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Fundamental groups of compact manifolds and symmetric
geometry of noncompact type

A Candel1 and R Quiroga-Barranco2

Abstract. We introduce the notion of geometrical engagement for actions of semisimple Lie

groups and their lattices as a concept closely related to Zimmer's topological engagement condition

Our notion is a geometrical criterion in the sense that it makes use of Riemanman distances
However, it can be used together with the foliated harmonic map techniques introduced in [8] to
establish foliated geometric superngidity results for both actions and geometric objects In
particular, we improve the applications of the main theorem in [9] to consider nonpositively curved
compact manifolds (not necessarily with strictly negative curvature) We also establish
topological restrictions for Riemanman manifolds whose universal cover have a suitable symmetric
de Rham factor (Theorem B), as well as geometric obstructions for nonpositively curved compact

manifolds to have fundamental groups isomorphic to certain groups build out of cocompact
lattices in higher rank simple Lie groups (Corollary 4 5)
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28A33
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1. Introduction

One of the mam problems m the study of the superrrgid properties of symmetric
spaces of noncompact type, and their groups of isoinetries, is to determine the
restrictions on the fundamental groups of manifolds whose geometry and/or
dynamics are closely related to such spaces In this direction, we found results by
Ballinann-Eberlem [2], Gromov [3] and Spatzier-Zimmer [9] which show (among
other things) that a compact manifold whose geometry (dynamics m the case of
[9]) is that of a rank at least 2 irreducible symmetric space of noncompact type
cannot have the fundamental group of a compact manifold with strictly negative
curvature
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On the other hand, by using the foliated heat flow theory developed by Gromov
[5], it has been possible to extend geometric superrigidity techniques to compact
foliated manifolds as found in [1] and [8]. These works provide restrictions on
possible leafwise geometries of compact foliated manifolds which already carry a
leafwise symmetric geometry; in [8] it is further developed a way to compare the
geometry of such compact foliated manifolds to that of a compact nonpositively
curved manifold. However, the following remarks point to some problems not
considered in these works: 1) The results from [1] and [8] make use of diffeomorphisms
as a mean of comparison between manifolds and, even though they impose some
useful geometric restrictions, they are not truly showing topological restrictions.
2) The notion of stretch of a foliation introduced by Gromov and used in [8] to
solve foliated geometric superrigidity problems has a geometric/dynamic nature,
which was not further studied in [8], and this feature should be the key step in
extending the techniques of [8] from foliations to suitable actions of semisimple
Lie groups.

The main contribution of this work is to deal with the above remarks by
providing a geometric notion of Zimmer's topological engagement condition which is
then used, together with the foliated techniques from [8], to prove rigidity results
(in the sense of providing topological obstructions) for compact manifolds with
suitable geometry or dynamics closely related to that of certain symmetric spaces
of noncompact type.

One of the main tools used in [8], as well as in this work, is the notion of a

positively stretched foliation which is spelled out in section 2. To better understand

the techniques and main results of this work let us just say at this point
that to a compact manifold M carrying a foliation J7, a leafwise Riemannian metric

g and a finite invariant transverse measure one associates a nonnegative real
number stre(M,!F,g) which provides a geometric measure of the properness of
the foliation when lifted to the universal cover; if (M,!F,g) is positively stretched,
i.e. stre(M, T1 g) > 0, then, in some sense, there is a non-null collection of
geometrically proper leaves in the universal cover of M. We take a step further and

say that suitable actions of semisimple Lie groups are geometrically engaging if,
when lifted to the universal cover of the manifold being acted upon, the orbits are

proper in the sense of a Riemannian distance. Such restriction is similar to the
topological engagement condition considered by Zimmer in [9].

The main results are the following:

Theorem A. Let M be a manifold with a smooth foliation T carrying a finite
invariant transverse measure \i and a leafwise Riemannian metric g. Assume
that each leaf is isometrically covered by a fixed irreducible symmetric space X
of noncompact type which is either of rank at least 2 or a quaternionic or Cayley
hyperbolic space, and that stve(M, J-, g) > 0. IfN is a compact manifold with non-
positive sectional curvature when rank(X) > 2 and with nonpositive complexified
sectional curvature otherwise and tt\(M) tti(N), then there exist a homothetic
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totally geodesic immersion X —> N.

This theorem improves one of the main results from [8] by obtaining a geometric
restriction (the totally geodesic immersion X —s- N) from just an isomorphism of
fundamental groups. In [8], to obtain a similar conclusion, it was required either
a diffeomorphism between M and N or a smooth map M —s- N with certain
geometric/dynamical restrictions.

Theorem B. Let (M,g) be a compact Riemannian manifold whose universal cover

can he isometncally split as M Y X X, where X is as in Theorem A. Let N
be a compact manifold with nonpositive sectional curvature when rank(X) > 2 and
with nonpositive complexified sectional curvature otherwise. If tti(M) tti(N),
then there is a homothetic totally geodesic immersion X —> N. In particular, for
rank(X) > 2 the group tti(M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

This last result can be rephrased by saying that if a nonpositively curved compact

manifold N has the same fundamental group of a compact manifold M whose

geometry is only "partially" symmetric of rank at least 2, then N contains some
of that geometry immersed in a homothetic and totally geodesic fashion, and so

it can be considered itself as "partially" symmetric. Theorem B' from section 5

states a similar result for Riemannian foliations.
As for results involving the dynamics of the group of isometries of a symmetric

space we prove the following:

Theorem C. Let X and N be as in Theorem A, and let T be a torsion free
cocompact lattice of the group of isometries of X. Assume T has a geometrically

engaging action on a compact manifold T that preserves a finite measure. If
tti(T) tti(N), then there is an isometric totally geodesic immersion X —s- N. In
particular, when rank(X) > 2, the space T cannot have the fundamental group of
a compact manifold with strictly negative sectional curvature.

This result is similar to the main theorem found in [9], where the geometrical
engagement condition replaces the assumption on the existence of an invariant
connection used in [9]. We remark that some of the arguments found in [8] prove
that a geometrically engaging action is topologically engaging and, since the latter
is the chief tool used to prove the main result in [9], it follows that the particular
case stated in Theorem C is a consequence of [9]. However, Theorem C imposes
obstructions given the condition ir\{T) tv\{N) even if N does not necessarily
have strictly negative sectional curvature, which is an essential hypothesis in the
arguments found in [9] when using topological engagement. On the other hand,
for higher rank groups as above the known measure preserving actions are of
an algebraic nature or obtained by gluing such algebraic constructions (see 4 and
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section 4), and we prove that they all are geometrically engaging (see Theorems 3.3

and 3.4), so the condition is not very restrictive. Also, our proofs use only geometry
and harmonic map theory, so that the particular case of Theorem C provides a

geometric proof (in fact, a geometric superrigidity proof) of the main theorem
from [9] for all known measure preserving actions.

As a matter of fact, the geometric engagement of some "exotic" actions (as
described in section 4) is used to establish an obstruction for nonpositively curved
compact manifolds to have certain fundamental groups build out of lattices. More
precisely, let H be a simply connected simple Lie group and G a simple subgroup,
both of noncompact type and rank at least 2. Assume that G has codimension at
least 3 in H and that there is a torsion free cocompact lattice A of H such that
F A n G is a lattice in G. Then we have the following:

Corollary 4.5. Let N be a compact manifold with nonpositive sectional curvature.

Ifiri(N) is isomorphic to the amalgamated product A*^A or to the HNN-extension
A*p (both constructed from the identity isomorphism of T), then there is an
isometric totally geodesic immersion of the symmetric space associated to G in N.
In particular, the fundamental group of a compact manifold with strictly negative
sectional curvature cannot be isomorphic to either A *p A or A*p.

2. Preliminaries

In this section we recall some results and définitions from [8] related to the notion of
stretch and foliated geometric superrigidity. We also define geometric engagement
as a dynamical version of the property of having positive stretch. Also some
auxiliary results are stated and/or proved in this section.

Definition 2.1. Let M be a compact metric space with a smooth foliation T
carrying a smooth leafwise Riemannian metric g, (N, h) a compact Riemannian
manifold and /: M —s- N a smooth map. For v in UTj^M (the leafwise unit tangent
bundle of M) let 7 be the ^-geodesic with initial velocity vector v lying within the
leaf £ to which v is tangent^ let 7 be any lift of 7 to the universal cover of £ and
7(7) its image under a lift / to universal covers of the restriction f\c- Define:

Then the pointwise stretch of / is the function defined by:

p-stre(/):C/ïyM->R
• AMv 1—> lim mi t
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If T carries a finite invariant transverse measure /x, the stretch of / is defined by

stre(/) Inn / dpi, / p-stre(/)(i/z£
* Jut^m

where /z^ is the measure on UTj^M obtained by integrating against \i the Rieman-
man measures on the leaves of the foliation in UTj^M induced by T

Remark 2.2. It is an easy matter to verify the last identity on the previous
definition

The pomtwise stretch of a function / is nonnegative, and we will say that / has

positive pomtwise stretch if it is a positive function, observe that this condition
does not depend on the choice of the metric on N The same kind of remarks
apply to the stretch

For the particular case M N and / icIm, the identity map on M, the above

are called the pomtwise stretch and the stretch of (M, T1 g) and are denoted by
p-stre(M, T1 g) and stre(M, T1 g), respectively

Remark 2.3. The notion of a positive stretch map, being formally similar to that
of quasi-isometry, is not equivalent to it An example that illustrates this is the
following Take two Reeb foliations of a strip in the plane, glue them together to
obtain a foliation of a cylinder, then mod out by a translation to get a foliation
of the flat two-dimensional torus In the universal cover of the torus we have a
foliation whose leaves can be assumed to be the translates of the graphs of the
curves y exp((l — x2)~2) and vertical lines x ±1 It takes a short calculation
to verify that each graph has positive stretch but, excepting the lines, is not quasi-
lsometrically embedded

Similar examples can be constructed in hyperbolic space, simply by taking two
geodesies with one common endpomt at infinity, and then inserting in between
them a Reeb-like foliation

Definition 2.4. Let G be a connected Lie group locally lsomorphic to the group
of isoinetries of a symmetric space X of noncompact type and let T be a compact
Riemanman manifold acted upon by G Choose a Cartan decomposition q I©m
for the Lie algebra of G (with ï a maximal compact subalgebra), and let mi be
the unit ball in m with respect to the Killing form of q For v G mi denote with
g\ exp(to) the one-parameter subgroup of G generated by v The pomtwise
stretch of the action of G on T is the function defined by

p-stre(G,T) raixf^R
d~{gvtx,x)

(v.x) \-^ hm inf —

where G acts on T by an arbitrary but fixed lift of the action of G on T We say
that the action of G on T has positive stretch if p-stre(G, T) is a positive function
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Remark 2.5. Observe that the pomtwise stretch of an action does^not depend on
the choice of the lift of the action of G on T to an action of G on T On the other
hand, the pomtwise stretch of an action does depend on the choice of the Cartan
decomposition and the Riemanman metric on T However, the property of having
positive stretch does not depend on any of them Also notice that the action of G

on T has positive stretch if and only if for every one-parameter subgroup gt of G
which does not map into a compact subgroup of Ad(G) we have

d~{gtx,x)
hm inf — > 0
t^oo t

for every x G T From this it is a straightforward matter to check that an action
with positive stretch is topologically engaging

Since the orbit under gt (as in the definition above) of a suitable point in
X is a geodesic, with t proportional to the length parameter, we can say that
the action of G on T has positive stretch if the action lifted to universal covers
is such that the orbits of "noncompact" one-parameter subgroups increase their
length at least as fast as they do within X Hence, a positive stretch action has

geometric/dynamical properties similar to those of the action of G on X

Definition 2.6. With the same notation as in the previous definition, we say that
the action G x T —> T of the Lie group G on the manifold T has uniform positive
stretch if

d{gx,x)
hm inf inf — > 0

t—>oo -uGmi t

for every x G T

In words, an action with uniform positive stretch is one that has at every point
positive stretch bounded from below by a fixed constant for all directions of the

symmetric space associated to G A property like this would be good enough to
provide the conclusions of our theorems, but we actually need less We introduce
the notion of geometrically engaging action, this concept implies positive stretch,
and it is implied by uniform positive stretch It is close in spirit to the notion of
topologically engaging action discussed in [9]

Definition 2.7. With the notation as in the previous definitions, we say that the
action of G on T is geometrically engaging if for every sequence (gn)n in G such
that (gnxo)n is a quasi-ray in X (the symmetric space associated to G) for some
(and hence any) xq g X, the limit inferior

d~(gnx,x)
hm inf -—7 > 0

d

for every x G T
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Definition 2.8. Let F be a cocompact lattice in the group of isometries of a

symmetric space X of noncompact type, and let T be a compact manifold An
action of F on T is called geometrically engaging if it is induced by a F-action
on the principal bundle T —> T in such a way that for every sequence (7„)„ in F

defining a quasi-ray (for a word metric) we have that for some (and hence any)

io€l, the limit inferior

d~(-ynx,x)
hm inf — > 0

d{
for every x G T

Remark 2.9. Recall that a sequence xn in X is called a quasi-ray if there exist
constants A > 0 and _B > 0 such that

A^lm-nl -B < dx(xn,xm) < A\m - n\ + B

for all m,n > 0 Also recall that the image of a geodesic ray under a quasi-isometry
is a quasi-ray

Remark 2.10. Let G be a simply connected semisimple Lie group of noncompact

type and F a cocompact lattice If (7„)„ is quasi-ray in F for some word
metric, then (7„xo)„ is a quasi-ray in X (the symmetric space associated to G)
for any xq g X In particular, any geometrically engaging action of G induces a

geometrically engaging action of F

Remark 2.11. It is clear that the notion of geometrically engaging action is

independent of the point xq of X because G is the isometry group of X Also note
that the actual value of the limit inferior may depend on the point x in T

The concept of geometric engagement ensures that the geometric/dynamical
properties of the action of G on T are close to those ofj;he action of G on X,
but now from the point of view of orbits by sequences in G which are only nearby
to the one-parameter subgroups considered in definition 2 4 It is stronger than
topological engagement, which only requires the existence of an element of G (not
in a conjugate of the isotropy group of X) whose orbit in T is locally closed (see

Now we state some simply facts about cocycles which will be needed later

Definition 2.12. Let G and H be Lie groups such that the former acts on a Borel
measure space T A Borel mapping a G x T —> H is called a cocycle if for every
g, g' G G it satisfies

a(gg!,x) a(g,g'x)a(g',x)
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for a.e. x G T. The cocycle is called strict whenever this condition is satisfied for

every igT.
Remark 2.13. We recall that if G is Lie group acting by bundle automorphisms
on a principal bundle p:P —s- M with structure group H, then any Borel section
s of p induces a cocycle a: G x M —s- H which is defined so that it satisfies:

gs(m) s(gm)a(g,m)

for every g & G and a.e. m G M. Moreover, if s is a section in the sense of sets,
then a can be assumed to be strict.

Lemma 2.14. Let T be a compact Riemannian manifold and T a cocompact lattice
of the group of isometries of a symmetric space of noncompact type. Assume that
F acts on the principal bundle T —s- T. Then there exist a Borel section s:T —s- T
of the universal covering p:T —s- T which is a bisection onto s(T) and such that
the latter is Borel with diameter < 6diam(T). In particular, the section s induces

a strict cocycle «o:7 x T —> tt\{T), for the Y-action on T —> T, which satisfies:

,s(x)ao(7,x)) < 6diam(T)

for any 7 G F and x G T.

Proof. Let {_Bj}"=1 be a cover of T by evenly covered open balls (i.e. the restricted
bundle tt^-i^ y.ir~^(Bt) —> B% is trivial), and for each i choose a lift B% of B%

such that all of them lie within a fixed ball of radius 3diam(T). Define A\ B\,
At Bt\ {p~l(Bi U • • • U Sj_i)); then A |J"=1 At is Borel with diameter
< 6diam(T) such that p\a'- A -^ T is a bijection, and so the latter defines a Borel

map s p\a which is a section of p in the sense of sets.
On the other hand, the cocycle induced by s satisfies:

7s(x) s("fx)ao("f,x)

for every 7, x. In particular, 7s(x) and s(x)ao(j,x) lie within the set s(T)ao(j,x)
which has diameter < 6diam(T) since 0:0(7, x) is an isometry. D

The following is the main result from [8] on foliated geometric superrigidity.

Proposition 2.15. Let M be a compact manifold with a smooth foliation T
carrying a finite invariant transverse 'measure \i and a leafwise Riemannian metric
g. Assume that each leaf is isometncally covered by a fixed irreducible symmetric
space X of noncompact type which is either of rank at least 2 or a quaternionic
or Cayley hyperbolic space. Let N be a compact Riemannian manifold with non-
positive sectional curvature when the rank of X is at least 2 and with nonpositive
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complexified sectional curvature otherwise. If f: M —> N is a smooth map with
positive stretch, then there is a homothetic totally geodesic immersion X —> N.

The next result from [8], which will be applied later, asserts that suitable
compact manifolds have positive stretch for foliations induced by their de Rham
factors.

Proposition 2.16. Let M be a compact Riemannian manifold whose universal
cover isometncally splits as M Y X X, where X is an irreducible Riemannian
manifold without conjugate points, and such that the factor X induces a foliation
J- on M. Then (M, J-) is pomtwise positively stretched with respect to the leafwise
Riemannian metric induced from that of X and the finite invariant transverse
measure induced by the Riemannian measure on Y.

In order to build positively stretched maps from cocycles we will make use of
the following proposition.

Proposition 2.17. Let T be a discrete group which acts smoothly on the manifolds
X and T, where the action on the former is free. Let a:T xT —> tti(N) be a strict
cocycle, where N is a manifold with contractible universal cover. Then there is a
smooth (a, 7Ti(N))-equivariant map f:XxT —> N, which in particular induces a

smooth map f: T\(X x T) —> N.

Proof. Observe that F acts on X x T by j(x,t) (jx,jt) and similarly, the strict
cocycle condition on a ensures that the mapping:

TxX xTxN ^X xTx N

defines an action. Moreover, it is easy to check that the natural projection F\(X x

rxAf)^r\(IxT) defines a fiber bundle with fiber N. The manifold N being

contractible, there is a smooth section s and we can define a map^/:X xT —> TV

by the condition s([x,t]) [x,t,f{x,t)\. One easily shows that / is well defined
and (a,7ri(/V))-equivariant, i.e. it satisfies:

for every 7 G F, x G X andj; G T. Also, by looking at local trivializations of the
bundle one can show that / is smooth. By (a,7ri(]V))-equivariance, / induces a

map /:F\(IxT)-»Af which makes the diagram

XxT —f—^ N

T\{X x T) > N
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commutative, where the vertical arrows are the natural projections. Notice that
the commutativity of the diagram implies the smoothness of /. D

3. Fundamental groups and geometric engagement

In this section we develop some criteria to ensure that suitable maps and foliations
are positively stretched, and we also prove that the algebraic measure preserving
actions of semisimple Lie groups of noncompact type are geometrically engaging.
Our first result considers topological data to get the desired conclusion.

Proposition 3.1. Let M and N be compact manifolds and assume that M carnes
a smooth foliation T and a leafwise Riemannian metric g without conjugate points.
Let h he a Riemannian metric on N. If f: M —> N is a smooth map which induces

on fundamental groups a map f*:TT\(M) —> tti(N) which is a quasi—isometry, then
there is a constant A > 0 such that:

Ap-stYe(M,F,g) < p-stre(/)

where p-stre(/) is computed by considering f as a map /: (M, J7) —s- (N,h) for
some arbitrary but fixed, Riemannian metric h on N.

Proof. Choose any global Riemajinian metric s over M. Since /* is a quasi-
isometry, it follows that the lift /: M —s- N^oî thejnap / to universal covers is a

quasi-isometry. Hence, there is a map 'g: N —s- M and constants A,C > 0 such
that for any x, y G M:

Xd{~h){x,y) + C (1)

{üs)C (2)

Let v G UTjr(M) be given and denote by 7 the ^-geodesic in the leaf that
contains the basepoint of v and with initial condition 7'(0) v. Let 7 be some

lift of 7 to the universal cover M, and for every t > 0 define:

In particular, we have:

p-stre(M, T1 g){v) liminf
t

rh,(
p-stre(/)(w) liminf

t
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Then from inequality (1) it follows that:

\4>t{v)

which together with inequality (2) yields:

< 3C + \4>t{v)

After dividing by £ and taking the limit inferior as t —> oo we obtain:

- p-stre(M, J7, g) < p-stre(/)
A

D

As an immediate consequence we obtain the following:

Corollary 3.2. Let M and N be as in the Proposition 3.1 and let f:M —s- N
be a smooth map. If (M, J-, g) is pomtwise positively stretched and f induces an
isomorphism /*:tti(.M~) —> tti(N), then f is pomtwise positively stretched.

The following result shows that the algebraic actions of semisimple Lie groups
are geometrically engaging.

Theorem 3.3. Let G be a closed, subgroup of a Lie group H, both assumed, to be

semisimple of noncompact type, and A a cocompact lattice in H. Then the action
of G on H/A is geometrically engaging. In particular, the action on H/A of any
cocompact lattice of G is geometrically engaging.

Proof. Denote with q and [j the Lie algebras of G and H, respectively. Let q l©m
and (j I © n be Cartan decompositions with Î and [ compact subalgebras. Since

q can be canonically embedded into [j (i.e. a Cartan decomposition on [j is chosen

so that its involution leaves q invariant, see [7] for more details) we can assume
that ï C t and men. Choose a right iï-invariant Adh (L)-invariant (and hence
left L-invariant) Riemannian metric h on H such that [ _L n and whose restriction
to n coincides with the Killing form of [j. The metric h induces a Riemannian
metric on H/A, and we will prove that for this choice the action of G on H/A is

geometrically engaging.
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^
Let H be the universal cover of H and G the closed connected subgroup of

H with Lie algebra q. Since the metric on H is right iï-invariant and the right
action of H on itself is equivariant with respect to the left G-action, it is enough
to cheeky geometric engagement at the identity e.

Let L and K be the closed subgroups of H with Lie algebras [ and Î, respectively.
Then the metric on H induces a Riemannian metric on L\H such that the natural
projection tt: H —s- L\H is a Riemannian submersion. Also, observe that the metric
on L\H is ij-invariant and so it is isometric to the symmetric space associated

to H. Moreover, the natural inclusion K\G ^-s- L\H realizes the symmetric space

X K\G associated with G as a totally geodesic Riemannian submanifold of

L\H.
Now let (gn)n be a sequence in G such that (Kgn)n is a quasi-ray in the

symmetric space X K\G. For each n, let cn be the geodesic segment in H from
e to gn such that length(cn) d,~ hAgn,e). Since tt is a Riemannian submersion

and 7T o cn has Le and Lgn as endpoints it follows that:

length(cn) > length(7rocn) > d

where the last identity follows from the fact that Le and Lgn lie in K\G which is

a totally geodesic submanifold of L\H. In particular, we have:

dx(XQgn,XQ)
> 1

for X K\G the realization given above of the symmetric space associated to G

and xq K the class of the identity. In particular, the action under consideration
is geometrically engaging at e and hence at every point. D

Remark 3.4. In the proof above we have considered a realization of the
symmetric space associated to G by a quotient of the type K\G. However, the usual
realization of the symmetric space X associated to G (as used in the définition of
geometric engagement) is given by X G/K. This causes no conflict since they
are isometric under the map Kg \-+ g~^K.

The following result is the key step to prove Theorem C:

Proposition 3.5. Let T a torsion free cocompact lattice of the group of isometnes
of a symmetric space X of noncompact type with T acting on the left on X, N a

compact manifold with contractihle universal cover and T a compact manifold on
which F acts smoothly preserving a finite measure \i. Assume that tt\{T) tt\(N)
and that the action of T on T is geometrically engaging. Let T act diagonally on
X X T and endow T\(X X T) with the obvious foliation and leafwise Riemannian
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metric coming from the symmetric space X. Then there is a smooth map f: F\(Xx
T) —> N such that, for any Riemannian metric on N, the map f has positive
stretch.

Proof. Let «o: F x T —> tti(T) be a Borel cocycle that satisfies the conditions from
Lemma 2.14. The cocycle «o composed with an isomorphism p\Tv\(T) —> tv\{N)
(which we fix from now on) yields a strict cocycle a: F x T —> iri(N), and we
consider the maps / and / provided by Proposition 2.17.

Let /ibea Riemannian metric on N and denote with g the Riemannian metrics
on both X and F\(X x T), the latter being leafwise; also observe that the F-
invariant finite measure /ionT induces a finite invariant transverse measure on
F\(X x T). To show that / has positive stretch, the Riemannian metric we put
on F\(X x T) is such that its restriction to the leaves coincides with the metric

jonl, and makes the transversals T orthogonal to the leaves. This metric is

obviously F-invariant when lifted to X x T.
Choose (xo,to) € X x T and v G TXQX unitary, and let gt be a one-parameter

subgroup of G (the group of isometries of X) such that t i—> gtXQ is the geodesic
in X with initial velocity vector v. Then the curve defined by c(t) [gtxo,to] is

a leafwise geodesic in F\(X x T), and the pointwise stretch of / at [xo,to] m the
direction of the vector v is given by:

d~(f(qtxn,tn), f(xn,tn))
p-stre(/)(u) hminf — (3)

Observe that for any 3,7 G G we have, for some constant A > 0,

<d~(f{gx,t)J[nx,t)) (4)

<AdXy.T{(gx,t),{Tx,t))

for all (x,t) G X x T, where the second inequality follows from the fact that /
descends to the map /, which is a smooth map between compact manifolds (hence
Lipschitz), and the last equality because of the choice of metric in F\(X x T).

Let q Î (B m be the Cartan decomposition of the Lie algebra of G, where Î is

the Lie algebra of the isotropy group of xo. Now choose a mapping F: exp(m) —s- F

obtained as the composition of the natural homeomorphism exp(m) —> X and a

quasi-isometry X —s- F. One can further assume that:

dx(gxo,F(g)xo) < 2diam(F\X)

for all x G X and g G exp(m). From equations (3) and (4) it follows that:

(fV fd^f(xo,to)J(F(gt)xoM) ._.p-stre(/) (v) hm inf -* 5
t^oo t
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In order to estimate the last ratio, we first note that since / is (a,Tri(N))-
equivanant we have that

> d~(J(x0, to), 7(7^0,7*0)) -^(7(7^0,7*o), 7(7^0,

for every 76F ^On the other hand, since for any yo £ N the map 7 1—> yo7 defines a quasi-
îsometry tti(N) —s- N, it follows that for d! a group distance on ir\{N) there exist
constants A and C such that we have

for all 7 G F Moreover, by the second inequality in (4), the F-mvanance of the
metric on X xT and the compactness of T there is a constant C depending only
on xq such that

7(7^0, *o)) < AdxxT((lxo,"/to), (7x0, to))

<C
for every 76F

For a suitable choice of generators we can assume that p defines an isometry
between ir\{T) and tv\{N) with their group metrics, so that if we denote with the
same symbol d! the metric on ir\{T), then the last three sets of inequalities imply
that

df}{f{xQ, to), 7(7^0, to) > jd'(e,ao(-f,to))-j-C' (6)

for every 76F ^Choose a Riemanman metric on T and let to G T be the image of to under the
Borel section from Lemma 2 14 Then it follows that for every 76F

^y(7to,to«o(7,to)) < 6diam(T)

Also, recall that by compactness of T, the mapping 7 \-^ to7 defines a quasi-
îsometry ir\{T) -^ T, so there exist constants Ao and Cq such that for every 76F

and this together with the previous inequality yields

(7)
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for every 76F
From the above it follows that

by (5)

>lZ,n, by(6)
A t^oo t

1 d~(to,F(gt)to)
- 7T~ h,m mf 7 by (7)

To see that the last limit inferior above is positive, we first observe that since
F is a quasi-isometry

dx(xo,F(gt)xo)Inn r— > Ai
t^oo dx(xo,gtxo)

for some positive constant Ai Also t dx (xo, gtxo), and the stretch of / satisfies

,,w ^ Ai d~(to,F(gt)to)
p-stre(/)(v) > — liminf-^- —-—- > 0

AAo t^oo dx(xo,i<(#t)xo)

which is positive since the action of F on T is geometrically engaging and t 1—>

F(gt)xo (t > 0) is a quasi-ray in X D

4. Exotic actions

We will present a family of geometrically engaging actions which are not of an
algebraic nature (see Theorem 3 3) The construction is a modified version of
examples previously constructed by Benvemste in [4]

Let H be a noncompact simply connected simple Lie group and G be a noncom-
pact simple Lie subgroup of H with real rank at least 2 and codimension at least
3 Let A be a cocompact lattice in H such that F G D A is a cocompact lattice
in G We further assume that A is torsion free Also, throughout this section we
will assume that H carries a Riemanman metric which is right iï-mvariant and
left L-mvanant, as in the proof of Theorem 3 3, where L is such that Ad(L) is a
maximal compact subgroup of Ad,(H)

The quotient space H/A has a foliation given by the induced action of G on
its left, and it has one compact orbit Cq G/T The arguments from [4] prove
that Co can be blown up to obtain a smooth manifold Mq with boundary Bq in
such a way that Mq is acted upon by G with the natural projection Mq —s- H/A
a G-equivanant map We now take two copies Mq Mq of Mq and identify them
along their boundary Bq The resulting space To is a smooth manifold which
admits a G-action on the left It is clear that the smooth volume on H induces a
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finite G-invariant measure on To- We will consider To as a Riemannian manifold
with metric induced by metrics in Mq and Mq coming from one on Mq.

A similar construction, which will prove to simplify certain matters, can be

performed without having to blow up before gluing. More specifically, let us take
two copies of H/A and identify them along the orbit Go G/T to obtain a space
Tq. The space Tq is a manifold with singularities which admits a length structure
simply by defining the distance between two points to be the minimum of the
lengths of all paths joining them, where the length is measured according to which

copy of H/A the segments of the path lie in. Also observe that there is a natural
G-equivariant projection tto:To —> Tq induced by the projection Mq —s- H/A.

Let us now assume that the centralizer Z Zh{G) is not discrete and choose

z <£ GA. Let Mz be the smooth manifold obtained by blowing up the compact
G-orbits Co G/T and C\ Gz/T. Again, it is proved in [4] that the left G-
action on H/A induces a left G-action on Mz such that the natural projection
Mz —> H/A is G-equivariant. Denote by Tz the manifold obtained from Mz by
identifying the two exceptional divisors associated to Go and C\. Clearly, the left
G-action on Mz induces one on Tz. In this construction, whenever it is necessary
to choose Riemannian metrics we will assume that a metric on Tz is fixed and
induces one on Mz.

Once again, we perform the construction without blowing up and denote by T'z

the space obtained from H/A by identifying Go with C\. The resulting space is a
manifold with singularities carrying a length structure as the one described for Tq
where the length of a curve is now measured by carrying suitable segments from
T'z to H/A and computing their lengths; observe that the right iï-invariance of
the metric on H implies that the length of a segment within the image of Go U C\
in T'z is independent of whether it is computed as a curve in Go or in C\. We
have again a map tvz:Tz —s- T'z which is induced by the projection Mz —> H/A and
hence is G-equivariant. ^ ^We observe that both universal covers Tq and T'z have length space structures
that can be obtained in the same manner as for Tq and T'z. For these metrics the

covering maps are clearly local isometries. When required, we will assume that Tq

and T'z carry such metrics.

Remark 4.1. Observe that the universal cover To of To can be constructed by
hand and for our purposes all we need tojmow about the construction is the
following. One takes the universal cover Mq of Mq, which can be seen as H
with the translates GA of G (A G A) blown up. Then one considers a suitable
collection {Ml)l of copies of Mq and glue one copy Mt to another M3 along some
exceptional divisor (i.e. some lift of Bq) which is not necessarily the same within
Mt and M3. The manner in which the gluing is to be performed is dictated by
the structure of the fundamental group of To, which is A *p A (the amalgamated
product build from the identity isomorphism in F), and it is not of importance
for the argument. However, one important feature that we will need is that if a
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path joining two points within the same copy Mt moves crossing a submanifold B
through which it is glued to a copy M3, then it has to come back to Mt through
the same submanifold B.

Similar observations apply to the universal covers of Tq, Tz and Tz, where we

use copies of H for both Tq and T'z suitably identified along the translates GX in
the case of Tq, and identified along the translates GX and GzX in the case of Tz.

For the universal cover Tz we use a family of copies of Mz. Also observe that the
fundamental group of both Tz and T'z is the HNN-extension build out of F C A,
for the isomorphism F —s- F given by the identity (see [4] for more details), and
which we will denote by A*p from now on.

Remark 4.2. An additional important feature to notice about the universal cover
Tq of Tq is that if a path 7 has both endpoints in a fixed copy TTj of TT, then one
can get a curve 70 lying completely within that copy with the same endpoints and
length.

To obtain 70 we use the previous remark and the following observation. If
a is a path lying in a copy TTj with endpoints in a translate GX C Ht glued to
GX1 C Hj for some other copy H3, then there is a path a' lying in H3 with the
same endpoints and length; a' is obtained by taking the mirror image of a through
GX, i.e. by considering in H3 the path that corresponds to a under the natural
isometry Ht H H3 composed with the isometry given by right multiplication
by A"1 A'. Then 70 is obtained from 7 by repeatedly taking the mirror images of
subarcs of 7. In particular, for any two points x and y lying in the same copy TT^

of TT in Tq, we have:

dH%{x,y)

where both d~, and djj are length metrics, i.e. the infimum of the length of the

paths joining two points within the corresponding space.
A similar remark applies to the universal cover Tz of Tz. Here we only need to

notice that besides translating with a right multiplication by A"1 A' we may first
have to translate with the right multiplication by z, which is still an isometry.

Lemma 4.3. With a setup as above, for fixed, Riemannian metrics on To and Tz,
there is a constant A > 0 such that for any choice of lifts ttq and ttz to universal
covers of the maps ttq and irz, respectively, we have:

< Ad~ (x,y) Vx,y G To
o l0

d~,(nz(x),nz(y)) < Ad~^{x,y) Vx,y G fz

where the distances in the universal covers Tq and T'z come from the length structures

described, before.
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Proof. The natural projection Mq —s- H/A is smooth and has compact domain.

Therefore, there is a constant A > 0 such that for any curve a in Mq with image
a' in H under a lift of Mq —s- iï/A we have:

lengthy («') < A length ~q (a)

In view of the remarks preceding this lemma, any curve a in To can be decomposed

into segments lying within a copy of Mq. And for any such segment the
previous inequality applies, so that after adding up the length of all segments we
have:

length-(a') < A length- (a)
1o o

and from this we obtain the first inequality in our statement. The second inequality
is proved similarly. D

As for geometrical engagement for the exotic actions we have the following:

Theorem 4.4. For G, Tq and Tz as above, the actions of G on Tq and Tz are
geometrically engaging.

Proof. First observe that from the previous Lemma (since we can assume that the
mappings ttq and ttz are G-equivariant) it is enough to check that the limit inferior
condition from Définition 2.7 is satisfied for the length spaces Tq and T'z. But the
latter is a direct consequence of Remark 4.2 and Theorem 3.3. D

An inmediate consequence of Theorems C and 4.4 is the following:

Corollary 4.5. Let N be a compact manifold with nonpositive sectional curvature.

Ifir\(N) is isomorphic to the amalgamated product A*yA or to the HNN-extension
A*p (both constructed, from the identity isomorphism of T), then there is an
isometric totally geodesic immersion of the symmetric space associated, to G in N.
In particular, the fundamental group of a compact manifold with strictly negative
sectional curvature cannot be isomorphic to either A *p A or A*p.

Proof. We only have to observe that A*pA and A*p are the fundamental groups
of To an(i Tz, respectively. D

Examples of Lie groups G and H to which the arguments above can be applied
include the case of G SL{n) C H SL{n + 2).

Also, as the reader would probably have noticed, it makes sense to somewhat
generalize this construction of amalgamated actions to include the case of a graph
of homogeneous spaces. That is, one has a graph T, associated to each of its
vertices there is a homogeneous space of the form H/A, and associated to each
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edge there is a homogeneous space G/T. Moreover, each edge group come equipped
with inclusions on the vertex groups of that particular edge. After that one can
form a stratified space by appropriately gluing vertex spaces along their edges.
The cases that we have considered here are those in which the graph is either an
edge, with one or with two vertices, and the vertex spaces are the same. We have
not discussed the more general construction because it goes out of the philosophy
of the topic, namely, consideration of smooth actions on smooth manifolds. In the
general case of a graph, the final amalgamated space is not likely to be a manifold
but a stratified space whose strata are homogeneous spaces.

As to whether the techniques of this paper apply to these more general stratified
spaces, we note that most of them extend with minor modifications. An exception
is Proposition 3.5 which can nonetheless be done in this generalized setup after
some more careful consideration. Also, the theory of harmonic maps works pretty
well in this setting, as many authors have already shown (e.g. Gromov-Schoen);
in particular, the proof of our Proposition 2.15 as found in [8] can be carried out
with almost no modification to the case of compact metric spaces with smooth
laminations.

5. Proof of the main theorems

Theorem A. Let M be a manifold with a smooth foliation T carrying a finite
invariant transverse measure \i and a leafwise Riemannian metric g. Assume
that each leaf is isometrically covered by a fixed irreducible symmetric space X
of noncompact type which is either of rank at least 2 or a quaternionic or Cayley
hyperbolic space, and thatstve(M,J-,g) > 0. IfN is a compact manifold with non-
positive sectional curvature when rank(X) > 2 and with nonpositive complexified
sectional curvature otherwise and tt\(M) tt\(N), then there exist a homothetic
totally geodesic immersion X —> N.

Proof. Since N has contractible universal cover, there is a smooth map /: M —s- N
which induces an isomorphism on fundamental groups. Then by Corollary 3.2, the

map / has positive stretch, and so by Proposition 2.15 the conclusion follows. D

Theorem B. Let (M,g) be a compact Riemannian manifold whose universal cover

can be isometrically split as M Y X X, where X is as in Theorem A. Let N
be a compact manifold with nonpositive sectional curvature when rank(X) > 2 and
with nonpositive complexified sectional curvature otherwise. If tti(M) tti(N),
then there is a homothetic totally geodesic immersion X —> N. In particular, for
rank(X) > 2 the group tti(M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. By passing to a finite cover of M, as well as the corresponding covering of
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N under some isomorphism ir\{M) -k\{N), we can assume that the factor X
from M induces a foliation T on M. Moreover, the Riemannian measure on Y
induces a finite invariant transverse measure for T. By Proposition 2.16 it follows
that (M,!F) has positive stretch, and by Theorem A the conclusion follows. D

Theorem B'. Let (M,h) be a compact Riemannian manifold without conjugate
points carrying a smooth foliation T which is^Riemannian for h with totally
geodesic leaves. Assume that the lift of T to M has leaves isometric to X as

in Theorem A for the restriction of h to the leaves. Let N be a compact
Riemannian manifold with nonpositive sectional curvature when rank(X) > 2 and
with nonpositive complexified sectional curvature otherwise. If tti(M) tti(N),
then there is a homothetic totally geodesic immersion X —> N. In particular, for
rank(X) > 2 the group tti(M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. The Riemannian transverse structure on M induces a finite invariant transverse

measure for J7, and since the leaves are totally geodesic in a manifold without
conjugate points the pair (M, J7) has positive stretch. By Theorem A the conclusion

follows. D

Theorem C. Let X and N be as in Theorem A, and let T be a torsion free
cocompact lattice of the group of isometnes of X. Assume T has a geometrically

engaging action on a compact manifold T that preserves a finite measure. If
tt\{T) tti(N), then there is an isometric totally geodesic immersion X —> N. In
particular, when rank(X) > 2, the space T cannot have the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. By Proposition 3.5 there is smooth map /: F\(X x T) —s- N with positive
stretch. Hence by Proposition 2.15 the result follows. D
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