
Compact minimal hypersurfaces with index one
in the real projective space

Autor(en): Carmo, Manfredo do / Ritoré, Manuel / Ros, Antonio

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 75 (2000)

Persistenter Link: https://doi.org/10.5169/seals-56618

PDF erstellt am: 05.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-56618


© 2000 Birkhauser Verlag, Basel
Comment Math Helv 75 (2000) 247-254
0010-2571/00/020247-8 $ 1 50+0 20/0 I Commentarii Mathematici Helvetici

Compact minimal hypersurfaces with index one in the real
projective space

Manfredo do Carmo, Manuel Ritoré and Antonio Ros

Abstract. Let Mn be a compact (two-sided) minimal hypersurface in a Riemanman manifold
M™ It is a simple fact that if M has positive Ricci curvature then M cannot be stable (l e

its Jacobi operator L has index at least one) If M S'n+1 is the unit sphere and L has index
one, then it is known that M must be a totally geodesic equator

We prove that if M is the real projective space Pn+1 S'n+1/{±}, obtained as a metric
quotient of the unit sphere, and the Jacobi operator of M has index one, then M is either a totally
geodesic sphere or the quotient to the projective space of the hypersurface Snl (Ri) X Snt2 (-R2) C
Sn+1 obtained as the product of two spheres of dimensions rai,ri2 and radius Ri,R2, with
"1 + n2 n, R\ + R\ 1 and nxR\ n2R\

Mathematics Subject Classification (2000). Primary 53A10, Secondary 53A05, 53C42

Introduction

Given a compact minimal hypersurface (without boundary) M m a compact Rie-
n-\-\

manman manifold M the second variation formula for the area determines
on the normal bundle of M a selfadjomt elliptic operator L called the Jacobi

operator of M If the normal bundle of M is trivial or, m other words, if M
has a globally defined unit normal vector field N, then we say that M is two-
sided, When M is orientable, this property is equivalent to the onentabihty of
M In the two-sided case the Jacobi operator acts on functions and it is given by
Lu Aw + (Ric(iV) +|ct|2)m, for any m g C°°(M), where A is the Laplacian of M,
Ric(N) is the Ricci curvature of M in the direction of the normal vector N and
a\ is the length of the second fundamental form of the immersion The index of
M is defined as the number of negative eigenvalues of L If the index is zero, then
M is said to be stable Although stability play an important role in the theory of
minimal hypersurfaces it is easy to see that some manifolds M admit no two-sided
stable compact hypersurfaces this holds, for instance, if the Ricci curvature of M
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is positive. On the other hand, Pitts [11] has proved that any compact Rieman-
nian manifold M admits an embedded compact minimal hypersurface with index
less than or equal to one (which is free of singularities when n ^ 7). Also Pitts
and Rubinstein [12] have produced, by minimax method a certain number of index
one examples in three-manifolds. Ross [16] has proved that the classical Schwarz
surface has index one in the cubic flat three torus.

If the ambient manifold has nonnegative Ricci curvature it is natural to hope
that the family of two-sided compact index one minimal hypersurfaces has spécifie
nice properties. In particular complete classifications of these hypersurfaces seems

to be possible for ambient spaces M simple enough. The constant curvature case,
i. e., when M is a fiat or elliptic space form, is of special interest. At the present
there are few classifying results, even for simple three manifolds. We have the
following results: Simons [17] proved that index one minimal surfaces in the sphere
are totally geodesic. Lopez and Ros [9], using results by Fischer-Colbrie [7], showed
that the only complete minimal surfaces with index one are the Catenoid and
Enneper surface. Previously do Carmo and Peng [6] and Fischer-Colbrie and
Schoen [8] had shown that the only stable (index zero) complete minimal surface
is the plane. From the work by Ritoré and Ros [14] a classification of index
one minimal surfaces in P3 can be obtained: it must be a two-fold covering of
a linear subvariety or a tube of certain radius around a line. These authors [15]
also obtained a compactness result for the space of index one minimal surfaces in
fiat three tori. They prove that the set of fiat three tori that admit embedded
orientable compact minimal surfaces with index one is a compact subset in the
moduli space. Ritoré ([13]) made a study of index one minimal surfaces in fiat
three space forms. For general 3-dimensional ambient space some partial results
are known. The interested reader can consult [14] and the references there.

In this paper we treat compact two-sided index one minimal hypersurfaces in
the real projective space Pn+1. Our main result, Theorem 3, is

The only compact two-sided minimal hypersurfaces with index one in the
real projective space Pn+1 are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

The first ones are the twofold covering of the linear hypersurfaces (which are
one-sided) while the Clifford hypersurfaces are embedded. These hypersurfaces
are simply the quotient to Pn+1 of the product of two spheres of right dimension
and radii that lie in Sn+1. They are defined in section 1.

Recall that a constant mean curvature hypersurface in an (n + l)-dimensional
manifold is volume preserving stable if the second derivative of the n-volume is

nonnegative for variations preserving the (n+l)-volume enclosed ([1]). An important

remark is that the boundary of the isoperimetric domains of M are volume
preserving stable. Using this fact Ritoré and Ros give in [14] a complete solution

of the isoperimetric problem in the three dimensional projective space. As a

consequence of Theorem 3 we obtain in Theorem 4 a classification of the volume
preserving stable two-sided hypersurfaces in Pn+! which are minimal.
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The only compact two-sided minimal hypersurfaces which are volume

preserving stable in the real projective space Pn+1 are the totally geodesic
spheres and the minimal Clifford hypersurfaces.

We have organized this paper into two sections. In the first one we define and
study Clifford hypersurfaces. In the second one we state and prove our results.

The first author wishes to thank the warm hospitality of the Department of
Geometry and Topology of the University of Granada where this paper was written.

1. Clifford hypersurfaces

In this section we review the basic properties of a simple family of hypersurfaces
in the unit sphere Sn+1 C Rn+2. Given two positive integers n\ and n2 with
nl + n2 n an(i two positive real numbers R\ and I?2 such that R\ + R\ 1,

the product S"i(i?i) x S"2(fl2) of the spheres §n*{R%) {p% G Rn*+1 :\pl\ Rl},
i 1, 2, is a compact homogeneous hypersurface of the sphere Sn+1 usually called
a Clifford hypersurface.

If p (pi,P2) is a point in M Sni(i?i) x S"2(i?2), then a unit vector normal
to M at this point is given by

Ri R\
P

Therefore the principal curvatures of M are j^-, with multiplicity n\, and — ¦^L,
which has multiplicity n<i- In particular,

M minimal <^=> n\R\ niR\.

Now we assume that M is a minimal Clifford hypersurface. Note that there is

just one of such hypersurfaces for any choice of n\ and n^. The square length of
the second fundamental form of M is given by

o Rn _Ri
Ier! =ni^t + n2~^2~ n-

As the Ricci curvature of Sn+1 is equal to n, it follows that the Jacobi operator of
M is simply L A + 2n. The eigenvalues of the Laplacian of M are known to be

R\
+

R\

where k\ and k^ are nonnegative integers, see [3].
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The hypersurface M is invariant under the antipodal map and, so, it induces
an embedded minimal hypersurface M/{±} in the real projective space Pn+1

Sn+1/{±}, which we will also call a Clifford hypersurface. The Jacobi operator
of M/{±} is given again by L A + 2n, but the eigenvalues of the Laplacian
in the quotient hypersurface are only those in (1) for which k\ + k% is even. In
particular, the first non zero eigenvalue of the Laplacian of M/{±} corresponds
to k\ k-2 1 (the other candidates are obtained for {k\,k<2) (2,0), (0,2), but
it can be checked directly that they give bigger eigenvalues) and its value is

ni n2 R\ + Rl R\ + R1 Ri R\

Therefore it follows that for any minimal Clifford hypersurface M in Sn+1, the
induced hypersurface in the projective space, M/{±}, has index one.

2. Results

Let / : M —s- Sn+1 be an orientable compact minimal hypersurface of the sphere
and N its unit normal vector field. These maps verify the differential equations

A/ + n/ 0 and AN + \a\2N 0, (2)

where |<r| is the length of the second fundamental form of the immersion. The
Jacobi operator of M is given by L A + \a\ + n and its associated quadratic
form is

Q(u,u) - f uLudV= f {|Vm|2 -(|cr|2 +n)u2}dV,
Jm Jm

for any smooth function u on M.
Given a, b G Rn+ we consider the vector valued function ^i, : M —s- Rn+

defined by
<i>s,h (f,a)f+(N,a)N+(f,b)N. (3)

Lemma 1. The value of the Jacobi operator when applied to the function (p^ is

given by

-L4>a,h (n - |a|2)«/,a) / - (JV,a> N) + X,

where X : M —> Rn+ is a vector field tangent to M.

Proof. Each one of the summands of </>a )-, is a product of two functions, say u and
v. The lemma follows by combining the formula A(uv) vAu + uAv + 2 (Vu, Vv)
with equations (2) and using the fact that, in our case, the terms which correspond
to the product of gradients are always tangent to M. D
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Lemma 2. Given el, b G Rn+2 we have

f
m

Proof. Using (2) and Green's theorem we get

(\a\2 -n)(N,a)(f,b}dV f ((AT, a) A (/,b) - (/,b) A (AT, a)) dV 0,
m Jm

as we claimed. D

As remarked in the introduction, there are no stable two-sided hypersurfaces
in Pn+! since its Ricci curvature is strictly positive. Examples of compact two-
sided hypersurfaces with index one in Pn+! are the totally geodesic immersions of
§« in pn+1 (twofoid coverings of embedded totally geodesic Pn) and the Clifford
hypersurfaces in Pn+1. Let us see that they the only examples.

Theorem 3. The only compact two-sided, minimal hypersurfaces with index one

in the real protective space Pn+1 are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

Moreover the only embedded ones are the Clifford hypersurfaces.

Proof. Let / : M —s- Pn+! be a two-sided index one compact minimal hypersurface.
By using locally constant test functions we conclude from th(Mndex one assumption
that M^must be connected. If / lifts to an immersion of M to the sphere Sn+1,
then M is an orientable index^one minimal hypersurface of the sphere. It follows
from [17] that, in this case, M is a totally geodesic sphere.

Henceforth we assume that the above lift does not exist. Therefore there is

a connected twofold covering M^—> M and a isometric minimal immersion / :

M —s- Sn+1 locally congruent to / and such that, if we denote by s : M —s- M the
isometric involution induced byJJie covering, then / is odd, that is / o s —/.
Moreover, the two-sidedness of M implies that M is orientable and that its unit
normal vector field N : M —s- Sn+1 also vérifies N o s —N. In particular the
functions </>a )-, above are even with respect to s, i. e., </>aj-, o s </>aj-,. Observe
that the first eigenfunction (p of the Jacobi operator L of M is also even: this
follows because the associated eigenspace is one dimensional, s is an isometry and

ip > 0 on M.
Our index one hypothesis, when translated to M, says that Q(u,u) ^ 0 for

any smooth function m on M such that u o s u and JM u<p dV 0. Moreover, if
for a function u as above we have Q(u, u) 0, then m is a Jacobi function, that is

Lu 0 on M.
In our argument we will use as test functions the maps </>a )-, which are even

and that, under suitable choice of the parameters a, b in Rn+2 will be orthogonal
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to (p. From Lemmae 1 and 2 we obtain

n-|a|2)«/,a)2-(W,a)Vl/. (4)
M

Note that the expression above does not depend on b. Consider the linear map
F : R™+2 -> R™+2 defined, for any b G Rn+2, by

F(b) f <f(f,h)NdV.
JM

Claim. F is a linear isomorphism.

Proof. To prove this claim assume, reasoning by contradiction, that there is b ^
0 such that F(b) 0. Taking </> 4>oh (f,b)N, we have from (4) that
Q{4>,4>) 0. Thus L(j> 0. On the other hand, Lemma 1 says that L<f> is

a certain tangent vector field X along M. Explicit computation gives, in this
special case, that X —Ah1, where A is the second fundamental form of M,
viewed as an endomorphism, and b* is the tangent part of b along M. Thus we
have that Ab1 0 on M, which is the same to say that the function (N, b) is

constant. As N is an odd function, this constant must be zero. From that we see

that the Hessian of the linear function u (/, b) is given by — (,} u. If u ^ 0,
then Obata's theorem ([3]) asserts that M is isometric to a unit sphere. In this
case the Gauss equation implies that M is totally geodesic in Sn+ Thus M is

either a linear hypersurface in the projective space (which cannot hold because
these hypersurfaces are one-sided) or a totally geodesic sphere covering twice a
linear hypersurface (which is again not possible because this immersion lifts to the
(n + l)-dimensional sphere). If u 0, then we conclude, now in a trivial way,
that M is again totally geodesic which is impossible as above. This contradiction
proves the claim. D

Take an orthonormal basis ai,... a^^ in Rn+2. For any i 1,... n + 2

we can find, using the claim above, a vector b^ G Rn+2 such that the function
4>t </>a»,K is £2-orthogonal to ip. Therefore Q((pt,(pt) ^ 0 and from (4) we get

n+2

/ (n-\a\2){(f,aLtf-(N,aLtf}dV= / (n-\a\2)(\f\2-\N\2)dV 0.

y M J M

This implies that L<f>% 0 for i 1,... n + 2 and so, using lemma 1 we conclude
that (n — |<t|2) (/, a^} 0 for any i, which is possible only if n — |<r|2 0 on
M. Now the result of Chern, do Carmo and Kobayashi [5] says that M is locally
congruent to a Clifford minimal hypersurface. Thus M is congruent either to the
Clifford hypersurface S"i(i?i) x S"2(fl2) C Sn+1 (with n\R\ n2RJ) itself or to
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a nontrivial finite covering of it. We discard the second case (which, of course, is

possible only if either n\ or n<i are equal to one) because its index is bigger than
one. We can see that by checking explicitly the eigenvalues of the Laplacian, as in
(1). This proves the theorem. D

n_l_lA compact constant mean curvature hypersurface Mn immersed in M is

volume preserving stable if the second derivative of the n-volume is nonnegative
for any variation keeping constant the (n + l)-volume. If M Pn+! and M is

two-sided then volume preserving stability is equivalent to

- f u (Am + (|cr|2 + n) u) dV > 0,
JM

for any smooth function m on M with mean zero, where \a\ is the square of the norm
of the second fundamental form a of M. A complete classification of compact two-
sided volume preserving stable surfaces in P3 is given in [14]. As a consequence,
the isoperimetric domains in P3 are found.

If M is volume preserving stable then the operator A+ |<r|2 +n has index zero or
one (none or one negative eigenvalues). As |<r|2 + n > 0 then it cannot have index
zero. So a compact minimal hypersurface which is two-sided and volume preserving
stable has index one. By Theorem 3, M must be a totally geodesic sphere or a
Clifford hypersurface. Since |<r|2 + n is constant for these hypersurfaces, checking
volume preserving stability is reduced to an eigenvalue comparison as in section 1

([1]). So we have

Theorem 4. The only compact two-sided, minimal hypersurfaces which are volume

preserving stable in the real protective space Pn+1 are the totally geodesic spheres
and the minimal Clifford hypersurfaces.

It is expected that, as in the three dimensional case, the isoperimetric domains
in Pn+! are some geodesic balls and their complementary domains, and the
domains enclosed by some Clifford hypersurfaces, see Berger [2, pp. 141-142] and
Burago and Zalgaller [4, 10.2.3].

The main results in this paper remain valid if we allow a singular set of zero
s-dimensional Hausdorff measure, with s ^ n — 2 (for instance for solutions to the
isoperimetric problem), see [10].
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