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A Lagrangian camel

David Théret

Abstract. We prove the Lagrangian analogue of the symplectic camel theorem there are compact

Lagrangian submamfolds of R2n that cannot be moved through a small hole by a global
Hamiltoman isotopy with compact support
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1. Introduction

In [19], Claude Viterbo constructed a symplectic capacity cgf(V) for V an open
set of R2n, and used it to prove several interesting results m symplectic geometry,

including the following Symplectic Camel Theorem Here the subscript "gf"
stands for "generating functions", because this is the tool used to define cgf(V),
we summarize m Appendix A the definition and basic properties of this symplectic
capacity

Let us recall what the Symplectic Camel Theorem states We consider the

space Cn R2n Rn x Rn, endowed with the coordinates

z x + iy (x,y) (xi, ,xn,yi, ,yn)

with the standard symplectic form

n
Q Q»2n — dXV2n dx A dy > dxq A dyq

and with the Euclidean scalar product and norm

Let us define R2^ {z £ R2n,yn > 0} and R2n {z £ R2n,y„ < 0}, and, for

r] > 0, the holed hyperplane T,v {z £ R2n, yn 0 and ||z|| > rj}
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The Camel Theorem says that if n > 2 and V is a (bounded) open set with
V C R2™ and cgf(V) > 71772, then it is impossible to find a Hamiltonian isotopy
($t)te[O,l] of R2n with compact support in R2n - £,,, such that $i(V) C R2^.

Remark 1.1. In [8], Y. Eliashberg and M. Gromov showed, using pseudo-holo-
morphic curves, that this is impossible if V is a Euclidean ball of radius r > r\ (see

also [11, 12]). As the gf-capacity of a ball of radius r is 7rr2, Viterbo's theorem is

more general.

When trying to study the flux of Lagrangian isotopies, the Lagrangian Camel
problem comes as a natural question. Instead of looking at an open set V C R2n,

we consider a closed Lagrangian embedding j : L ^-s- R2n. We are primarily
interested in the quantity cgf(L,j) that we define now.

Definition 1.2. The gf-capactty cgf(L,j) of the embedding is the infimum of all
V being any open neighborhood of j{L) in R2n.

Since j(L) has empty interior and does not even bound an open set, we could
expect its capacity to vanish. However, we will prove the following result, where

w(L,j) is defined as follows, following Viterbo.
A theorem of Weinstein [20] says that the embedding j can be extended to

a symplectic embedding J : U —> R2n, where U is a neighborhood of L in T*L.
We will call (U, J) a Weinstein neighborhood of the embedding j. Let /x be a
closed 1-form on L, representing the Maslov class jj(j) of the embedding. Then
the (negative) \i-width of U is defined as ||E/||M sup{s > 0; —sjj(L) C C/}. The
number ||E/||M depends of course on the representative /x chosen for the Maslov
class n{j): the "smaller" the form /x, the greater the /x-width of [/.

Definition 1.3. Let w(L,j) denote the supremum of all possible ||E/||M, where U
is a Weinstein neighborhood and /x represents the Maslov class of the embedding.

The basic result of this paper is the following.

Theorem 1.4. We suppose n > 2.
1. If j : Tn ^^ R «s a Lagrangian embedding, then the gf-capacity of j(Tn)

satisfies

cgî(Tn,j)>2w(Tn,j)>0.

2. If j : L <—* R is a Lagrangian embedding and L admits a Riemannian metric
with strictly negative sectional curvature (for instance all non-orientable
surfaces L with x(L) strictly negative and divisible by 4-' see [9] and also [2]),
then

cKÎ(L,j)>(n-l)w(L,j)>0.
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More generally, if [L\,j\), ,(Lm,jm) are m Lagrangian emheddmgs of this
type and (L,j) is the product embedding, then

cgf(£;i) >{n- m)w(L,j) > 0.

Remark 1.5. In particular, if L S(r\) x • • • x S(rn) is a split torus in Cn
C x • • • x C, each S(rk) being a Euclidean circle of radius r^, then

cgf(L) 7rmin(r2,...,r2).

Indeed, using polar coordinates in each factor C, it is easy to construct a Weinstein

neighborhood whose width is precisely 7rr2 tt min(r2,..., r2). On the other
hand, the capacity of such a split torus is clearly less than that of the cylinder
B2(0,r) x R2"-2, which is again 7rr2.

Corollary 1.6. (Lagrangian Camel Theorem). Let j : L ^-s- R2™ he one
of the above emheddmgs. Then for 0 < r/ < c(L,j) it is impossible to find a

Hamiltonian isotopy (<&t)te\0 1] of M with compact support in R — ~Sv, such

that$i(j{L)) CR2^.

Indeed, any isotopy moving j{L) into R2^ will also move a neighborhood of

j{L) from R2" into R^™, which is impossible by the Symplectic Camel Theorem.

Remark 1.7. There are several results like Theorem 1.4 that are already proved,
see for instance Viterbo [18] and Polterovich [13]. The problem is that, to our
knowledge, there is no corresponding symplectic camel theorem that can be
applied to the capacities they use. So the alternative was either to prove the
corresponding symplectic camel theorem, or to establish Theorem 1.4. Because of our
greater familiarity with generating functions, we chose the second option.
Basically, we will follow the arguments developed in [17, 18] and adapt them to the
theory of generating functions, but the reader will notice some slight restrictions
in comparison to these references. The reason for this is that we could not use the
natural S -invariance of the action functional: generating functions are a kind of
discretization of this functional, and it is still unclear whether one can recover this
natural action or not.

Let us now briefly explain the relation between the camel problem and the
mean property of the flux of Lagrangian isotopies.

Most generally, let (M, lu) be a symplectic manifold. Any symplectic isotopy
(^t)tefO 1] determines a closed 1-form a on M, whose cohomology class is the

flux of the isotopy, see [3] (the easiest way to define a is to say that its integral
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over a smooth loop in M is the symplectic area swept out by this loop under the
isotopy). This cohomology class [a] depends only on the homotopy class of the
isotopy (</>t)te[o i] with endpoints fixed. Two basic and very important properties
are: (i) an isotopy {4>t)te\O 1] is Hamiltonian if and only if the flux of (</>t)te[oTi
vanishes for each t g [0,1], and (ii) the flux of an isotopy vanishes if and only
if it is homotopic (with endpoints fixed) to a Hamiltonian isotopy (for this last
statement, we assume either that M is compact or that the isotopy is compactly
supported).

Let us now turn to the Lagrangian case. Similarly, let (jt)te[O 1] ^e a Lagrangian
isotopy of a closed manifold L into M, that is jt : L ^ M is a smooth family
of Lagrangian embeddings. We can define in the same way a closed 1-form on L,
whose cohomology class is (by définition) the flux of the isotopy. We ask whether
this flux has the following mean property, as in the case of symplectic isotopies:

Given a Lagrangian isotopy (jt)te\O 1] mth vanishing flux, is it homotopic,
with endpoints fixed, to a Lagrangian isotopy (&t)te[o i] such that the flux of each

(^t)tefO t] vamshes for t € [0,1]

It is immediate to see that such an isotopy (&t)tero i] would in fact be induced by
a global Hamiltonian isotopy. We now show that our Lagrangian Camel Theorem
gives an example (in a non-compact symplectic manifold) where this property does

not hold.
Indeed, let M R2n — £,, with the symplectic structure induced from that

of R2n, and j : L <-^ R2n C M be as in Theorem 1.4. Using the presence (in
R2n) of a contracting Liouville vector field, we can isotop L to an arbitrarily small
Lagrangian L' (but this cannot be done by a global Hamiltonian isotopy); then
we move V to L" C R2^" C M through the hole of £,, (by a Hamiltonian isotopy),
we expand L" to L'" in such a way that L"' is just the translate (in R2n) of
L. It is easy to see that this Lagrangian isotopy from L to L'" has zero flux.
Now, if it were homotopic (with endpoints fixed) to a Lagrangian isotopy with
flux vanishing at every intermediate time, this last isotopy would be induced by a

global Hamiltonian isotopy of R2n — £,, that could be assumed to have compact
support (remember that L is compact), thus contradicting the Lagrangian Camel
theorem.

Remark 1.8. While working on this subject, we discovered that Y. Chekanov [5]

found a more surprising counterexample to the mean property for the flux of
Lagrangian isotopies: it happens in R2n that some Lagrangian submanifolds can
be connected by Lagrangian isotopies with zero flux, but not through Hamiltonian
isotopies.

This work was partly done during a post-doctoral year at the Université du
Québec à Montréal (Canada). It is a great pleasure for me to thank Francois
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Lalonde for his hospitality and for many explanations on the flux homomorphism
I am also very grateful to Claude Viterbo, who helped me understand his earlier
papers [17, 18]

2. A Hamiltonian system in T*L

Let j L ^-s- R2n be a Lagrangian embedding, L being a closed n-manifold Here
T*L is endowed with (local) cotangent coordinates (q,p) and with the symplectic
form lul dq A dp Let V J{U) it is a bounded open set in R2n with finite
gf-capacity cgf(V), see Appendix A Here (V, J) is a Weinstein neighborhood of j

We consider a fixed Riemanman metric on L It induces a bundle isomorphism
TL T*L and a metric on the vector bundle T*L If v G TqL and p G T*L are

corresponding elements for that isomorphism, we write v pb and p u" In
particular, ||w||q ||u"||q

Let p > 0 be small enough so that _Bp {(q,p) G T*L, ||p||q < p\ is contained
in U We consider a smooth function h [0,+oo] -^ R^ such that
1 h= -aon [0,e/2]
2 h is increasing, strictly convex on [e/2,e]
3 h! c on [e, p — e]

4 h is increasing, strictly concave on [/> — e,p — e/2]
5 /lEOon [p-e/2,+oo]
where e > 0 is very small with respect to p, c > 0 is not the length of a closed
geodesic of L, and a > cgf(V) See Figure 1

Then we define a compactly supported Hamiltonian function H T*L —s- R by

fffep) h(\\p\\) (1)

Let </> (4>t)te[O 1]
t>e the Hamiltonian isotopy oîT*L it generates it is obtained by

integrating the Hamiltonian vector field X associated to H, defined by ix^h dH
The isotopy </> is easily proved to be a reparametrization of the cogeodesic flow

Indeed, let K T*L —s- R be the standard Hamiltonian

r2 llnll2
K{q,p) y ^f~ (2)

It generates the cogeodesic flow, denoted by (gt)teR if 2 (<?,£>) is a point in T*L
and v pb G Tqi, then there is on L a unique geodesic (çt)teK such that qo q

and go vj an(i we have gt{z) (qt, (^t)")
Since H{q,p) h{\\p\\), we can write i/(z) aoK(z), with

(3)

Hence Xh{z) c{z)Xk{z), where

(4)
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Figure 1

Graph of h

Consequently, since H and K are constant along both gt- and </>t-orbits, we have

Uz) gc{z)t{z) (5)

îe the isotopy </> is a reparametrization of the cogeodesic flow
Let z (q, p) G Bp be a fixed point of </>i Then, according to (5), the projection

on L of its </>-orbit is a closed geodesic 7 with length ^(7) c(z)||p|| /i'(||p||)
Let us consider the symplectic vector bundle E UteSiEt over S*1 (seen as

[0,1] with endpomts identified), where the fiber

Et TZT*L x TMz)T*L t e [0, l]

is endowed with the symplectic form (-
Lagrangian subbundle V UteSiVt, namely

©

(6)

It has a canonical

(7)

where Vert(2) is the vertical subspace at z G T*L of the bundle T*L —s- L The
graphs of the differentials d<f>t(z) TZT*L —s- T^t^T*L define a continuous path
F [0,1] -^- A(E) of Lagrangian subspaces Ft C Et We may therefore consider
the Maslov-Duistermaat index

mdy(T)
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as defined in Appendix B.2.
In this setting, J. J. Duistermaat [7] has proved the following result for convex

Hamiltonians:

Proposition 2.1. Let z (q,p) G T*L be a fixed point of 4>\, and 7 be the

underlying geodesic on L. Then, 2(7) denoting the Morse index of 7 as a closed

geodesic, we have

md,p(z) 2(7) +n if h is strictly convex at \\p\\
(8)

«(7) + n — 1 if h is strictly concave at \\p\\

We will deduce the formula in the concave case from that in the convex case.
The idea is the following. We can express E as the sum E' © E" of two symplectic
subbundles, and we also have Lagrangian splittings V V © V", T V © F".
Thus ind0(z) indy/fT') + indy»(r"). We will see that indy»(r") does not
depend on the convexity/concavity of h, and for the other term indy/fT') we will
have explicit simple formulas enabling us to conclude. To do so, we will need a few
facts about the (co)geodesic flow (gt)teK, that we recall now (see [10] for details).

If the cotangent bundle is endowed with the Levi-Civita connection corresponding

to the metric, then we have a splitting

TZ(T*L) Hor(z) © Vert(z) (z G T*L) (9)

into horizontal and vertical subbundles. Given z (q,p) G T*L, both Hor(z) and
Vert(z) are canonically isomorphic to TqL, hence they carry a well-defined scalar
product. In that setting, the symplectic form u>l has the expression:

ujl{z){5z,5z')= <5hz,5vz' >q - <5hz',5vz>q (10)

where Sh and Sv denote the horizontal and vertical parts of a vector, identified
to their images in TqL. In particular, (9) is a Lagrangian splitting. We also note
that the Hamiltonian vector field associated with K(q,p) 1/2 ||p||2 has the form
XK(q,p) (p,0).

Let 7 (jt)te[0T] t"e a geodesic on L, and z 70" G T*L. Then the Ja-

cobi vector fields (Yt)(eiqti along 7 are in one-to-one correspondence with the

(/-invariant vector fields {Zt)te\0T} al°ng the orbit of z. This correspondence is

given by Yt \-^ Zt (Yt,VYt), using the splitting (9).
Since Hor(z) and Vert(2) are isomorphic to TqL T*L (Rp) © pL, we

have associated splittings Hor(z) Hor'(z) © Hor"(z) and Vert(z) Vert'(z) ©
Vert"(z), and then TZT*L T'ZT*L © T'JT*L7 where T'ZT*L Hor'(z) © Vert'(z)
is 2-dimensional and T'JT*L Hor"(z) © Vert"(z) is (2n - 2)-dimensional. Now
TT*L T'T*L®T"T*L is a splitting into symplectic orthogonal subbundles, and
the (co)geodesic flow preserves that decomposition.
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The subbundle T'T*L is obviously trivial Given z G T*L and t G R, dgt(z)
induces an isomorphism TZT*L —s- T' ,->T*L whose matrix in the obvious bases is

This comes from the fact that the Jacobi field (Yt)te[o t] along a geodesic

7 (lt)te[O t] such that Yq «70 and Vlb ßlO is given by Yt (a + ßt)jt

Proof of Proposition 2 1 Differentiating (5), we obtain

d4t{z) Sz dgc{z)t{z) Sz + t[dc(z)Sz]XK(4>t(z)) (11)

It follows that the flow (4>t)teK also preserves the decomposition TT*L T'T*L®
T"T*L Indeed, if Sz G T'Z'T*L then dc(z)Sz 0, hence d(f>t(z)Sz dgtc^{z)5z—
in particular, d(pt(z)ôz does not depend on the concavity/convexity of h at ||p||

Thus E E' © £7" splits into two symplectic vector subbundles, and both
V V © V" and F F' © F" split into Lagrangian subbundles of E' and E"
respectively Hence mdy(F) mdy/(F/) + mdy//(F") by additivity of the Maslov-
Duistermaat index under direct sums We have just seen that mdy//(F") does

not depend on the concavity/convexity of h at ||p||, so it only remains to see how
mdy/(F/) depends on it

lîôz (öhz,övz) (a,ß) G T'ZT*L Hor'(z)® Vert'(z) R2, then a straightforward

computation shows that d(pt(z)ôz (a + tßh"(r),ß) We thus see that
the matrix of the induced isomorphism from T'zT*L to T' sT*L is

1 th"(r)
0 1

We have E' I2 x R2, V ^ (0 x R) x (0 x R) and Ft is the graph of the
linear symplectoinorphisin At of R2 whose matrix is (12) To compute mdy/(F/)
according to Appendix B, we choose the Lagrangian subspace a (R x 0) x
(0 x R) C R2 x R2 we have a n Ft 0 for all t G [0,1] Hence the Maslov-
Duistermaat index of F is given by ind(F) ind Q(Fi, a, Fo) It is easy to see from
the definitions that the index of Q(Ti,a, Fo) is also the Comdex of Q(To,a, T\),
that we now evaluate

Let us consider the linear map C Fo —? a such that u + Cu G Fi for all
u G Fo A We write

u (mi, M2) w1j u<2) & A

Cu=(t)i,0,0,«2)ea (13)

u + Cu (wi,W2,wi + h"(r)w2,u>2) G Fi
since d(pi(z)(wi,W2) {w\ +h"(r)w2,W2)

Then, by definition, see (28)

/i"(r)(M2)2 (14)



Vol. 74 (1999) A Lagrangian camel 599

Since coindQ is the number of strictly positive eigenvalues of Q, we see that
incV(r') 1 if h"{r) > 0, and indy (L7) 0 if h"(r) < 0. Consequently,

which finishes the proof of Proposition 2.1.

3. The Hamiltonian system viewed from R2n

We define the compactly supported Hamiltonian H : R2n —s- R and its associated
Hamiltonian isotopy (3>t)te[o i] in the obvious way:

H ffoJ-1 on V
H 0 on R2n - V

We will apply Viterbo's theory of symplectic capacities, as summarized in
Appendix A. According to Theorem A.4, we have c_(H) 0 (since H < 0) and

c+(H) > 0 (since $i is not the identity map). Thus $i has a fixed point z z+
such that 0 < Aj^(z) c_|_(H) < cgf(V). This implies z £ V, since Ajj 0 outside
V. Similarly, Ajj a on the set {H —a}, which is ruled out by the hypothesis
a > Cgf(V). Consequently, we may define (q,p) J~^{z): this is a fixed point of
4>l satisfying ||p|| é\e/2,p — e/2[. But, as we have seen, /i'(||p||) is now the length
of a closed geodesic on L, so by assumption we cannot have /i'(||p||) c. We have
thus proved the following result, that will allow us to apply Proposition 2.1.

Lemma 3.1. If a is strictly greater than cgf(V) and c is distinct from the length
of any closed, geodesic on L, then (pi has a fixed, point z (q,p) such that h is

strictly convex or strictly concave at \\p\\.

In the setting of Appendix A, let Si : R2n x Rfc —s- R be a generating function
for $i such that Si(w,£) Qoo(0 outside a compact set of R2n x Rfc, where Qoo
is a non-degenerate quadratic form on Rfc.

Definition 3.2. Let z G R2n be a fixed point of $i, and (z,£) be the corresponding

critical point of Si. From Viterbo's uniqueness theorem [19, 15], it follows that
the integer indd26*1(2:,^) — indQoo does not depend on Si, but only on $1. We
call it the gf-index of z, denoted by indgf(z). The nullity of z, denoted by v{z),
will be the dimension of Keï[d^i{z) - Id) Ker(d(f>i(z) - Id)

Note that if z is as in Lemma 3.1 and 7 is the corresponding closed geodesic
on L, then the (equivariany) nullity of 7 is 1/(7) v{z) — 1.

Proposition 3.3. The fixed, point z of Lemma 3.1 can he chosen so that

2n — v(z) < 'mdaf(z) < 2n
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Proof. We know from Appendix A that c c^{H) S\{z,Ç) is a critical value
of Si obtained by minimax, so that H2n+[nd(3~> (S^, S^*1) ^ 0 for r\ > 0 small
enough. But the set of critical points of Si at the level c is a non-degenerate
critical manifold, so that, by standard Morse theory, there must be on the level
c a critical point (z,£) such that indd2Si(z,£) <2n + indQoo < indd2Si(z,£) +
dimKerd2Si(z,£)]. It follows from the very définition of generating functions that
Kerd2Si(z,£) is isomorphic to Kei(d§i(z) — Id), so that its dimension is v{z).\3

Next, we relate the Maslov class n(j) of the embedding j with the two indices
defined above.

Proposition 3.4. Let z be a fixed, point of <f>\ as in Lemma 3.1, and 7 he the

corresponding closed geodesic on L. Then

indgf(z) ind0(z) + (n(j),j)

Proof. To relate the Maslov-Duistermaat index and the gf-index, we define still
another Lagrangian subbundle C L)teSiCt of the symplectic vector bundle E -
see (6) - this time connected to the embedding J: we consider a fixed Lagrangian
subspace in R2n, say Rn x 0, and then define

Ct d.J{z)-l{Wn x 0) x dJ(4>t(z)y1(Rn x 0)

Recall that Tt C Et is the graph of d(pt(z); now, if T't is the graph of d$t(z) in
R2n xR2n, then it follows from the définition of the Maslov-Duistermaat index that
indc(r) ind(r'). Since d<&o(z) Id, it follows from Propositions B.7 and B.8
that ind(r') indgf(z). Then, according to (32), we have indgf(z) indofT)
indy(T) + mdc(V). But it is clear that indc(V") (fj,(j),j). D

Corollary 3.5. To the Hamiltonian H of (1) there corresponds a real number
c(H) G ]0,Cgf(V)]. A fixed, point z (q,p) of the associated Hamiltonian isotopy
can be chosen so that, 7 denoting the projected, closed, geodesic on L,

c(H) \\p\\ti(\\p\\)-h(\\p\\)+<fj*\^ (16)

and,

7j € [n — i("f) — j/(z),n — i("f)] in the convex case

7) € [n — i("f) — v{z) + l,n — «(7) + 1] in the concave case

Proof. Formula (16) is just a reformulation of the relation c(H) c(H) A^{z)
§t^>$ (z) tefo 1] ^R2rl ~ ttdt Along the $-orbit of z, the Hamiltonian H is constant:

H(*t(*)) h(\\p\\). And §t^t{z)M0M AR2„ - if j*AR2„ §t^Mz)M0M AL

Finally, (17) follows from Propositions 2.1, 3.3 and 3.4. D
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4. A limit process

The functions h and H that we considered so far depend on p, c and e Now we
fix the numbers p and c, and we consider e as a parameter converging to 0 Hence

we have a family of functions h£ and Hamiltomans H£
The limit of c(He) as e —> 0 does exist this is because e < e' implies H£ < H£/

by construction, and then c(H£>) < c(He) by Theorem A 4, as c(H) is bounded
from above by cgf(V), we conclude Let us write

K(p,c)=hmc(H£)

Now let em be a real sequence converging to 0 For each m, we find a closed
geodesic 7m, a real number rm G ]em/2,em[U]p - em,p - em/2[ such that

c{H£m) rmh'(rm) - h(rm)

We may suppose that we are in one of two cases rm G ]em/2, em[ for all m (convex
case), or rm G ]p — £m,P — em/2[ for all m (concave case)

In both cases, we have £(jm) h'(rm) < c Due to the compactness of the set

of closed geodesies of length bounded by c, we may suppose that 7m converges to
a closed geodesic 7

Corollary 4.1. The number K{p,c) G ]0,cgf(V)] satisfies

{pc+
S 7*An2n in the convex case
7

r (18)
P^ki) "I" § J*^M.2n %n the concave case

for a closed, geodesic 7 on L satisfying (17)

5. Proof of Theorem 1.4

Let J U ^-s- R2n be a Weinstein neighborhood of the embedding j, and \i be a
closed 1-forin on L, representing the Maslov class \i{j) G H^(L, R) We will also
denote by a the Liouville class of the embedding «7(7) § j*AR2n

Following [18], we define a continuous family of Lagrangian embeddmgs Let
p > 0 be small enough so that Bp C U, and define

\\U\\ß p sup{s > 0 -sp{L) +BPCU}
For s G [0, \\U\\n p], we consider the symplectic transformation

Ts T*L -+ T*L
(q,p) h^ (q,p)
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and then the Lagrangian embedding

Js=Jo(Ts)\L L^R2" (19)

that can be extended to Js Bp <-^ R2n

Applying Corollary 4 1 for each parameter s, we obtain a map s G [0, || £/||M p] i—>

Ks(p, c) G ]0, Cgf(y)] Because of property 6 m Theorem A 4, it is continuous
Furthermore, for each such s, there exists on L a closed geodesic 7S with length

Kls) — c' such that

p£(-fs) +cr(7s) - s/x(7s) m the concave case
(20)

pc + <r(7s) — s/i(7s) m the convex case

(this is because J7j*XV2n - §7j*XV2n -s(m0),7s))

5.1. The negative curvature case

If L admits a metric with strictly negative sectional curvature, then 2(7) 0 and
2/(7) 0 for any closed geodesic Hence v{z) 1 for our fixed point, and

G [n — l,n] m the convex case

G [n,n+ 1] m the concave case

Since n > 2, we obtain ^(7) > n — 1 > 0 m any case Again, the set of closed

geodesies of length bounded by c being compact, the quantities l{^js) and <r(7s)
that appear m (20) can take only a finite number of values This implies that,
when s grows from 0 to || t^||a* <o' the point (s, ifs(/0,c)) moves on a finite set of
straight lines of R2, with slopes < — (n — 1) Accordingly, we must have

0<Ks(p,c) <K0(p,c)-(n-l)s VsG [0

In particular,
K(p,c)=K0(p,c)>(n-l)\\U\\lip

and then, since \\U\\ß p —s- \\U\\ß as p —s- 0,

K(j) km Inn K(p,c) > (n - 1)||£/||M (21)

We are now ready to finish the proof of Theorem 14m this case We may
obviously assume that V J{U), where U and J are as before Now (21) shows

that, for any S > 0 arbitrarily small, we can find p > 0 and c > 0 such that
J(BP) C V and K(p,c) > (n-1)||C/||M - J This means that, for all ö > 0, there is
a Hamiltoman H with compact support m V, such that c(H) > (n — 1)||C/||M — 25

Hence
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by the very definition of cgf(V)
If L L\ x x Lm is the product of to manifolds, each having a metric

with strictly negative curvature, then 2(7) 0 and 1/(7) to — 1 for any closed
geodesic Hence

G [n — m, n] in the convex case

G [n — to + 1, n + 1] in the concave case

Since to < n and n > 4, we may proceed as above, whence

cgf0O>(n-TO)||£/||M

5.2. The torus case

The torus case is handled with m the same spirit, with some slight complications
With the flat (product) metric, the closed geodesies of Tn satisfy 2(7) 0 and
2/(7) n — 1, hence v(z) n for our fixed points We thus get the estimates

G [0,n] m the convex case

G [1, n + 1] m the concave case

and the arguments used for the negative curvature case fail because ^(7) 0 is

now possible

Remark 5.1. Since the torus is orientable, the Maslov index of any loop will be

even Hence ^(7) > 2 m the concave case

First, we will study how K{p,c) grows with c, p being fixed throughout the
entire discussion

Let C' be the set of those c > 0 such that K{p, c) can only be realized as

K(p, c) pc + a(j), with /x(7) > 0 It is an open set (its complement is easily seen

to be closed) Similarly, the set C" of those c > 0 such that K(p, c) can only be
realized as K(p, c) p£(j) + «7(7), with ^(7) > 2 (remember that ^(7) is even)is
open

The complement C'" of C' U C" consists of isolated, points this is because for
such a c > 0, K{p, c) can be expressed m both ways

K(p, c) pc + a(7i) ^(72) + a(72)

where ^(71) and ^(72) are bounded by c, and there is only a finite number of such

possibilities
On each connected component of C', we have K{p, c) pc + constant On each

connected component of C", we have K{p, c) constant Thus, the total measure
of C' is not greater than cgf(V)/p
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K

Figure 2

Graph of c i—> K(p, c)

Hence the graph of cm K(p, c) looks like Figure 2

Next, we study the dependence of cm Ks(p,cj with respect to the parameter
s, with obvious notations

Note that when we move s, we change the "breakpoints" where c i—> Ks(p,cj
might have a discontinuous derivative However, they can be followed continuously
a point cs G C'J' can be written as cq + s(/x(7i) — ^(72)) for some cq g Cq" and 71,
72 closed geodesies of length < c

For the same reason as before, if c G C'SQ, then c G C's for s close enough to so,
and similarly for C"

If \c\, C2 [ is a component of C"Q, then for s close enough to so we have continuous
functions c\(s) and C2(s) such that c\(sq) c\, C2(so) C2, and ]ci(s), C2(s)[ is a

component of C'J A similar statement holds for the components of C's Thus, we

can follow their components, although "flat" ones may disappear as in Figure 3

It follows easily that on any component of C's UC'J, the numbers Ks(p, c) can be
realized by geodesies of the same Maslov index (see equation (20)) In particular,
a "flat" component, as long as it does not disappear, goes down with s at a speed
greater or equal to 2

We do not conclude that there exists some c > 0 such that Ks{p, c) < Kq(p, c) —

2s as in the negative curvature case, since whole components of C's might be realized
by geodesies of zero index and components of C'J may disappear However, it
is easy to see that there exists a continuous s \-^ c(s) such that Ks(yp,c(s)) <
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c3(s") c2(s') c2(s) c3(s')c3(s)

Figure 3

Cancellation of flat component (0 < s < s < s' < s")

Kq^p, c(0)) — 2s, and we conclude as before

cgf(l/)>2||t/||M

Remark 5.2. The referee has suggested the following construction for such a

continuous s i—s- c(s) as above Let us consider the function k(s,cj Ks(p,cj,
defined on [0, ||t/||M ^x]^1^!/),+oo[ Let ÜJ Us{s} x C's and Ü]7 Us{s} x
C'J they are disjoint subsets of [0, \\U\\ß p]x]p~^cgf(V)[, whose complement is a
discrete union of segments We have

2ä < 0
ds — U'ds
dk

dk _dc — P on Ch

f; 0 on C"

Then we set c{s) p 1cgf(\/) + — (||C/||M p — s), where a > 2 is not the slope of

any of the segments in the complement of C U C" We see that the continuous
function s \-+ k(s,c(s)) always has a right derivative, which is less than or equal
to -2
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Appendix A. Gf-capacity

We recall some basic facts from Viterbo's theory of capacities on the symplectic
vector space (R2n,Q) The reader is referred to [19] for proofs (and more results)

Remark A.I. A general warning must be made about sign conventions, which
are not always the same from one paper to the other

Let V be a bounded open set in R2n A (time-dependent) Hamiltoman function
H Ht(z) [0,l]xR2n -> R is V-admissible iî there is a compact set C of such that
supp(Ht) C C for each t G [0,1] The set of smooth ^-admissible Hamiltomans
will be denoted by Hv

To each H G Hv there corresponds a complete Hamiltoman vector field X
(-X"t)te[o i] defined by the relation

iXtn dHt VtG[0,l] (22)

This vector field generates a Hamiltoman isotopy $ (3>t)te[o i] of R2n If z G R2n

is a fixed point of $i, then its action Aj^(z) is the real number

Au(z) f AR2„ - Udt f [ytxt - Ht(xt,yt)] dt (23)
Jt^§t(z) te[O 1] JO

where (xt,yt) ®t(z) for t G [0,1]
To introduce generating functions, we will use the symplectic isomorphism

JK X JK —» i K JK X JK

where R2n x R2n denotes the vector space R2n x R2n endowed with the symplectic
form (-ÜR2„) 0 ÜR2„ For t G [0,1], let rt C R2n x R2n be the graph of $t, and

ft C T*R2n be its image under /
Definition A.2. (see [14]) Let k be an arbitrary integer A smooth function
S S(w,£) R2n x Rfc -^ R is a generating function if 0 G (Rfc)* is a regular
value of dçS dS/dS, In that case, dcS~^(0) is a smooth 2n-mamfold, and
we have a smooth Lagrangian immersion is dcS~^(0) —> T*R2n defined by
is(w,£) (w,dwS(w,£)) If is is an embedding, we say that S generates the
embedded Lagrangian submamfold L C T*R2n

Notice that the critical points of S correspond to the intersection points of L
with the zero section of T*R2n

Now the rt's are Lagrangian submamfolds of T*R2n, To is the zero section and
obviously there is a compactly supported Hamiltoman isotopy (^t)te[o i] of T*R2n

such that ft *t(f0)
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The next existence result was proved by Marc Chaperon [4], although not in
this formulation, which comes from Jean-Claude Sikorav [14].

Theorem A.3. ([4]) There exists a (a priori non-unique) smooth family of
generating functionsjSt : R2n x Rfc -> R, t G [0,1] such that
(i) St generates Fj for each t G [0,1]
(ii) the whole family is quadratic at infinity: we have St(w,£) Qoo(C) outside a

compact subset of [0,1] X R2n X Rfc, where Qoo : Rfc —s- R is a non-degenerate
quadratic form

Because of the choice of the identification (24), this implies that the fixed points
of $i are in 1-1 correspondence with the critical points of Si. Furthermore, if z is

a fixed point of $i, then the corresponding critical point is of the form (z,£), and
an easy computation shows that

AH(z)=S1(z,Ç) (25)

By a so-called minimax method using the behaviour at infinity, it is possible
to select two critical values of Si. First, remark that we can extend the St's to
S2n x Rfc, where S2n R2n U {oo} is the one-point compactiflcation of R2n, by
St(oo,£) Qoo(0- Then> for « G R, let Sf {Si < a}. For a > 0 large
enough, the homotopy type of the pair (Sf,Sfa) is constant, and we denote it
by (S^°°, Sf °°). If i denotes the index of the quadratic form Qoo, then it follows
from the Künneth isomorphism that

11 (D-i D-i j 11 \O j (X> 11 yU D j 11 \O j

where Dl (resp. S*^1) is the unit disk (resp. the unit sphere) in R\ Hence

Let m_ (resp. u+) be a generator of Hl{S^°°, Sf °°) (resp. of H^+^S^00, Sf °°)).
Then define

c± inf{a G R; u± does not vanish in ff*(Sf, Sf°°)}

It is easy to show that iP(Sj-+7?,S^~??) + 0 and H<ln+%{Scl++ri,S\+~ri) + 0 if
1] > 0 is small enough. This implies that c± are critical values of Si. Furthermore,
it can be proved that they do not depend on the particular family (St)terg i]
chosen but only on the Hamiltonian H, so we may call them c±(H). We list some
of their properties in the next statement (some inequalities differ from those of
[19], because some sign conventions differ).

Theorem A.4. ([19]). To any H G TLv generating the isotopy (3>t)te[o i]7 we can
associate two real numbers c±(H) with the following properties.
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1. c_(H) <0<
2. c_(H) c+(H) */ and ora/y */$i IdR2„.
3. There are points z± G R2n such that $i(z±) z± and An(z±) c±(H).
^. 7/H <0 i/ienc_(H) 0.
5. 7/H < K then c±(H) > c±(K).
6. 77ie maps 77 i—s- c±(H) are continuous for the C°-topology on Tiv- More pre¬

cisely, ifH, K are mHv and satisfy ||H —K||co < e, then |c±(H)—c±(K)| < e

Definition A.5. ([19]). The gf-capaaty cgf(V) of the open set V C R2n is now
defined as

cgf(l/)=sup{c+(H);HGWv} (26)

Theorem A.6. ([19]). The map V t-^ Cgf(V) satisfies the following properties.
1. IfVx C V2 then cgf(yi) < Cgf(y2)
2. If (<&t)te\o l] ls a compactly supported Hamiltonian isotopy o/R then cgf(cI>t(Vr

m constant.
3. cgf(S2n(0,r)) cgf(S2(0,r) X R2"-2) irr2.
4- The Symplectic Camel Theorem stated at the beginning of this paper.

Appendix B. The Maslov-Duistermaat index

In this appendix, we recall Duistermaat's generalisation of the Maslov index [7],
and relate it to another index obtained with quadratic generating forms.

B.I. On a symplectic vector space

Let (F,a) be a symplectic vector space of dimension 2m, and A(F) A(F,a) be
the set of its Lagrangian subspaces. If a G A(F) and k 0,... ,m, we consider

Ak(a) {ße A(F); dim(a n ß) k}

and then S(a) A(F) — A°(a), which is an algebraic hypersurface of A(F) whose

principal part is A1 (a).
Generically, a smooth loop L : S*1 —> A(F) intersects S(a) in A1 (a) only;

A1 (a) being coorientable, the algebraic intersection number of L with S(a) can
be defined; and because A(F) is connected, this number does not depend on the
choice of a G A(F). It is the Maslov index of the loop L, denoted by ind(L), see

[1]. A loop is contractible if and only if its Maslov index vanishes.
The sign convention we use (following Duistermaat) is that, in R2 with the

standard structure for instance, the loop L [Lt)te\Q u defined by Lq R x 0

and Lt et7Tt(Lo) has index —1 (ie. turning positively with respect to the natural
orientation gives negative Maslov index).
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In [7] (see also [6]), Duistermaat generalizes this index to non-closed curves of
Lagrangian subspaces, as follows. Let L : [0,1] —> A{F) be such a (continuous)
path. We choose a G A(F) transversal to Lq and L\. As A°(a) is simply-connected
(it has the structure of an affine space), there is a path L' in A°(a) joining L\ to
Lq, and all such paths are homotopic. The intersection index of L with a, denoted
by [L : a], will be the Maslov index of the loop L L * L':

[L:a} ind(Z) (27)

Duistermaat then adds a boundary term to obtain an integer independent of a.
Because of the transversality assumption, there is a linear map C : L\ —s- a such
that Lq is the graph of C, ie. Lq {u + Cu;u G L\}. Then a quadratic form
denoted by Q{L\, a; Lq) can be defined on L\:

u \-^ a[Cu,u)

The Maslov-Duistermaat index ind(L) of the path L is now

ind(L) [L : a] + indg(Li,a;L0) (29)

As notation suggests, it does not depend on the choice of a G A°(Lo) H A°(Li),
and it obviously gives the same index as before when L is a loop.

Proposition B.I. Let L : [0,1] -> A(F) he a path.
1. The integer ind(L) depends only on the homotopy class (with endpomts fixed)

ofL.
2. If A £ Sp(F, a) and AL denotes the path (AL)t := A(Lt) in A(F), then

ind(AL) ind(L)
3. If L' is a loop m A(F) based, at L\, then ind(L * L') ind(L) + ind(L') (note

that the Maslov-Duistermaat index is not additive for the concatenation of all
paths).

Proof. These properties come directly from the définition and from the analogous
(standard) properties of the ordinary Maslov index for loops. D

To extend the Maslov-Duistermaat index to a symplectic vector bundle over
the circle, we will need the following result.

Corollary B.2. Let L, L' be two paths in A(F), and A (-At)te[o i] be a loop in
Sp(f). Let AL denote the path in A(F) defined, by (AL)t '.= At(Lt), and, similarly
for AL'. Then we have

ind(AL) - ind(AL') ind(L) - ind(L')
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Proof. The path AL is homotopic (with endpoints fixed) to the path AqL followed
by the loop AL\, hence md{AL) ind(L) + md{AL\) by Proposition B.I. Similarly,

im\(AL') ind(L')+ ind(J4L'1). But, since A(F) is connected, the two loops
AL\ and AL'^ are homotopic, hence they have the same ordinary Maslov index.D

B.2. On a symplectic vector bundle over the circle

Consider next a symplectic vector bundle E —> S*1 with fiber (F,a). We see S*1 as
the interval [0,1] with endpoints identified, and denote by t its generic point; the
fiber of E over t will be called Et.

We consider V UteSiVt a Lagrangian subbundle of E, and R : [0,1] —> A{E)
a path of Lagrangian subspaces Rt C Et (without imposing Rq R\)

Because Sp(F) is connected, the symplectic bundle E is trivial, ie. there is a

symplectic isomorphism t : E S*1 x (F,a). Then t{V) can be identified to a

loop in A(F), and r(i?) to a path. According to Corollary B.2 the difference

indv(fl) := ind(r(A)) - ind(r(y)) (30)

does not depend on the trivialization t chosen. It is called the Maslov index of R
with respect to V.

Remark B.3. Suppose that Rt and Vt are transverse for all t G [0,1]. Then

(31)

where the definition of Q(R\,Vq;Rq) is a straightforward generalization of (28).
Indeed, by the very definition of indy(iî), we may suppose that V (resp. R) is

a loop (resp. a path) in A(F). Since Vq V\ is transverse to Rq and R\ by
assumption, we may take a Vq to compute ind(ß). Let R' be a path in A°(Vo),
joining R\ to Ro. Then 'md(R) md(R' ¦ R) + mdQ(Ri,V0; Ro) by definition,
and we just need to prove that ind(i?' • R) ind(V). But it is clear that R' ¦ R
is homotopic to a loop S in A(F) such that St n Vt 0 for all t, and this implies
that S and V have the same (ordinary) Maslov index.

If Fi and F2 be two Lagrangian subbundles of E, then the Maslov class

A*(ri,F2) of the pair (Fi,F2) is defined as /x(Fi,F2) indp2(Fi). It vanishes
if and only Fi and F2 are homotopic through Lagrangian subbundles of E. In
that case, we have indr1(iî) indp2(iî); more generally, the following relation
holds:

indri(Ä) - indr^ß) =M(F2,Fi) -^1^2) (32)
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B.3. Using generating functions

We consider the space R2m endowed with the symplectic form QR2m.

Let k be an arbitrary integer, and Q Q(w,Ç) : Rm x Rfc -s- R be a quadratic
form. Using matrix representation with respect to the canonical bases of Rm and

Rfc, we write Q(X) \ XBX, with X W
J and B ja symmetric

We say that Q is a generating form if it is a generating function in the sense
of Définition A.2, ie. if the k x (n + fc)-matrix (*6, c) is of maximal rank k. Then
^Q {(wi0; *^w + CC 0} is a m-dimensional vector subspace of Rm x Rfc,

and the map iQ : Sq -> R2m T*Rm defined by îq(w,£) (w,ow + &£) is a

Lagrangian linear embedding. The Lagrangian subspace L Im(iQ) is said to be

generated by Q. The spaces KerQ and (Rm x 0) n L are obviously isomorphic.

Example B.4. Let W be a Lagrangian submanifold of R2m admitting a
generating function S : Rm x Rfc —s- R. If (w,w') is a point on VK and (w,£) is

the corresponding element of Sg, then d?S(w,£) is a generating form for the
Lagrangian subspace T^^W G A(R2m).

As in the non-linear case of Section A, there are existence and uniqueness results
for forms generating a continuous path of Lagrangian subspaces. The proofs are
much simpler, however, in the linear case: see [16].

Theorem B.5. and Définition). Let L : [0,1] —> A(R2m) be a path of Lagrangian
subspaces. Then there is a path (Qt)te\0 1] °f generating forms, such that Qt
generates Lt for all t G [0,1], Furthermore, if (Qt)te\0 1] ts anV such path, then
the integer indQi —indQo depends only on L (Lt)te\o i|- It is called, the gf-mdex
of L, denoted, by indgf(L). If L is a loop, then indgf(L) coincides with the standard
Maslov index of L.

Now, if Sp(R2n) is the manifold of linear symplectomorphisms of (R2n,QR2n)
and A : [0,1] —> Sp(R2n) is a continuous path, we use the identification (24) to
define a path L in A(R2m, QR2m), with 2m n: for t G [0,1], the graph of At is a

Lagrangian subspace of R2n x R2n, and we set Lt /(graph At).

Definition B.6. The gf-mdex of the path A is indgf(j4) := indgf(L).

Proposition B.7. Let $ (3>t)te[o l] be a Hamiltoman isotopy o/R2n with compact

support, and (St)te[o i] be a family of generating functions as in Theorem A.3.

Let z G R be a fixed point o/$i and (z,£) be the corresponding critical point of
S\. If A denotes the path of symplectomorphisms At d<$>t(z) & Sp(R then
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mdgf(j4) màd S\{zX) —

Proof We follow the notations of Appendix A In particular, (^t)te[O \\ is the

Hamiltoman isotopy of T*R2n given by *t / o (idx$t) o J"1 There is a
continuous path (wt,S,t) € R2n x Rfc ending at (z,£), such that (wt,S,t) € Sst and

tst(wt,£,t) ^t(z,0) for all t Then Qt d?St(wt,£,t) is a quadratic generating
form of Tq,t m z\ Tt, and that vector subspace is precisely Lt Hence mdgf(A)
mdgf(/(graphA)) mdQi — mdQo by definition

Since Sq generates the zero section and Sq Qoo outside a compact set, it is

easy to see that mdd?So(wo,t;o) mdQoo (consider a path jt on Ss0, joining
(wo,Co) to a point at infinity, it is immediate that Kerd26*0(74) has constant
dimension, so the index of d?60(74) ls also constant)

Hence mdgf(j4) mdd?Si(z,£,) — mdQoo as claimed D

On the other hand, the path (graph At)teiQ u also has a well-defined Maslov-
Duistermaat index, from Appendix B We show that the two indices are equal if
the path starts at the identity map

Proposition B.8. Let A (At)teiQ 1]
he a path in Sp(R2n) If Aq Id, then

md(graphj4)

Proof Let us begin with a simple but important remark to prove that ind and

mdgf coincide for all paths joining two fixed Lagrangians Lq and L\, it is enough
to show that they coincide for one of them This follows easily from the additive
property of mfgf under concatenation of paths, from the weaker corresponding
statement for the Maslov-Duistermaat index (see Proposition B 1), and the fact
that the indices do coincide on loops of Lagrangian subspaces

Since
(1) A\ gives a decomposition R2n F' © F" as the direct sum of symplectic

.A1-invariant subspaces such that the restriction of A\ to F' does not have
the eigenvalue —1, and the restriction of A\ to F" has only the eigenvalue

-1,
(11) the symplectic group of a symplectic vector space is always connected,

(111) the indices are additive with respect to symplectic direct sums,
we may suppose that A\ does not have the eigenvalue —1 or that it has only this
eigenvalue
1 Let us first assume that —1 is not an eigenvalue of A\ Then, m view of (24),

the hypotheses mean that Lç, R2n x 0 and that L\ is transversal to 0 x R2n

Consequently, we may take a 0 x R2n m (27)-(28)-(29)
First, let V be path m A°(a), joining L\ to Lq Then [L a] md(L * V)
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by definition, see (27) But md and mdgf coincide on loops of Lagrangian
subspaces, so [L a] mdgf(L * L') Since mdgf is additive (this is obvious),
we have

[L a] mdgf(L) + mdgf(L')

Now L' is a path of Lagrangian subspaces that never meets the vertical
0 x R2n This implies that the L't's are graphs of (symmetric) linear maps
£[ R2n -> R2n Then Q't(w) \ < £'tw,w > defines a quadratic form

generating L't, for t G [0,1] Since L'x Lo M2n x 0, we have £\ 0, hence

Qi 0 Therefore,

indgf(L') md Q'x - md Q'o - md Qo

Finally, we relate Qq and Q(Li, a, Lo) Consider the linear map C L\ —s- a
such that u + Cu G Lo R2n x 0 for all u G L\ Since L\ Lo is the graph of
£'o, we write u (w,£'ow) (w,0) + (0,£'0w) G (R2n x 0) 0 (0 x R2n) Hence
Cu (0, —£'qw), and then

£'0w,w,£'0w)= < £'0w,w > 2Q'0(w)

This proves in particular that

indQo mdQ(Li,a, Lo)

whence

md(L) [L a] + mdQ(Li,a, Lo)

mdgf(L) + mdgf(L') + md Q(Li, a, Lo)

indgf(L) - md Q'o + md Q'o

indgf(L)

Let us now assume that —1 is the only eigenvalue of A\ We choose a. to be

/(graph(L>)), where B I
J Then a is transversal to Lo and L\, and

furthermore it is possible to join L\ to — Id through symplectoinorphisins that
have only —1 as eigenvalue It is then easy to see that both indices do not
change if we compose our path (At) with this path from L\ to —Id Hence

we may assume that A\ — Id But then we only need to check equality of
the indices to one given path from Id to — Id, and again we may assume that
R2n R2 and At is rotation of angle 2nt A direct application of the definitions
shows that in this case both indices are equal to 0 D
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