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Invariant currents on limit sets
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Abstract. We relate the L -cohomology of a complete hyperbolic manifold to the invariant
currents on its limit set
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1. Introduction

Let M be a complete oriented connected n-dimensional hyperbolic manifold We

can write M Hn/T, where F is a torsion-free discrete subgroup of Isom+(i7n),
the group of orientation-preserving isoinetries of the hyperbolic space Hn The
action of F on Hn extends to a conformai action on S^~ the sphere at infinity For
basic notions of hyperbolic geometry, we refer to [2] Unless otherwise indicated,
we assume that F is nonelementary, 1 e does not have an abehan subgroup of
finite index

A major theme in the study of hyperbolic manifolds is the relationship between
the properties of M and the action of F on S*^1 For example, let Xq(M) G [0, oo)
be the mfiinuin of the spectrum <r(A) of the Laplacian on M Let A C S*^1 be
the limit set of F and let D(T) be its Hausdorff dimension Sullivan [15] showed
that if M is geometrically finite then

(n-l)2/4 if D(T) <2^1,
D(T)(n-l-D(T)) iîD(T)>^-

Thus there is a strong relationship between the spectrum of the Laplacian, acting
on functions on M, and the geometry of the limit set There is also a Laplacian
Ap on p-forms on M (see, for example, [9]) The motivating question of this paper
is What, if any, is the relationship between the spectrum of Ap and the geometry
of the limit set7
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If p > 0, it is clear that the inflmum of the spectrum of Ap depends on more
than just the limit set as a set. For example, let M be a closed hyperbolic 3-

manifold. From Hodge theory, 0 G o-(Ai) if and only if the first Betti number
b\(M) of M is nonzero. There are examples with b\(M) 0 and examples with
b\{M) ^ 0. However, in either case, A S^.

In this paper, we address the question of whether Ker(Ap) ^ 0 for a hyperbolic
manifold M. We show how the answer to the question is related to the existence
of F-invariant p-currents on S*^1, of a certain regularity. In some sense, these
currents probe the finer geometry of the limit set.

In order to state our results, let us recall the notion of harmonic extension of
p-forms. We use the hyperbolic ball model for Hn, with boundary Sn~^. The

space of p-hyperforms on Sn~^ is the dual space to the space of real-analytic
(n — 1 — p)-forms on Sn~^-. We think of a p-hyperform on Sn~^ as ap-form whose
coefficient functions are hyperfunctions. A p-current on Sn~^ is a p-hyperform
whose coefficient functions are distributions.

There is a Poisson transform 3>p from p-hyperforms on Sn~^ to coclosed
harmonic p-forms on Hn [6]. To describe $p in terms of visual extension, let wbea
p-hyperform on Sn Given x G Hn, let Sx be the unit sphere in TxHn and let
Ax : Sx —> Sn~^ be the visual map. Given v G TxHn To(TxHn), define a vector
field V on Sx by saying that at y G Sx, V is the translation of v in TxHn from 0

to y, followed by orthogonal projection onto TySx. Then for v\,... vp G TxHn,

1 ' {A*xto,V1A...AVp)dvo\. (1.2)

Equivalently, given x G Hn and v G TxHn, take an upper-half-space model

{(xi,... ,xn)eRn :xn>0} (1.3)

for Hn in which x (0,... ,0,1) and v c^f- for some c G M. Consider the

Killing vector field c^"=1i,^-. It restricts to a conformai vector field W on

dHn 5n-l_ Then for vu v%p e TxHn,

{uj,W1A...AWp)dvol. (1.4)

By a result of Gaillard, forp > 0, $p is an isomorphism from exact p-hyperforms
on S*"^1 to closed and coclosedp-forms on Hn [6, Théorème 2]. Following [6], we

say that a p-form a on i?" has slow growth if there are constants a, b > 0 such
that for some (or any) mo G i/n,

|a(m)| <aeM(m°'m) (1.5)

for all m G Hn. Then for p > 0, $p is also an isomorphism from exact p-currents
on S*"^1 to closed and coclosed p-forms on i?" of slow growth [6, Théorème 3].
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Let 7T : Hn -> i?n/T be the quotient map. Let Q S*™"1 - A be the domain
of discontinuity.

By Gaillard's theorem, if p > 0 then §~^ on* induces an isomorphism between

closed and coclosedp-forms on Hn/T, and F-invariant exactp-hyperforms on Sn~^.
Let a be an L2-harmonic p-form on Hn/F. By Hodge theory, a is closed and
coclosed. Thus we can use results about the L2-cohomology of Hn/T to construct
F-invariant exact p-hyperforms on Sn~^-, and vice versa. The questions that we
address are :

1. What can we say about the regularity of these hyperforms?
2. Are they supported on the limit set?

Under Hodge duality, the space of L -harmonic p-forms on Hn/T is isomorphic
to the space of L2-harmonic (n — p)-forms. Without loss of generality, hereafter
we assume that p G [1, §]•

Theorem 1. Ifn is even then up to a constant, $". is an isometric isomorphism

between exact ^-forms on S*"^1 which are Sobolev H~^-regular, and iß-harmonic
§ -forms on Hn.

From Theorem 1, we obtain that the ^-hyperforms that we construct on S*"^1

cannot be too regular.

Corollary 1. Suppose that a is a nonzero I?-harmonic Ij-form on Hn/T. If T

is infinite then $^ (ir*a) is not Sobolev H~2 -regular.

We now give some positive regularity results. Let us recall that F is said to
be cocompact if Hn/F is compact. It is said to be convex-cocompact if there is a

compact subset K of Hn/F such that all nontrivial closed geodesies in Hn/F lie in
K. If F is convex-cocompact then Hn/T consists of K along with a finite number
of flaring ends attached to K.

Theorem 2. A. IfT is cocompact then for any p € [1, -j], there are isomorphisms
between the following vector spaces :

V\ {Harmonic p-forms on Hn/T}.
V2 ={F-invariant exact p-hyperforms on S*"^1}.
V3 ={F-invariant exact p-currents on S*"^1 which are Sobolev H~p~e-regular

for all e > 0}.
V4 =Hp(i7n/F,R), the p-dimensional real cohomology group of Hn/T.
B. IfT is convex-cocompact then for any p G [l,2-^-), there are isomorphisms
between the following vector spaces :

V\ ={I¦ -harmonic p-forms on Hn/T}.
V2 ={F-invariant exact p-hyperforms on Sn~ which are supported on the limit

set}.
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V3 ={Y-invariant exact p-currents on Sn~ which are supported on the limit set
and which are Soholev H p e-regular for all e > 0}.

V4 =H^(i7n/F,R), the p-dimensional real compactly-supported cohomology group
ofHn/T.

In Theorem 2, we show that the injection V3 —s- V2 is surjective and that $p
induces an isomorphism from Vy to V\. In case A, there is an isomorphism between
V4 and V\ from standard Hodge theory. By [12], this is also true in case B.

There are extensions of Theorem 2 to hyperbolic manifolds with vanishing
injectivity radius. We state one such extension here.

Theorem 3. If n 3, suppose that there is a positive lower hound to the lengths
of the nontnvial closed geodesies on i73/F. Let a be an iß -harmonic l-form on
H /F. Then for all e > 0, the hyperform <$>^ (it*a) is Soholev H e-regular.

We show that the regularity estimate in Theorem 2 is sharp in some cases. We
find an interesting distinction between cocompact groups, and convex-cocompact
groups which are not cocompact.

Theorem 4. A. Suppose that F is cocompact. Let a he a nonzero harmonic 1-

form on Hn/T. Then $^ (ir*a) is not Soholev H -regular.
B. Let Y he a convex-cocompact group which is not cocompact. Let a he an
Inharmonic l-form on Hn/T. Then $^ (ir*a) is Soholev H~ -regular.

We look at what our general results become in the case of surfaces and 3-

manifolds. In the case of surfaces, we obtain results about the actions of Fuchsian

groups on certain function spaces on S*1. Let A'(S^) denote the hyperfunctions on
S*1 and let Aq(S^) denote those which vanish on constant functions. Let V(S^-)
denote the distributions on S*1 and let V'q(S^) denote those which vanish on
constant functions. Recall that a Zygmund function on S*1 is a function / : S*1 —s- C
such that l(0 ()()|sup

"¦

A Zygmund function is continuous and lies in the Sobolev space H ^(S*1) for
all e > 0. Let VZ(S^) denote the generalized functions on S*1 which are derivatives

of Zygmund functions, plus constants. If F is a subgroup of PSL(2,R), let
¦p -p

(Aß(S^-)) denote the F-invariant subspace of Aß(S^), and similarly for (T>'0(S^))

and (VZ{Sl)/C)T.

Theorem 5. A. Let T he a torsion-free uniform lattice in Isom+(i72), with iï2/F
a closed, surface of genus g. Then
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2. (^1)r(^())
3. àim{VZ{Sl)/cf 2g.

I dim(L2(S'1)/C)r 0.

B. Let T be a torsion-free nonuniform lattice in Isom+(i72), with H^/T the
complement of k points in a closed surface S of genus g. Then

r

2. dim(V'0(S1))r max(2g,2g+ 2k-2).
3. dim('ff-^(S'1)/CJ =2g.

I aim(VZ{Sl)/Cf 2g.

5. dim(L2(S'1)/C)r 0.

Parts A.2 and B.2 of Theorem 5 are due to Haefiiger and Banghe [8].

Next, we look at the case of quasi-Fuchsian 3-manifolds. We follow the philosophy

of Connes and Sullivan [5, Section IV.3.7]. Let S be a closed oriented surface
of genus g > 1. Let F be a quasi-Fuchsian subgroup of Isom+(i73) which is iso-

morphic to tti(S). Then H3/T is diffeomorphic tolx5 and H^(ff3/F;C) C.
Thus there is a nonzero L2-harmonic 1-form a on i?3/F.

We show that $^ (ir*a) is a F-invariant exact 1-current supported on the limit
set AcS2. The domain of discontinuity Q C S2 is the union of two 2-disks D-\-
and _D_, with -D+/F and _D_/T homeomorphic to S. Let \d+ & i2(S*2) be the

characteristic function of D+. We show that $^ (ti*o) is proportionate to the
exact 1-current d\D+ on S*2.

Let Z : _D2 —> D+ be a uniformization of D+. By Carathéodory's theorem, Z
extends to a continuous homeomorphism Z : _D2 —s- D+. The restriction of Z to
<9_D2 gives a homeomorphism dZ : S*1 -^- A.

The 1-current dxD+ defines a cyclic 1-cocycle t on the algebra C^-(S^) by

+ (1.7)

Lemma 1. 77ie function space H2 (5* n L°°(S «s a Banach algebra with the

(1.8)

wen/0,/1 GHi(S'1)nLoo(S'1)J /ei
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be the Fourier expansion. Define a bilinear function

by

Then t is a continuous cyclic 1-cocycle on H^(S* Pi L°°(S

We relate the function-theoretic 1-cocycle t to the 1-cocycle t.

Theorem 6. Given F0^1 £ C1^2), put f (dZ)*Fl, i £ {1,2}. Then

P GHi(S'1)nLoo(S'1) and

1) --(f°J1). (1.12)

In Subsection 5.2 we give examples of discrete subgroups F of Isom+(i73) with
limit set S*2 such that for all e > 0, the F-invariant subspace of H^e(S*2)/C is

infinite-dimensional. This constrasts with the fact that from ergodicity, the F-
invariant subspace of L2(S'2)/C vanishes.

Let us remark that our results could be extended to eigenfunctions of Ap with
nonzero eigenvalue. In this paper we only deal with L2-harmonic forms since the
dimension of the space of such forms can often be computed in terms of topological
data, such as when M is a geometrically-finite hyperbolic manifold [12].

2. Regularity

Let p be an integer in [l, §] Take coordinates (r, 9) £ (0,1) x S"-1 for Hn - {0},
with metric

For k > 0, consider the hypergeometric function

Fp,k(z) F(l+p-^,l+p + k;l + ^ + k;z). (2.2)

Put

_ 2P+lT{n-p + k)T{% + 1)
_

2P+1 (n-p)(n-p+l)...(n-p + k-l)
Cp'k ~ n F(n-p)F(f + k + 1)

~ ~ (f + l)(f + 2)... (f + *)
'

(2.3)
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Let {at}^i be a sequence of coclosed (p — l)-forms on Sn~^ such that
1. at is an eigenvector for the Laplacian with eigenvalue (kt + p)(kl + n — p),

kt GZn[o,oo).
2. {dat}^_^ is an orthonormal basis of the exact p-forms on Sn~^-.

Then ¦¦'.ri- (24)

Given an exact p-hyperform co on Sn~17 let

da* (2-5)

be its Fourier expansion. Gaillard [6, p. 599] showed that the Poisson transform
of lu is

(kt + p)(kt + n - p)
^ „_i+fc„ ,_„.

2)Fp-i,kSrZ)dat + (1 - rz)FpM(rz)dr A

Put S71-1^) ={{r,6) : 6 £ S"-1} C Hn. Given ry G Q^^S1""1), we can think
of d,r\ and dr Ar/ as p- forms on Hn — {0}. Their pointwise norms on Sn~^(r) are

|d»7|s„-i (2.7)
\ " /

and
1 2/1 2 \ P~l

|drAr7|s_i(r) ^-f^-J |»7|s„_i. (2.8)

Theorem 1. //n m even then up to a constant, §n. is an isometric isomorphism

between exact %-forms on Sn~ which are Sobolev H ^ -regular, and L -harmonic
77 -forms on Hn.

Proof. We have

F9tk(z) F(l, l + ^+k;l + ^ + k;z) (l- z)~l, (2.9)

Ft_i,fc(z) F(0,1 + k; 1 + I + k; z) 1 (2.10)

and
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Thus

h™

ri+2fc,-2

i=\

A c

CMH

(2.12)

1 -r'
2r

1

2r
1 -r2

1-r2
2r

n-1
(2.13)

2

1"r2(2.14)

The theorem follows. D

Corollary 1. Suppose that a is a nonzero iß-harmonic Ij-form on Hn/T. If T

is infinite then $^ (it*a) is not Sobolev H 2 -regular.

Proof. If $„ (ir* a) were Sobolev H 2-regular then Theorem 1 would imply that

it*a is L2, contradicting the assumption that F is infinité. D

The following is the main technical result of the paper.

Theorem 7. If lu is an exact p-hyperform on S*"^1 and if §p{uj) is L°°-bounded,

on Hn then to is Sobolev H~p~e-regular for all e > 0.

Proof By the assumptions, vol(S}-i(r\\ jSn-i(r) \$p(uj)\^dvol is uniformly bounded

inr G (0,1). Thus for e > 0,

\<$>p{uj)\2dvo\dr < 00. (2.15)

In particular, just looking at the dr A a component of $p(w) in (2.6) gives

(2.16)
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(r2}

¦n-p) < oo,

or

(2.18)

For the regularity question, it is the regime of large kt and z near 1 which is

relevant. Thus our main problem is to derive uniform estimates for F^ k (z), for
large kt and z near 1.

Substituting z ^^y gives

(2.19)
Restricting the summation to kt > 0, the further substitution w ktx gives

(2.20)

oo

In order to estimate FPt^, we use the transformation [1, 15.3.4]

FPik{z) F(l+p-^,l+p + k;l + ^ + k;z)

(l_z)î-P-lF(l+p_ 2,2.^
(2.21)

Then

— 1. p n n

2 +Ä;

n 1

From [11, (4) p. 246 and (15) p. 248],

l\ 4 2 n n n 1

(2.23)
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We obtain

r(A;+p+l)r(n

so

(Recall that for large t [1, 9.7.2 and 10.2.17],

Krf-p-

Then from (2.20),

B h -p)

/ /
O JO

dx < 00,

or

OO /»OO

O JO

p_i(t')dtdt'dx < 00.

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Formally taking kt large, we obtain

OO />OO />OO

0 JO JO

OO,

or

2 F(2fct - 2e)F2(l

OO />OO

0 JO

That is,

CX3 /»OO

70 JO

Making the change of variables t euv and t' e~uv, we have

y^(kt+p)(kt+n-'J

(coshu)-^(coshu)

From [11, (8) p. 325],

le

{

r,n+2e+l -(2n-2p+2e)u-_

p + e,

8F(l + n + 2e)

n + 2e;l-e-4").

329

(2.30)

(2.31)

(2.32)

< oo-

(2.33)

< oo.

(2.34)

Using the asymptotics of the hypergeometric function from [1, 15.3.6], one finds
that for large u,

(coshw)2e (2.35)
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Thus we can apply steepest descent methods to (2.33) to obtain

9 9 T(2kt - 2e)r2(l + % + kt)
p' T2(kl+p + l)T2(n + kl - p)
9cl

JO 2 P 2

fc»

(2.36)

Using the asymptotics of the gamma function [1, 6.1.39], we find

5X22|2<oo. (2.37)

Recalling (2.5), this is equivalent to saying that lu is Sobolev H p ^-regular.
T

then
To justify passing from (2.29) to (2.30), it is enough to note that if x > AT1

(1-^)*.(1 + ÏL)-1-*<1. (2.38)

Thus we have uniform bounds in the preceding arguments. D

Corollary 2. Suppose that Hn/T has positive mjectivity radius. Suppose that
a is an iß -harmonic p-form on Hn/T, p G [1,§]- Then 3>~^(jr*a) is Sobolev

R~p~e-regular for all e > 0.

Proof. By elliptic theory [4, Prop. 1.3], there is a constant r > 0 such that
for all m G Hn/T, \a(m)\ is bounded in terms of the L2-norm of a on the ball
Br{m) C Hn/F. Then tt*u is uniformly bounded on Hn. The corollary follows
from Theorem 7. D

Theorem 2.A. IfTis cocompact then for any p G [1, -g], there are isomorphisms
between the following vector spaces :
V\ ={Harmonic p-forms on Hn/T}.
V2 ={T-invariant exact p-hyperforms on S*"^1}.
V3 ={T-invariant exact p-currents on Sn~^ which are Sobolev H~p~e-regular

for all e > 0}.
V4 =Hp(i7n/r,R), the p-dimensional real cohomology group of Hn/T.

Proof. By standard Hodge theory, V\ V4. In particular, V\ is finite-dimensional.
By Corollary 2, there is an injection V\ —s- V3. There is an evident injection
V3 —s- V<2. By Gaillard's theorem [6, Théorème 2], if uj G V2 then $p(w) is a F-
invariant closed and coclosed p-form on Hn. Hence $p(w) 7r*a for some closed
and coclosed p-form a on Hn/T. Hence there is an injection V<i —> Vi. The
theorem follows. D
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Corollary 3. Suppose that there is a positive lower hound to the lengths of the
nontnvial closed geodesies on Hn/T. Suppose that all of the cusps of Hn/T have
rank n — 1. If a is an L2-harmonic p-form on Hn/T, p G l2^, §}, then for all
e > 0, the hyperform $~ (it*a) is Sobolev Hpe -regular.

Proof. For some \i > 0 less than the Margulis constant of Hn, the /x-thin part of
Hn/T has a finite number of compact components. By the proof of Corollary 2, a
is bounded on the /x-thick part of Hn/T. It follows from [12, Theorem 4.12] that
a is bounded on the cusps of Hn/F. The corollary follows from Theorem 7. D

Theorem 3. In the case n 3, suppose that there is a positive lower bound to
the lengths of the nontnvial closed, geodesies on i73/F. Let a be an L2-harmonic

1-form on H3/T. Then for all e>0, the hyperform ^(tt*«) is Sobolev H"1^-
regular.

Proof. Following the line of proof of Corollary 3, it suffices to analyze the asymp-
totics of an L2-harmonic 1-form a; on a rank-1 cusp. We can take a neighborhood
of such a cusp to be the quotient of

{(x,y,z):y2 + z'2>R,z>0} (2.39)

by the group generated by x —> x + 2tt, for some R > 0. We follow the analysis of
[12, Section 4], with care for constants. Make a change of coordinates toy r cos 9,

z rsinö, with r G [R,oo), 9 G — §,§)• The Riemannian metric in these
coordinates is

7 2 dx2 dr2 d92
d + + (240)

with volume form dvol ^xdrdfrz cos-3 9

Let

uj aod9 + aidx + ßodr (2-41)

be an L2-harmonic 1-form on the cusp. Then

|/3o|2)^<oc. (2.42)

The equations dui d*co 0 become

0 dxao - dea\ drao - deßo dra\ - dxßo (2.43)

cosé><9e (—^-) + r2dxai + r2drß0.
\cos9J
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From these equations, one obtains the Laplacian-type equations

0, (2.44)

r,
"" ....^<*l =0,

1

~~2 c

We first analyze the second equation in (2.44). Given a function / G C°° (—¦§, tj)j
put

JJA (2.45)

Then L is the self-adjoint operator coming from the Dirichlet form on L2 U — -|, -|),

^-gdö). Making the change of variable m siné>, the eigenfunction equation

Lf A/ becomes

a2,\ ell / \ \ -f /O AH\— U )J (U) AJ. (ZAO)

The square-integrable solutions to this have A (q + l)(q + 2) with q G Zfl [0, oo).
The corresponding eigenfunction is given in terms of ultraspherical polynomials
[1, 22.6.6] by

fq(u) (l-u2)C3q/2(u). (2.47)

Explicitly, fq{u) is proportionate to -J^ ((1 —

Performing separation of variables on the second equation in (2.44), suppose
that

ai(x,r,<9) =etmxg(r)fq(6), (2.48)

with m G Z. Then

-g" + m2g + iî±2)^l±lLg 0. (2.49)

If m 7^ 0 then g decreases exponentially fast in r. Suppose that to 0. One
finds that for large r, g{r) ~ r9+2 or #(r) ~ r^9^1. For w to be square-integrable,
one must have g{r) ~ r^9^1. If ç > 0 then |aidx| rcosö|<;(r)||/q(ö)| decays
polynomially fast in r. In the critical case q 0, |aidx| remains bounded in r.

Next, put

L'f -de (cos 6dg (-L- (2.50)

and L ^-^ oi'o cos 6>. Then L is the self-adjoint operator coming from the
Dirichlet form on L2 — -|, -|), cos fldfl). It has a nonnegative discrete spectrum
starting at 0, and hence so does L'. Suppose that f{6) is an eigenfunction of L'
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with eigenvalue A > 0. Performing separation of variables on the first equation in
(2.44), suppose that

aQ{x,r,e)=emxg{r)f{e), (2.51)

with m G Z. Then

-g" + m2g + ^g 0. (2.52)

If m =/= 0 then g decreases exponentially fast in r. Suppose that m 0. One finds

that for large r, g(r) ~ r 2 For lu to be square-integrable, one must have
1-V1+4A

g(r) ~ r 2 If A > 0 then |«o^| cos6\g(r)\\f(0)\ decays like a power in r.
In the critical case A 0, |«o^| remains bounded in r.

Finally, one can analyze the third equation in (2.44), an inhomogeneous equation,

by similar methods. The upshot is that \lo\ is bounded on the rank-1 cusp.
D

Proposition 1. Suppose that there is a positive lower bound to the lengths of the
nontnvial closed geodesies on Hn/T. Let a be an L2-harmonic p-form on Hn/T,
p G [1, t|]. Then 3>~^(jr*a) is a current.

Proof. For some /x > 0 less than the Margulis constant of Hn, the /x-thin part of
Hn/T has a finite number of compact components. As in the proof of Corollary
2, there is a uniform upper bound for |a| on the /x-thick part of Hn/T. On each

cuspidal component of the /x-thin part, |a| has at most exponential growth, with a
uniform exponential constant [12, Section 4]. The result follows from [6, Théorème
3]. D

Proposition 2. For r G (0,1), letir : S1""1 -> S™"1^) be the embedding of S71'1

as the r-sphere around 0 in the ball model of Hn. As in [6, p. 586], put

2JT(n-2p+l)F(f+ 1) fnr^Cp~ ~ Tin

Let u> be an exact p-current on Sn Then as r —> 1, the forms i*<$>p(uj) converge
to CpLU in the sense of convergence of currents.

Proof. From (2.6),

— Elc k rî>-l+fc» r_ F _j k (r^)dat. (2.54)

Given a smooth form 77 G Qp(S'n^1), let 11(77) be the projection of 77 onto the
square-integrable exact p-forms on S*"^1. Then 11(77) is also smooth and has a
Fourier expansion

00

n(j7)=5^a,do;„ (2.55)
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with J2^Ll ^fkl2 < °° for all N € Z+. The pairing

*;$P(^)A«7 (2.56)
s™-1

is given by

ljfci(r2). (2.57)
r +n-p) p-l+k,cXrp +{rp(),ri) 2_^ttpX \

Then

(2.58)

As a; is a current, Y^L\ k^\at\\ct\ < °° f°r aU N e z+-

Lemma 2. j4s r increases from 0 io 1, i/ie expresston rp~ *j~q~Fp-l,kXr

increases monotomcally from 0 io 77-1—tvt ,—, \^/

Proof. The fact that the right-hand-side of (2.6) is closed implies that

T (rp-1+^-j^—Fp_ltki(r2))=r''-1+^l-^)Fp,k,(r2). (2.59)
dr \ K+p

(Of course, this can be checked directly.) From [1, 15.3.3],

FP,kAr2) =F(l+p- ^, 1 +p + kt; 1 + ^ + kt; r2) (2.20)

(1 - r2)n-l-2pF(n + ^ _p
¦<]_

_p. 1 + I + h. r2y
Zj Zj

As the arguments of F(n + kt — p, ^ — p; 1 + ^ + kt; r2) are all nonnegative, the
lemma follows. D

Proposition 2 now follows from dominated convergence. D
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Proposition 3. Suppose that a is an L -harmonic p-form on Hn/T, p € [1, -j|).

Suppose that 3>~^(jr*a) is a current. Then 3>~^(jr*a) is supported, on the limit set
A o/r.

Proof. Given a smooth form </> G Qp(S'n^1) with relatively compact support in
Sn~l — A, Proposition 2 implies that

lim (i*ir*a,<t>) =Cj,{$-y(ir*a),<t>j (2.61)

If A 0, we assume that supp(</>) ^ Sn~^; this is sufficient for the argument.
Then we can use an upper-half-space model for Hn, with supp(</>) C I™"1. Put
V supp(</>) x (0,oo) C Hn. Using the coordinates (x\,... ,xn_\,y) for Hn, let
us write a. a(x,y) + dy A b(x,y). Then [12, Theorem 4.3] states that on V, as

^ _
f aooWy«-2?'-1 +O(y«-2Plog(y)) if p < ^-,

and

6=^ "v '" "w' ¦ w ' * \' (2.63)

(The statement of [12, Theorem 4.3] should read uy —> 0".) As r ^ 1, the
intersections Sn~^-(r) C\V asymptotically approach the horosphere pieces

{(xu...,Xn_uy)eHn:y ^-}nV. (2.64)

It follows that ($~1(7t*q;), 4>) 0 for all such </>, from which the proposition follows.
D

ReniEtrk. The analog of Proposition 3 is false if p Ç. This can be seen in the
case F {e} using Theorem 1.

We give a partial converse to Proposition 3, in the case of convex-cocompact
groups.

Theorem 2.B. If T is convex-cocompact then for any p € [1, ^j^), there are
isomorphisms between the following vector spaces :

V\ ={L -harmonic p-forms on Hn/T}.
V2 ={r-invariant exact p-hyperforms on Sn~ which are supported on the limit

set}.

V3 ={T-invariant exact p-currents on Sn~ which are supported, on the limit set

and which are Sobolev H~p~e-regular for all e > 0}.
V4 =H^(i7n/r,R), the p-dimensional real compactly-supported cohomology group

ofHn/T.
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Proof. By [12], V\ V4. In particular, V\ is finite-dimensional. By Gaillard's
theorem [6, Théorème 2], Corollary 2 and Proposition 3, there are injections V\ —>

V3 —> V2. It remains to show that there is an injection Vy —> V\. In view of
Gaillard's theorem, it suffices to show that if to G V2 then <J>p(w) descends to a
form which is square-integrable on Hn/T. If F is cocompact then this is automatic,
so assume that F is not cocompact. As Q/F is compact, we can find a fundamental
domain F for the action of F on Hn such that F n S*"^1 is disjoint from A. Take
an upper-half-space model for Hn with 00 G Q. In terms of the upper-half-space
coordinates [x\,... ,xn_\,y), [6, Lemme 3] implies that near y 0,

yn-2P-14>(x,y), (2.65)

where the p-form </>(x, y) is continuous up to y 0. It follows that JF \$p(
< 00. D

3. 1-Forms

In this section we look in more detail at the case of L2-harmonic 1-forms on convex-
cocompact hyperbolic manifolds. If the hyperbolic manifold is compact, we show
that the Sobolev regularity estimate of Theorem 2.A is sharp. If the hyperbolic
manifold is convex-cocompact but not compact, we show how to construct its
L2-harmonic 1-forms explicitly in terms of the harmonic extension of functions.
In this case, we show that the Sobolev regularity estimate of Corollary 2 can be

slightly improved.

Proposition 4. Suppose that F is cocompact. For e > 0, let Vf be the Y -invariant
subspace of the function space H~e(S'n~ )/C. ThenV^ is isornorphic to H (F;C).

Proof. We first define linear maps / : H^F; C) -> Ver and J : Ver -> H^F; C). To
define /, given x G H^FjC) H1(ffn/F; C), let a G ül{Hn/T) be the harmonic 1-

form which represents x. Put a. ir*a. By Theorem 7, <J>^ (5) is an exact H~ -

regular F-invariant 1-form on S*""1. Choose / G H^^S*""1) so that $^(5) df.
Then for all 7 G F,

d(/-7-/) 4f-7-4f 0. (3.1)

Thus

/-7-/ c(7) (3.2)

for some 0(7) G C. Put I(x) f mod C.
To define J, given / G Vf, let / G H^e(S'n^1) be a representative of /, not

necessarily F-invariant. As / is F-invariant, for each 7 G F there is a 0(7) G C
such that / — 7 • / 2(7). As

c(7172) /-(7172)-/ (/-71-/)+71-(/-72-/) c(7l)+71-c(72) c(7l)+c(72),
(3.3)
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we have a cocycle c F —s- C Put J(/) [c]

We show that Jo/ is the identity It suffices to show that the cocycle c of (3 2)

represents x G H (F, C) For this, it suffices to show that for all 7 G F,

c(l) J a, (3 4)

where C7 is a closed curve on Hn/T in the homotopy class of 7 G iri(Hn/T) and

a G Q^(Hn/T) is the harmonic representative of x Let C7 be a lift of C7 to Hn,
ending at a point m G //" and starting at 7"1 m Then

a= L a= L ^iWJ /„ d$0(/) ($o(/)) (m) - ($o(/)) (7"1 to)
c7 7c7 7c7 7c7 (35)

($o(/)-7 *o(/))(to) ($o(/~7 /))(to) ($o(c(7)))(to) =0(7)

This shows that J o / is the identity To see that / o J is the identity, given

/ G Vf, let / G ~H~e (Sn~^) be a representative of /, not necessarily F-invariant
Define a. &i(df) Then 5 is a smooth F-invariant harmonic 1-form on Hn and
projects to a harmonic 1-form a G Q}{Hn/Y) By the same sort of calculation as

in (3 5), one finds that J{f) [a] in H^F, C) By construction, /([a]) / Thus

/ o J is the identity D

Theorem 4.A. Suppose that F is cocompact Let a be a nonzero harmonic 1-form
on Hn/T Then $^1(tt*q;) is not Sobolev FT1 -regular

Proof Suppose that $^ (ti*o) is Sobolev H -regular Then $^ (ti*o) df for
i\ -1

some / G L (Sn~ Extending the proof of Proposition 4 to the case e 0, the

equivalence class / of / in L (Sn~^-)/<C is F-invariant and satisfies J(/) [a]
As F acts ergodically on Sn~^-, we must have / 0 and hence [a] vanishes in
H1 (i/n/F, C), which is a contradiction D

We now consider groups F which are convex-cocompact but not compact First,
we prove some generalities about the relationship between compactly-supported
cohomology and L2-cohomology

Let M be a complete connected oriented Riemanman manifold Let ffiL (M)
be the p-th (reduced) L2-cohomology group of M It is lsomorphic to Ker(Ap)
There is a map 1 H£(M, C) —> FFvL(M) In general, 1 is not injectîve, think of

M Rn However, it is true, and well-known, that 1 always induces an injection
of Im(H£(M,C) -> HP(M,C)) into H^2)(M) [9, Prop 4] The next result gives a

sufficient condition for i to be mjective on all of H^(M, C) Recall that there is a
notion of the space of ends of M, and of an end being contained in an open set
U C M, see, for example, [3, §12]
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Proposition 5. Suppose that for every end e of M, every open set U containing e

has infinite volume Suppose that M has a Green's operator G Gg°(Af) —> L(Af)
such that A o G Id Then i H* (M, C) -> HL (M) is mjective

Proof We have the decomposition

H^(M,C) (Ker(Hj(M,C) -> H^A^C
(3 6)

We first show that i is mjective on Ker(F[J(Af, C) —s- H1(Af, C)) A representative
of Ker(H*(Af,C) —> H1(Af,C)) is a closed compactly-supported 1-form a such
that a df for some function / By construction, / is locally constant outside of
a compact subset of M and so gives a function on the space of ends of M Now
d{f — GAf) is a harmonic 1-form on M As

{dGAf, dGAf) (GAf, Af), (3 7)

we have that d(f-GAf) is square-integrable The map a —> d(f-GAf) describes

i on Ker(Hj(M, C) —> H1(Af,C)) To see that it is mjective, suppose that d(f -
GA/)=0 Then/-GA/is constant As GA/ G L2(M), the volume assumption
implies that /, as a function on the space of ends of Af, is a constant c Then

/ — c is compactly-supported on Af, with d(/ — c) a, so [a] 0 in H^(Af, C)
In summary, we have realized an injection of Ker(FF;(Af, C) —s- H (Af, C)) into
H[2)(M)

It remains to show that

Suppose that d(f-GAf) is nonzero and lies in the image, under t, of Im(H^(Af, C)
—s- H (Af, C)) Then d(f — GAf) uj mod Im(d) for some closed compactly-
supported 1-form lu Furthermore, by assumption, there is a closed compactly-
supported (dim(Af) — l)-form r\ such that JM lu A r\ 1 However, JMd(f —

GAf) Ar] 0 It follows that

i (Ker(Hj(Af,C) -^Yil{M,C))\ C\i flm(H;i(Af,C) -^Yil{M,C))\ =0 (3 9)

This proves the proposition D

Suppose that F is convex-cocompact but not cocompact Then Hn/F satisfies

the hypotheses of Proposition 5 and so i Yi\ (Hn/T, C) -> HL (Hn/T) is mjective
For the rest of this section, we assume that n > 2 It follows from [12, Theorem
3 13] that i is an isomorphism This essentially comes from the fact that given an
L2-harmonic 1-form lu on Hn/T, one can apply the Pomcaré Femma from infinity
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to homotop lu to something with compact support. We show how to construct the
L2-harmonic 1-forms on Hn/T explicitly.

Lemma 3. There is an isomorphism between Hc(i7n/F; C) and the quotient space

W {(/,c) G Coo(Q)xH1(r;C) : / is locally-constant and for all 7 G T, (3.10)

(Here C acts &y addition on C°°(Q) and fixes H^FjC).;

Proof. Given x G Hc (Hn/T; C), represent it by a smooth closed compact-supported
1-form a G U1(iïn/r). Put 5 n*a. As a is compactly-supported, we can extend
a. continuously by zero to become a closed 1-form on Hn U Q. Fix a point s G ü.
Define / : Q -> C by

f(z)= fä, (3.11)
Je

where C is a curve in Hn U Q from s to z. Then

(/-7 •/)(*)= La, (3.12)
Je

where C' is a curve in Hn UQ from 7"1 • z to z. Now C' projects to a closed curve
C on the compact manifold-with-boundary (Hn U Q) /F. Then

¦y.. (3.13)

It follows that / - 7 • / c(7), where c is the image of x in H1((ffn U Q)/F; C)
H (F;C). A different choice of s changes / by a constant.

Conversely, given (/, c) G W, fix a point mo & Hn/T. Let 1? be large enough
that the convex core of Hn/T lies within _B^(mo)- Let </> : [0,oo) —s- R be a
smooth function which is monotonically nonincreasing, identically one on [0, R] and
identically zero on [R+ 1, oo). Let r) G C°°(Hn) be the lift to ffn of </>(d(m0, •)) G

C°°(i7n/F). Extend / inward to a locally-constant smooth function F : (Hn —

^'(ßßfmo))) -s- C. Put 5 d((l - rj)F) on F" - ^"^^(mo)) and extend it
by zero to Hn. Then 5 is a closed F-invariant 1-form on Hn which descends to
a closed 1-form a G Ü1(i7n/F) with support in _B#_|_i(mo), and hence an element

One can check that these two maps are inverses. We omit the details. D

The map W —> H1(i7n/F;C) induced from (/, c) —s- c is the same as the map
Hj(ff"/F;C) -> H1(ff"/F;C). Its kernel can be identified with the F-invariant
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locally-constant functions on Q, modulo C This has dimension equal to the number

of ends of Hn/T minus one, as it should.
Choose x G Hc(i7n/F; C). Define the locally-constant function / : Q —s- C as in

the proof of Lemma 3. As A has measure zero, we can think of / as a measurable
function on Sn~^-.

Proposition 6. / lies tn Lp(Sn-1) for allp e [l,oo).

Proof. Let K be the convex core of Hn/T and let dK be its boundary. Put
K tt~^(K), the convex hull of A, and put dK ir~^{dK). As K is convex
and K is compact, it follows that dK is quasi-convex, meaning that there is an
R > 0 such that if yi,j/2 € dK then the geodesic from y\ to y<2, in Hn, lies in an

R-neighborhood of dK. We take a ball model Bn for Hn such that xq tt(O) lies

in K.
If Q C Sn~^ is connected then the result is trivial, so we assume that Q has

more than one connected component. Let Dbea connected component of Q. We

first estimate the spherical volume of D. There is an end e of Hn/F such that if a

curve c in Hn goes to D then ttoc exits e. Let deK be the connected component
of dK corresponding to e. Then there is a component djjK oîn~^(deK) such that
D retracts onto d]jK under the nearest-point retraction. Furthermore, the closure

of dnK in Bn separates D from K — dr>K. Let rn be the hyperbolic distance from
0 to dnK. Then dpK C Hn — Brr>(0). We are interested in what happens when

rn is large. If z\,z% G dD then the geodesic from z\ to z% cannot enter _BrD_ß(0),

as this would violate the quasi-convexity of dK. Quantitatively, this implies that
the spherical distance from z\ to zo cannot exceed 2 sin —r-A—-^ Thus D

lies within a spherical ball of radius rn 4 sin —r-A—=r As the volume ofK u \cosh(rD-R) J
—r-A—=r

\cosh(rD-R) J

this spherical ball is bounded above by a constant times r^~ we conclude that
there is a constant C > 0 such that vol(_D) < Ce~(n~1-)rD, uniformly in the choice

oîD.
The connected components of Q are in one-to-one correspondence with the set

¦K\{K,dK). Fix an end e of M, with associated connected component deK of
dK. Take the ball model so that xq g deK. The connected components D of Q

corresponding to e form the preimage of deK under the map tv\ (K, dK) —> ttq (dK).
Given D, let c(s),0 < s < rjj, be a normalized minimal geodesic from 0 to d]jK.
Consider a loop Lp in Hn/T which starts at xo, follows tt o c to Tr(c(ro)) € 9eÄ"
and then returns to xq by a length-minimizing path in deK. The length of Lp
will be bounded above by rn + di&m(deK). On the other hand, Ln describes a
class [LD] G tti(K,xq). It follows that d(0, [LD] ¦ 0) < length(LD). Also, as c is
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minimal from 0 to c(ro), we have rjj < d(0, [Lu] ¦ 0) + diam(<9eA'). Thus

d(0, [LD] ¦ 0) < length(LD) <rD+ diam(deK) < d(0, [LD] ¦ 0) + 2diam(deK).
(3.14)

In terms of the homotopy sequence

Tr1{K,xo)-^Tr1{K,dK)-^TrQ{dK), (3.15)

we have defined a map s : ß~^(ßeK) —> ir\(K,xo) which sends D to [Ljj], with
a o s Id on ß~^{deK). Thus s is injective. By the construction of /, there is a
bound

1/(13)1 <A\ength{LD)+B<Ad{Q,[LD}-Q)+B' (3.16)

for De ß- 1{de K). Then

\f(D)\Pyol(D)<

By [14], there is an e > 0 such that

(3.17)

Ce-(n-l)(d(0,[LD] O)-dwm(fl

It follows that / is 1/ on [J{D G ß~^(deK)}. Considering together the finite
number of ends of Hn/T, the proposition follows. D

Lemma 4. For f £ L2{Sn-x), let $0/ € C°°(Hn) be its harmonic extension.
For 1 < j < n, let x3 he the restriction to Sn of the j-th coordinate function on
Rn. Then

J=l

fan-l X-, fdvolJs 3

vol(Sr -1)
(3.19)

Proof. Let {ßt}^i be an orthonormal basis of L2(S>n^1) consisting of eigenvectors
of As„-i with eigenvalue (kt + l)(kt + n — 1), kt G Zn [—1, oo). Let / ^Z^=i
be the Fourier expansion of /. Then from [6, p. 599],

It follows that
(3.20)

(3.21)
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We can take the ß% 's with kt 0 to be the functions < —,," _,.. x, > .In
{\vol(S Jj3 i

this case, one can verify that \ßt\2 + |VSn-i/3t|2 is constant on Sn~^-. Its integral
is

/salience

(\ßt\2 + \Vsn-ißt\2) dvol (ßt,ßt) + (ßt,As„-ißt) 1 + (n - 1) n.

(3.22)

vol(Sn-1)
and so

(n-
nvol{Sn *

(n-1)2

E

(3.23)

(3.24)

Xjfdvo\

vol{Sn-1)

The lemma follows. D

Proposition 7. d($o/) «s a Y -invariant harmonic 1-form on Hn. It descends to

an L -harmonic 1-form on Hn/F.

Proof. As / is L2, $o/ is well-defined. As $o/ is harmonic, Aid($o/)
r) 0. Thus d($o/) is harmonic. Furthermore, for all 7 G F,

- 7 • d($o/) t^(cI>o(/ — 7 • /)) d(§oc7) dc1 0. (3.25)

Thus d($o/) is F-invariant. It remains to show that the descent of d($o/) to
Hn/T is L2.

Fet to be a point in the connected component of Hn/T — K corresponding to
an end e. Take a ball model Bn of Hn with tt(0) to. Fet D be the connected

component of Q adjacent, in Bn, to the connected component of Hn — K containing
0. Changing / by a constant, we may assume that / vanishes on D. The method
of proof of Proposition 6 implies that the Z^-norm of /, as seen in the visual sphere
at to, is O(e~(n~^->d(m'K>) with respect to to. Then by Femma 4,

|V($o/)|2(O) O(e-2(-n-^d(-m'Ky). (3.26)

On the other hand, the volume of {to g Hn/T : d(m,K) G [j, j + 1}} is O(e(n"1)J).
The proposition follows. D
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Thus we have constructed dim(H^(iïn/r; C)) linearly-independent L2-harmonic
1-forms on Hn/T.

Theorem 4.B. Let T be a convex-cocompact group which is not cocompact. Let
a be a nonzero L2-harmonic l-form on Hn/T. Then $^ (ir*a) is Sobolev H -

regular.

Proof. We know that ti*o. d($o/) f°r some / G L2(S'n^1) constructed as in
Lemma 3. Then ir*a $>i(df), with df being Sobolev H -regular. D

4. Surfaces

Theorem 5.A. Let T be a torsion-free uniform lattice in Isom+(i72), with H^/T
a closed surface of genus g. Then

2. dïm^S^f 2g.

3. àim{VZ{Sl)/cf 2g.

I dim(L2(S'1)/C)r 0.

Proof The proof is similar to the proof of Theorem 2.A. If F G (^(S*1)) then
dF is a F-invariant exact hyperform on S*1 and $i((AF) is a F-invariant closed and
coclosed l-form on i?2. Thus $i((AF) n*a for a harmonic l-form on i?2/F. In
terms of the complex coordinate z on _D2, we can write $i(<AF) hi(z)dz+fi2('z)dz
where h\{z) and h<i{z~) are holomorphic functions. Let k\{z) and k^{z) satisfy
ht(z)=k't'(z) for i G {1,2}. Then

d($0F) $i(dF) d(*i(z) + k'2(z)) (4.1)

so ^o-F1 k\(z) + k^) + const. As a is bounded, $i(<AF) is uniformly bounded
on i?2 and so

2)|fc:'(z)|<oo. (4.2)

That is, k[ is an element of the Bloch space and so kt has a boundary value in the
Zygmund functions Z [7, p. 282,442]. Thus F{6) k'^eJ-0) + 4(e~îo) + const.,
showing that F has the required regularity.

Part (4) follows from the fact that F acts ergodically onS*1. D

Theorem 5.B. Let T be a torsion-free nonuniform lattice in Isom (H with
H /T the complement of k points in a closed surface S of genus g. Then
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2. dim(V'0(S1))r max(2g,2g + 2k-2).
3. dim(ff-^(S'1)/CJ =2g.

I aim(VZ{Sl)/C)T 2g.

5. dim(L2(S'1)/C)r 0. D

Proof. Sending / G (^(S*1)) to $i(df), we see that (^(S*1)) is isomorphic
to the space of closed and coclosed 1-forms on i72/F. Let p be a puncture point
in S and let Z be the subgroup of F generated by a loop around p. Then the

cusp of i72/F corresponding to p embeds in i?2/Z. We model the latter by the
upper-half-plane quotiented by z —> z + 1. Consider the pullback of &\{df) under
the quotient map i?2/Z —> i72/F. As in [8], such a 1-form on i?2/Z can be written
as h\(z)dz + h,2(~z)dz, where /^(z) /ij(z + 1). Each /i4 has a Fourier expansion

^e2-^2. (4.3)

If cij 0 for j < —J then a change of variable w e27rv^z gives

ft1(Z)dz= V cliJ^-!-^=, (4.4)

and similarly for h<i{z*)d~z.

To each puncture point pi G S, 1 < / < k, assign an integer J; and let

i —5Zi=iW + 1)PM denote the space of holomorphic differentials on S whose

Laurent expansion around each pi has the form of the right-hand-side of (4.4)
with J J\. By the Riemann-Roch theorem, i(D) > g — l + 5Zi=lW + -0- Taking
the numbers {Ji}f=i large, part (1) follows.

Part (2) was proven in [8]. For completeness, we repeat the argument. On the
upper-half-plane, |/ii(z)cfe| \h\(x + iy)\y. As d(i,iy) |ln(y)|, if h\(z)dz has

slow growth as y —s- oo then we must have c\0 0 for j < 0. The space of such

holomorphic differentials on S has dimension i — J2i=lPij- The Riemann-Roch

theorem implies that il — J2i=lPi) max(s + k,g + k — I). Part (2) follows.

Suppose that / G (H ^(S )/C) Then df is H ^-regular. Considering

If), we know that on a cusp, h\{z) has an expansion (4.3) with c\3 0 for

j < 0. If cio 7^ 0 then as y —s- oo, h\{z)dz ~ c\ßdz. To analyze the singularity
at a cusp point on S*1, we consider the 1-form c\odz on the upper-half-plane
and perform the reflection z —> t4^. On the boundary of the upper-half-plane,

this restricts to x —> ^ and so c\$dx -^ —c\q^. The point ioo gets mapped
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to 0 and so it is enough to look at the singularity of —c\ o^f near x 0 The

Fourier transform of \ is proportionate to |/c| Hence \ lies m Hs if and only
if /R(l + k^)s\k\^dk < oo, îe if s < —| This contradicts the assumption that

df is H~2_regular Thus c\ o 0 Then $i(df) is bounded and as m the proof
of Theorem 5 A, / G (VZ(S^)/€.) Furthermore, h\(z)dz extends smoothly over
the puncture points to give a holomorphic differential on S We conclude that

both fH~2 (Sfl)/CJ and (l?Z(S'1)/C) are lsomorphic to two copies of the space

of holomorphic differentials on S, the dimension of which is g Parts (3) and (4)
follow

Finally, part (5) follows from the ergodicity of the F-action on S D

5. 3-Manifolds

5.1. Quasi-Fuchsian groups

Let S be a closed oriented surface of genus g > 1 Let F be a quasi-Fuchsian
subgroup of Isom+(i73) which is lsomorphic to tt\(S) Then H3/F is diffeomorphic

tolxS and hJ(F3/F,C) C (In terms of the projection p R x S -> R, a

proper map, one has hJ(F3/F, C) p* fH*(R,C))) Thus there is a nonzero

L2-harmomc 1-form a on H3/T
By Corollary 2 and Proposition 3, $^ (ti*o) is a F-mvanant exact 1-current

supported on the limit set AcS2 The domain of discontinuity Q C S*2 is the
union of two 2-disks D+ and _D_, with -D+/T and _D_/F homeomorphic to S Let

Xd+ € L2(S'2) be the characteristic function of D+ By Proposition 7, $^ (tt*«)
is proportionate to the exact 1-current d\D+ on S*2

In order to write d\D+ more directly on A, we follow the general scheme of [5,

Section IV 3 7] Let Z _D2 —s- D+ be a umformization of _D_|_ By Carathéodory's
theorem, Z extends to a continuous homeomorphism Z _D2 —> _D_|_ The restriction

of Z to 9_D2 gives a homeomorphism 9Z S*1 —s- A
From a general construction [5, Theorem 2, p 208], the 1-current d\D+ defines

a cyclic 1-cocycle r on the algebra C^-(S^) by

dXD,f\FK)dFl (5 1)

Lemma 1. T/ie function space H'(S' fl L°°(S «s a Banach algebra with the

*«)'«'»» <52>
R+ JS1 "- /
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Given fj1 GHi(S'1)nLoo(S'1)J let

be the Fourier expansion. Define a bilinear function

- : (ri (S1) n L^iS1)) x (ri (S1) n L^iS1)) -> C (5.4)

by ~ :°cL,. (5.5)

Then ~ is a continuous cyclic 1-cocycle on H^(S* Pi L°°(S

Proof. It is straightforward to check that H 2 (S*1) n LOO(S>1) is a Banach algebra
with the given norm. It is also easy to check that t is continuous. If Z0,/1 G

C00^1) then

f df\ (5.6)
Js1

As in [5, p. 182], put

If/0,/1,/2 G COO(S'1) then (6t)(/°,/1,/2) 0. As Coo(S>1) is dense in H^S^n
L°°(S^) and b~ is continuous in its arguments, it follows that b~ 0. D

Theorem 6. Given F0^1 G C1^2), put fl (d~Z)*Fl, i G {1,2}. Then

P GHi(S'1)nLoo(S'1) and

t(F°, F1) -t(/°, Z1). (5.8)

Proo/. Consider S*2 as C U oo with oo G D-. For r G (0,1), let ir : S1 -^ D2 be
the embedding of S*1 as the circle of radius r around 0 G D2. Thinking of Z as a

map from D2 to C, let

Z{z) S^ ckzk (5.9)
fc=0

be its Taylor's series. Then

oo

-/ dZAdZ* - i*rZd(i*rZ*)=TrSTkr2k\ck\2. (5.10)
2JbJ0) 2Jsi jrk
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As Z is univalent,

-/ dZ A dZ* area(Z(L>2)) < oo (5 11)

It follows that
hm i*rZ dZ (5 12)

in H? (S1) n LOO(S'1) Then /* G H? (S1) n LOO(S>1)

We have

t(F°,F1)= f dxn+AF^F1 (5 13)

XD+dF° AdF1

dF° A dF1

Then

hm-/ d(Z*F°)Ad(Z*F1) (514)
r->1 Jßr(0)

hm - / «;Z*F° A d{i*rZ*Fl)

From (5 12),

hm i*rZ*Fl f (5 15)

in H^ (S1) n LOO(S'1) The theorem follows D

Example. Let S be a closed oriented surface of genus g > 2, let </> G Diff(S) be an
orientation-preserving pseudo-Anosov diffeomorphism and let M be the mapping
torus of <f> Then M is a 3-mamfold which fibers over the circle and admits a

hyperbolic structure [16, 13] Let M i?3/F be the corresponding cyclic cover
of M, with the pullback hyperbolic metric The group F is isomorphic to tti(E)
From [10, Proposition 9], M has no nonzero L2-harmomc 1-forms This contrasts
with the quasi-Fuchsian case
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5.2. Covering spaces

If M is a closed 3-manifold then M has nontrivial L2-harmonic 1-forms if and only
if b\(M) > 0. There are many examples of hyperbolic manifolds 3-manifolds M
with b\{M) > 0, such as those which fiber over a circle. It is less obvious that
there are infinite normal covers M H3/F of closed hyperbolic 3-manifolds such

that M has nonzero L2-harmonic 1-forms. We give some examples. The limit sets
will be all of S2.

Let M be a closed oriented hyperbolic 3-manifold with a surjective homomor-
phism a : ir\(M) —> Fr onto a free group with r > 1 generators. Let M H3/F
be the corresponding cover with F Ker(a). The space of ends of M is a Cantor
set. As Fr is nonamenable, Proposition 5 applies to show that M has an infinite-
dimensional space of L2-harmonic 1-forms. Thus for all e > 0, (H^e(S'2)/C) is

infinite-dimensional.
For another example, let S be a closed oriented surface of genus g > 2. Let p

be a nonzero element of H (S;Z) I?9. Let S be the cyclic cover of S coming
from the homomorphism tti(E) —> Hi(£; Z) -^> Z. It is an infinite-genus surface.

Let <f> be an orientation-preserving pseudo-Anosov diffeomorphism of S which
acts trivially on H (S;Z); it is a surprising fact that such diffeomorphisms exist

[17]. It lifts to a diffeomorphism </> of £. Let M be the mapping torus of </>, with its
hyperbolic metric. It follows from the Wang sequence that H (M; Z) Z 9 © Z.

Let M H3/T be the cyclic covering of M coming from p © 0 G H1(M;Z).
Equivalently, M is the mapping torus of </>.

Given eîS G E/(l), let pe : Z -> C/(l) be the representation pe(n) emd. Let
Eg be the flat unitary line bundle on £ coming from the representation tti(E) —>

Hi(E; Z) -^> Z -^ C/(l). Let fg be the flat unitary line bundle on M coming from

the representation tv\(M) —s- Hi(M;Z) -^ Z -4- C/(l); it is the mapping torus
for the action of </> on i?g. As in [10, Section 4], it follows from Fourier analysis
that M has a nonzero L2-harmonic 1-form if and only if H (M; Fg) ^ 0 for all 6.

Furthermore, because of the Z-action on M, if there is one nonzero L2-harmonic
1-form then there is an infinite-dimensional space.

From the Euler characteristic identity and Poincaré duality,

2-2# 2dimH°(X;£e)-dimH1(X;£e). (5.16)

As dimH°(S; Eg) < 1, it follows that

dim H (S; Eg) 2g — 2 II — dim H (S; Eg)) > 0. (5-17)

From the Wang sequence,

R\M; Fg) H°(S; Eg) © H^E; Eg) ^ 0. (5.18)
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Thus M has nonzero L2-harmomc 1-forms and for all e > 0, (H~e(52)/C) is

mfinite-dimensional The L2-harmonic 1-forms on M arise from the fact thatmfinite-diinensional The L -harmonic
Im (rI(M,C) -> H^M^C)) is nonzero
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