
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Now Rmgel [12] has pointed out that if Q is extended Dynkm, not of type
An, then there is a KQ-modu\e X of dimension S which is not the restriction of
any brick for H°(KQ) For example, let / be an indecomposable mjective KQ-
inodule of defect > 2, say of dimension vector a Then ô — a is a positive root,
so is the dimension vector of an indecomposable P, necessarily preprojective Let
X P © / The condition on defect implies that Hom(X, /) has dimension at
least 2, so Hom(P,/) ^ 0, and hence X has a non-zero endomorphism </> which
kills / and has image contained in / By Lemmas 1 4 and 2 2, a n0(if(3)-inodule
structure on X is determined by a map t~X —s- X Now since t~I 0 and
Hom(T~P, P) 0, it is easy to see that </> is a n0(if(3)-endoinorphisin

Now the inverse image of the GL(J)-orbit of X under the projection

Rep(U°(KQ),ö) -> Rep(KQ,ö)

has codimension 1 by the argument of Theorem 12 3 Since all points of the inverse
image are singular, Kep(Jl°(KQ), ö) cannot be normal
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