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Periodic ends, growth rates, Holder dynamics for
automorphisms of free groups

Gilbert Levitt and Martin Lustig

Abstract. Let Fn be the free group of rank n, and dFn its boundary (or space of ends)
For any a G Aut Fn, the homeomorphism da induced by a on dFn has at least two periodic

points of period < In Periods of periodic points of da are bounded above by a number Mn
depending only on n, with logMn ~ ^Jn log n as n —> +oo

Using the canonical Holder structure on dFn, we associate an algebraic number A > 1

to any attracting fixed point X of da, if A > 1, then for any Y close to X the sequence
dav(Y) approaches X at about the same speed as e~^ This leads to a set of Holder exponents
A/j(<&) C (l,+oo) associated to any <& G Out Fn This set coincides with the set of nontnvial
exponential growth rates of conjugacy classes of Fn under iteration of <&
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Introduction and statement of results

Let ^bea homeomorphism of a closed surface E, with x(^) < 0 In [14], Nielsen
studied (p by lifting it to the universal covering D of S and considering the induced
homeomorphism / on the circle at infinity S In more algebraic terms, the mapping
class of ip corresponds to an outer automorphism $ of ttiE, various lifts of tp to
D correspond to various automorphisms a of ttiS representing $, and / S —> S

corresponds to the homeomorphism da induced by a on the boundary of the group

Let Fn be the free group of rank n We will study automorphisms a of Fn,
and outer automorphisms $ G Outfn, through the homeomorphisms da induced
on the boundary dFn The space 8Fn, homeomorphic to a Cantor set if n > 2,

may be viewed as the (Gromov) boundary of Fn, or its space of ends, or the set

of right-infinite reduced words in the generators and their inverses
In the case of a surface group, Nielsen proved among many other things that

/ da S —s- S always has at least two periodic points Furthermore, the period
of these points may be bounded in terms of |
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Our first main result has a similar flavor.

Theorem 1. Let a e AvXFn.
(1) The homeomorphism da. : dFn —s- dFn has at least two periodic points of

period < 2n. If it has only one orbit of periodic points, then this orbit has

order two.

(2) Suppose X G dFn is periodic of period q under da. Then q < Mn, where

Mn depends only on n and \ogMn ~ y/n log n as n —> oo.

The bound 2n and the bound on q are sharp. The quantity \Jn log n is asymptotic

to the logarithm of the maximum order of torsion elements in Aut Fn, see

[11]. As a special case of assertion 2, there is a bound depending only on n for
periods of elements g G Fn under the action of a. One may also establish a
uniform bound for periods of conjugacy classes under the action of $ G Outfn. It
is proved in [9] that, for "most" a G Autfn, the homeomorphism da. has exactly
two fixed points, and no other periodic point.

Like many results of the present paper, the proof of Theorem 1 uses R-trees
and techniques introduced in [5]. The proof of assertion 2 uses the main result of
[5], and Bestvina-Handel's bound [1] for the rank of the fixed subgroup (the "Scott
conjecture"

Let us now consider local properties of fixed points of da, using the canonical
Holder structure on dFn (see [3, 7]). Let X be a fixed point of da not belonging to
the limit set of the fixed subgroup Fixa C Fn. It is either attracting or repelling
[5]. In the attracting case, we show that, for Y G dFn close enough to X, the

sequence dap(Y) converges to X super-exponentially in the sense that

lim -\ogd(dap(Y),X) -oo,
p^+oo p

where d is any distance on dFn defining the Holder structure. We say that X is

superattractmg (see the beginning of Section 4 for a detailed discussion).

Theorem 2. Let a G Aut Fn. Let X G dFn be a superattractmg fixed point of da.
There exists an algebraic number A X(a,X) > 1 such that

lim -logf -logd(dap(Y),X) =logA
p^+oo p \ J

for Y G dFn close to X (and d a distance on dFn as above).

Thus, when A > 1, the sequence dap(Y) converges to X at about the same
speed as fp(x) approaches 0, where / is the map x \-^ xx : [0,1) —> [0,1).

Example. Consider a : F% —> F% given by a(a) aba, a(b) ab. The number
associated to X limp^+oo ap(a) ababaaba... is the Perron-Frobenius eigen-

[2 1\
value of the matrix I I. On the other hand, for the polynomially growing
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a : F3 —s- F.3 given by a{a) a, a{b) ba, a(c) cba, the number associated to
the superattracting point X lim^^-i-oo aP(c) cbaba?ba3 equals 1.

We now associate a canonical set of Holder exponents A/l((I>) C (1, +00) to any
$ G Outfn. View $ as a collection of automorphisms a G Autfn. We say that
/x > 1 belongs to A/l((I>) if there exist ß £ §q, with q > 1, and a superattracting
fixed point X of dß with A(/3, X) \ß. The set A/l((I>) is a conjugacy invariant of

Example. If $ is induced by a homeomorphism 92 of a compact surface S with
ttiS ~ fn, then A/l((I>) consists of (roots of) the expansion factors of the pseudo-
Anosov pieces of (p. They are algebraic units.

If a G AutFjs is given by a{a) aè^1, a(b) bac~^, a(c) car3 (see [6,

Example II.7]), then Aft($) consists of the real root A of x3 - 3x2 + 2x - 3. Note
that A is not an algebraic unit, and therefore cannot be read off the graph of groups
constructed by Sela in Theorem 4.1 of [15].

Theorem 3. Given $ G Outfn, the set of Holder exponents A/l((I>) equals the
set A($) of nontriwal exponential growth rates of conjugacy classes of Fn under
iteration of $.

The (exponential) growth rate of a conjugacy class 7 is A(7) limp^+oo |

(see Proposition 3.3). It is nontrivial if A(7) > 1. It will be shown in [10] that
has at most [ nj~ ] elements and consists of certain Perron-Frobenius eigenvalues
of the transition matrix associated to a relative train track representative of $.

This paper is organized as follows. In Section 1 we prove the existence of periodic

points for da. The proof of Theorem 1 is completed in Section 2 (Theorems
2.1 and 2.3). In Section 3 we briefly discuss growth rates. We start Section 4 by
a general discussion of superattractivity, valid for an arbitrary hyperbolic group.
We then prove Theorem 2.

1. Existence of periodic points

Let Fn be a free group. We consider its boundary dFn, equipped with the natural
action of Fn by left-translations. It is a Cantor set if n > 2 (it consists of two
points if n 1). In section 4, we will view dFn as a set of right-infinite reduced
words. A finitely generated subgroup J C Fn is quasiconvex [16]. In particular,
we can identify the boundary (or limit set) dJ with a subset of 8Fn.

An automorphism a G Aut Fn is a quasi-isometry of Fn. It induces a
homeomorphism da : dFn —> dFn, and a homeomorphism 7x a U da on the compact
space Fn FnL) dFn.

The fixed subgroup Fixa {g G Fn \ a(g) g} has finite rank (Gersten, see
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e.g. [2]). Its boundary d(Fixa) is a subspace of dFn upon which da acts as the
identity. Note that for any integer q the subgroup Fixa9 is a-invariant (i.e. it is

mapped to itself by a).
Following Nielsen [14], we say that a fixed point X of da is singular if X G

<9(Fixa), regular otherwise.
It is shown in [5, Proposition 1.1] that a regular fixed point X of da is either

attracting or repelling. Attracting means that W(Y) converges to X for every Y
in a neighborhood of X in Fn U dFn (as p —> +oo), repelling means attracting for
ar^ (see a detailed discussion in Section 4).

We say that X G dFn is periodic if there exists q > 1 with 9a9(X) X.
The smallest such q is the period of X and the set {X, da(X),... ,daq~^(X)} is a

periodic orbit of order q. We define X to be regular, attracting... if it is as a fixed
point of daq. We give a similar définition for a periodic orbit, noting that all its
elements have the same type.

Theorem 1.1. Let a G AutFn. The homeomorphism da : dFn —> dFn has at
least two periodic points. More precisely, either da has at least two periodic orbits,
or the unique periodic orbit has order 2 and is the boundary of an a-mvariant
infinite cyclic subgroup.

Example 1.2. We construct a da with only one periodic orbit. First define

ß : F<i —> F<i by a i—> a, b i—> aba. Then dß has two singular fixed points a±o°

lirrip^-i-oo a±p. It is easily checked that these are the only periodic points of dß.
The automorphism ß is the square of a : a i—> a"1,6 i—> a~^b~^. The map da
permutes a°° and a~°°.

The proof of Theorem 1.1 (to be found below) uses an «-invariant R-tree T.
The main properties of T are summarized as follows.

Theorem 1.3. ([5]) For every automorphism a. of Fn there exists an Ti-tree T
and a number A > 1 such that:

(1) Fn acts on T non-trwially, minimally, with trivial arc stabilizers.
(2) There exists a homothety H: T —> T with stretching factor A such that

a{g)H Hg

for all g G Fn (viewing elements of Fn as isometnes ofT). If X 1, then
T is simphcial.

(3) There exists an Fn-equwanant injection j : dT —> dFn satisfying da. o j
joH. D

Furthermore:

Theorem 1.4. ([6]) Given Q eT, its stabilizer StabQ has rank <n-l, and the
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action of Stab Q on ttq(T \ {Q}) has at most 'In orbits. The number of Fn-orbits
of branch points is at most 'In — 2. D

A homothety is a map H such that d(Hx,Hy) Xd(x,y) for some A > 0 (the
stretching factor). We denote dT the set of equivalence classes of infinite rays
p : (0, +oo) —> T, and again H : dT —> dT the induced map. See [5, Sections
2 and 3] for other définitions and a proof of Theorem 1.3. Theorem 1.4 follows
from Theorem III.2 of [6]. Given a and T, the number A and the homothety H
satisfying a{g)H Hg are unique.

A homothety H with A > 1 has a unique fixed point Q, which may be in T
or only in its metric completion T. We define an eigenray of H as in [5], as an
isometric map p : (0, oo) —> T such that p(Xx) Hp(x). We note:

Proposition 1.5. If HR R, the stabilizer Stab!? is a-mvariant. If p is an
eigenray, then j(p) is a fixed point of da. Now suppose A > 1, and let Q be the

fixed point of H. If Q &T\T, then there exists a unique eigenray. If Q G T', then

any component ofT\ {Q} that is fixed by H contains a unique eigenray. D

Proof of Theorem 1.1. First assume that the fixed subgroup Fixa9 is nontrivial
for some q > 1. If it is cyclic, its two boundary points are either fixed points of da
or a periodic orbit of order 2. If Fixa9 has rank > 2, we get uncountably many
periodic orbits. From now on we assume that Fixa9 is trivial for every q, and we
construct an attracting periodic orbit of da. The same argument, applied to a"1,
will yield a second orbit.

Let T be as in Theorem 1.3. If H fixes some Q G T with StabQ nontrivial,
recall that Stab Q is a-invariant. Since it has rank less that n and <9Stab Q embeds
into dFn, we will be able to use induction on n (of course n 1 is trivial). Also
note that, if p is an eigenray of H (with A > 1), then the fixed point j(p) of da is

attracting (see the proof of Assertion 2 of Proposition 4.4 in [5]).
Recall that we want to find an attracting periodic orbit of da. First assume

A > 1. Let QeTbe the fixed point of H. If Q G T\T, there is an eigenray p and

j(p) is an attracting fixed point of da. Suppose QeT. If StabQ is nontrivial, we
use induction on n. Otherwise T \ {Q} has at most 2n components by Theorem
1.4, and some power of H has an eigenray. This gives an attracting periodic orbit
as before.

Now we assume A 1. In this case T is simplicial and H is an isometry.
First suppose H fixes some Q. We may assume StabQ is trivial (otherwise,

we do induction). Then some Hk fixes an edge e. Replacing a by ak, we assume
k 1. Collapse to a point every edge not in the orbit of e (under the action of Fn).
We get a new tree T" with an isometry H' satisfying the conclusions of Theorem
1.3. The map H' fixes some point with nontrivial stabilizer (since all vertices now
have nontrivial stabilizer) and we use induction.

The last possibility if that H is a hyperbolic isometry of T. In this case H has
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a translation axis A and fixes two ends of T. Orienting A by the action of H, we
consider the positive end A+ of A and the associated fixed point X+ j{A+) of
da. We complete the proof by showing that X+ is not repelling (and therefore is

attracting since we assume Fixa9 trivial for all q). Choose any point Q £ A, and

g G Fn acting on T as a hyperbolic isometry whose axis has compact intersection
with A. Writing ap(g)Q HpgH~pQ we see that the projection of ap(g)Q onto
A goes to A+ as p —> oo. By Section 3 of [5] this implies lirrip^oo ap(g) X+.
Thus X+ cannot be repelling. D

2. Bounding periods

Theorem 2.1. Let a G Aut_Fn. Suppose X G dFn is periodic of period q under
da. Then q < Mn, where Mn depends only on n and \ogMn ~ y/n log n as

n -^ oo.

The quantity y/n log n is Landau's asymptotic estimate for \ogg(n), where g(n)
is the maximum order of elements in the symmetric group Sn [8]. It is shown in
[11] that the same estimate holds for the maximum order of torsion elements in
GL(n,Z) and AutFn.

We first prove the following special case of Theorem 2.1:

Lemma 2.2. If g € Fn is periodic of period q under a € Autfn, then q < An,
where An is the maximum order of torsion elements in Aut Fn.

Proof. The subgroup Fixa9 is a-invariant, and the restriction of a has order
exactly q in Aut (Fixa9). Since the rank of Fixa9 is < n by [1], and Aut Ff.

naturally embeds into Aut Ft for k < £, the group Aut Fn contains an element of
order q. D

Remark. Before the Scott conjecture was proved, Stallings showed [17] that, for
a given a, there is a bound for periods of elements g G Fn.

Proof of Theorem 2.1. Lemma 2.2 shows that singular periodic points of da have

period < An. Now suppose X is regular, say attracting.
The points X, da(X),... ,daq~^-(X) are attracting fixed points of daq. By

Theorem 1 of [5], the action of Fix a9 on the set of attracting fixed points of daq
has at most 2n orbits. Thus there exist r < 2n and u G Fixa9 such that

dar\X) uX.

By Lemma 2.2 we have

as{u) u

for some s < An.
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The above equations yield dars(X) aX with

a a(-s-1>(u)...ar(u)u.

If a 1 we get q < rs < 2nAn. Otherwise we note that a G Fixas, and from
X daqTS(X) aqX we conclude that X is singular, a contradiction.

We have thus shown q < Mn 2nAn. Since Iogj4n ~ y/nlogn by [11], we
have log Mn ~ yVilogn. D

Remark. The bound g < 2nj4n is not quite sharp. But if a G Aut Fn has order
An then generic points of dFn have period An under da. Therefore the estimate
log Mn ~ \/n log n cannot be improved.

Theorem 2.3. i*br any a G AutFn, i/ie map da : dFn —s- 9Fn /tas ai feasi iwo
periodic points of period < 2n.

For the automorphism defined by at \-+ a,t^\ (1 < i <n — 1), an i-^a^, every
point of dFn has period 2n.

Proof. There are two cases. If a has no periodic element g ^ 1, then 9a has at
most 2n periodic points of a given type (attracting or repelling) by Theorem 1 of
[5]. The other case is taken care of by the following result. D

Proposition 2.4. Let a G Autfn. If there is a nontrwial a-penodic element

g G Fn, then there is one of period < 'In.

Proof. Let q be the smallest period of nontrivial periodic elements. Arguing as in
the proof of Lemma 2.2, we may assume that a has order q. Such an a may be
realized as an automorphism of a graph ([4], [18]): there exist a finite graph A, an
automorphism / of A fixing a vertex v, and an isomorphism Fn —> tti(A,u) such
that the following diagram commutes:

F a
-, F

We choose A with minimal number of vertices. We claim that the action of
Z/qZ < / > on the set of germs of edges at v is free. This will show q < 2n
since v has valence at most 2n.

Assume the action is not free. Then some fr (1 < r < q — 1) fixes an edge

containing v. Let Ao be the component of the fixed point set of fr containing v.
It is a tree since otherwise a would have a nontrivial periodic element of period
< r. We may therefore collapse Aq to a point, contradicting the choice of A. D
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3. Growth rates

In this section we fix $ G Outfn, and sometimes also an automorphism a G $.
We write \g\ for the word length of g G Fn, and | —^| for the length of a conjugacy
class 7 (equal to the length of a cyclically reduced word representing 7).

Let M be the transition matrix of a relative train track map representing $ (see

[1]). The largest positive eigenvalue (spectral radius) of the matrix M is denoted
or X(a). It is an algebraic integer of degree bounded by 3n — 3.

For g G Fn, the length of ap(g) is bounded from above by a constant times
\\P \g\. If A($) 1, the growth of ap(g) is polynomial and $ is called polyno-

mially growing. For future reference we note:

Remark 3.1. Given v > A(a), there exists C > 0 such that \ap{g)\ < Cvp\g\ for
all g G Fn and p > 1.

Now let £ : F'n —s- R+ be the length function of an action of Fn on an R-tree T.
It is bounded from above by a constant times word length. In particular, if T is

an «-invariant R-tree as in Theorem 1.3, we have (up to multiplicative constants)
\P£(g) £(aP(g)) < \aP(g)\ < \\M\\P\g\ and therefore A < X(a). Conversely:

Proposition 3.2. There exists an a-invariant Ti-tree T as in Theorem 1.3 with
X X{o).

Proof. This is proved by the same arguments as in [5, section 2], but instead of
using only the top stratum of the train track (which may lead to A < X(a)) we
use the whole relative train track and an eigenvector v of M associated to X(a).
One shows that the resulting action on an R-tree T is nontrivial and has trivial
arc stabilizers as in [5]. Minimality of the action may be achieved by restricting to
the minimal invariant subtree. It is often more convenient, though, to work with
the metric completion T of T so as to ensure that H has a fixed point Q when
X(a) > 1. D

Now let J be a finitely generated malnormal subgroup of Fn (recall that J is

malnormal if gJg~^ l~l J ^ {1} ^=> g G J). We say that J is $'-periodic if there
exist q > 1 and ß G §q with ß(J) J. Note that, by malnormality, the class of ß
in Out J is uniquely determined.

For example, suppose that T is an R-tree as in Theorem 1.3 and J Stab Q for
some branch point Q. Then J is malnormal (because arc stabilizers are trivial).
By Theorem 1.4, it has rank < n. We claim that it is ^-periodic. Indeed, by
Theorem 1.4 there exist m G Fn and q > 1 such that mHq fixes Q. Denoting
im{g) mgm~^, the automorphism ß im o aq G $q maps J to itself.

If J is finitely generated, malnormal, ^-periodic, we define Xj A(/3|j)~.
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Proposition 3.3. Let $ G OutFn.
(1) Each conjugacy class 7 in Fn has a growth rate X("f) linip^-i-oo |$p(7)| 'p.
(2) Given A > 1, the following are equivalent:

• A A(7) for some conjugacy class 7.
• A Aj for some malnormal ^-periodic subgroup J C Fn of rank < n.

The existence of the limit in assertion 1 is folklore (compare [1, Remark 1.8]).
Simple examples show that one cannot restrict to free factors in assertion 2.

Proof. The proof is by induction on n. Let T be an «-invariant R-tree with
A A($) (see Proposition 3.2). We distinguish two cases, by evaluating the
length function on 7.

If ^(7) > 0, we write |$p(7)| > ^($p(7)) A^(7) (up to a constant) and we
conclude that 7 has growth rate A(7) A A($) (recall that the exponential
growth of $^(7) is bounded from above by A($)). Note that there exist classes

with ^(7) > 0, hence there exist classes with growth rate A($).
If ^(7) 0, an element g G Fn representing 7 fixes some branch point Q G T,

and we argue by induction by considering 7 as a conjugacy class in J StabQ.
We have pointed out earlier that J is malnormal, ^-periodic, of rank < n. If
ß im o aq leaves J invariant, note that, by quasiconvexity of J, the growth rate
of 7 under ß\j is the same as the growth rate of 7, viewed as a conjugacy class in
Fn, under $9.

These arguments show that every 7 has a growth rate, which is of the form Xj
with J as in the proposition. Conversely, given J, let £j be the length function
of a /3|j-invariant tree with A A(/3|j). Conjugacy classes with £j(j) > 0 have

growth rate Xj under $. D

Definition. We call A($) the top growth rate of $. The set of growth rates
C (1, 00) consists of the growth rates A(7) which are bigger than 1.

Note that A($) consists of algebraic integers of degree < 3n — 3, and that
is the largest element of A($) U {!}. See [10] for more results about

4. Holder dynamics

Superattractivity

The discussion in this subsection (including Proposition 4.1) is valid for automorphisms

of arbitrary (word) hyperbolic groups, but for simplicity we restrict to the
case of Fn (the generalization is almost immediate using [13]).

Fixing a free basis of Fn, we may view dFn as the set of right-infinite reduced
words. Let X G dFn be a fixed point of the homeomorphism do. induced by
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a G Aut Fn on dFn. We say that X is singular if it belongs to the limit set of the
fixed subgroup Fixa, regular otherwise (recall that Fixa has finite rank).

As explained in [5], there is a basic trichotomy: either X is singular, or X is

attracting, or X is repelling (i.e. attracting for a^). Attractivity has a strong
meaning here (see section f of [5]): given A, there exists m such that for Y G

Fn U dFn
cxY >m => cx{da{Y)) - cxY > A, (1)

where cxY is the length of the maximal common initial segment between the
reduced words X and Y (i.e. the Gromov scalar product < X, Y > with basepoint
at the identity in the Cayley graph).

In particular, we have \imp^-\-007xp(Y) X uniformly on a neighborhood of X
in Fn U dFn if X is attracting (whereas if X is singular there are fixed points of
a in Fn arbitrarily close to X). For the automorphism ß studied in Example 1.2,
the (singular) fixed points a±o° of dß are partly repelling and partly attracting:
for any k G Z we have limp^+oo dßv(akbY) a°° if Y is a right-infinite reduced
word not starting with 6"1, but limp^+oo dßp(akb~^Y) a~°° if Y does not start
with b.

Also note that an isolated fixed point of da is singular if and only if it belongs to
the limit set of an a-invariant cyclic subgroup (for the "only if" direction, simply
observe that a leaves invariant the stabilizer of X for the action of Fn on dFn).
In particular, the natural action of Fixa on the set of regular fixed points of da.

is free. This action has finitely many orbits [2], indeed it follows from [5] that the
number of orbits is at most An. It is not clear to us whether there is a bound
depending only on G when G is an arbitrary hyperbolic group.

Now recall that the boundary of Fn (of any hyperbolic group, in fact) has a
canonical Holder structure (see [3], [7]). It may be viewed as a collection T> of
distance functions on dFn that are pairwise bi-Hölder equivalent: Given d, d1 G T>,

there exist C > 0 and ß G (0,1] such that — d? < d! < CdP. This Holder structure
is preserved by da. for every a G Aut Fn. If J C Fn has finite rank, the inclusion
dJ ^ dFn is bi-Hölder.

We represent the Holder structure by the visual metrics de(X, Y) exp(—ecxY).
Let X G dFn be a fixed point of da, and d d£ a visual metric. If X is regular,

attracting, it follows from (1) that

If X is repelling or singular, however, the above quotient is bounded away from 0

on a neighborhood of X (if X is singular, cx(da(Y)) — cxY is bounded near X
because Fixa is quasiconvex and a is a quasi-isometry).

Thus (2) is a metric characterization of attracting regular fixed points, similar
to the characterization of a superattracting fixed point c of a holomorphic map
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/ : C —s- C by /'(c) 0. For this reason, we call an attracting regular point
superattracttng (and a repelling regular point superrepelhng).

Of course the map da is a homeomorphism, and superattracting fixed points
may exist only because da is bi-Hölder but in general not bi-Lipschitz. For
instance, if t is any lift to the Poincaré disc of a pseudo-Anosov diffeomorphism of a
closed hyperbolic surface, then the homeomorphism induced by t on the circle at
infinity is never bi-Lipschitz (see Remark (22.14) in [12]).

Characterization (2) above does not depend on the chosen visual metric d, but
it is not valid for arbitrary metrics in V. The following characterization will apply
to every d G V.

Proposition 4.1. Let a. G Autfn. A fixed, point X of da is superattracting if
and only if

lim - log d(dap(Y),X) -oo
p^+oop

for Y G dFn close to X, where d is any metric on dFn defining the Holder structure.

This equation means that dap(Y) converges to X super-exponentially as p —>

oo. Unlike (2), it is true for every metric in V if it is true for one.

Proof. We may assume that d is a visual metric. Suppose X is superattracting.
We have to prove linip^oo -cx{dap{Y)) +oo for Y close to X. Given A > 0, let

m be as in (1). If lirrip^oo dap(Y) X, there exists no such that cx(dap(Y)) > m
for p > no. For p large, we then have

cx{dap{Y)) >A(p-no) + m,

and the result follows.
Conversely, if X is singular, then cx(da(Z)) — cxZ is bounded in a neighborhood

of X, and therefore - logd(dap(Y),X) is bounded from below as p —> oo.
D

Speed of convergence

We consider a G AutFn, and the associated $ G OutFn. Recall that A($) C

(l,oo) is the set of nontrivial growth rates. It may also be viewed as a set of Xj
(see Proposition 3.3).

Theorem 4.2. Let a G Aut Fn. Let X G dFn he a superattracting fixed point of
da. There exists A X(a,X) G A($) U {1} such that

lim -log) - log d(dap(Y),X) =logA (3)
P^+oo p \
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for Y G dFn close to X (and any metric d on dFn defining the Holder structure).
Conversely, given \i G A($), there exist q > 1, an automorphism ß G $9, and

a superattractmg fixed point X of dß with A(/3, X) yfl.

It follows that the set A/l((I>) of Holder exponents defined in the introduction
equals A($). Note that replacing d by a metric bi-Holder equivalent to d does not
affect the validity of (3).

Proof of Theorem ^.2. We fix a basis of Fn and we consider the corresponding
Cayley tree F.

Let X be a superattracting fixed point of da. We need to prove

lim - \ogcx{dap{Y)) log A.
p^+oo p

We will bound the left-hand side, first from above and then from below.

Lemma 4.3. Suppose X G dJ, with J C Fn a finitely generated a-mvariant
malnormal subgroup. Then

lim sup - \og cx(dap(Y)) < logAj
p^+oo P

for all Y edFn.

Recall that Xj is the top growth rate of a.\ j.

Proof. Let xtp be the projection of dap(Y) onto the geodesic from 1 G Fn to X in
F. By quasiconvexity of J, we can find jp G J within a fixed distance of xtp. We

need to prove lim sup - log \jp\ < log Xj. We will work with word length \jp\j in
p^+oo P

J, which is comparable to \jp\.
Define wp G J by jp u{jp_\)wp. Since a is a quasi-isometry, there is a

uniform bound for \wp\, hence also for \wp\j because J is quasiconvex. Now write

1 (wi) ¦ ¦¦a(wp_i)wp.

For v > Xj we have

\Jp\j < CVp\30\j + Cvp-l\wx\j + ¦¦¦ + Cv\wp_x\j + \Wp\j,

with C given by Remark 3.1. Thus \jp\j O{vp) for all v > Xj, and the lemma
is proved. D

Corollary 4.4. Theorem J^.2 holds if a is polynomially growing (i.e. A(a) 1),
withX{a,X) l. D
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Fix a subgroup J as in Lemma 4 3, and consider an R-tree T with an action of
J satisfying the conditions of Theorem 1 3 with respect to a j Using Proposition
3 2, we assume that the stretching factor of the homothety H equals Xj Suppose
furthermore Aj > 1

Lemma 4.5. Suppose X j(p), where p is an eigenray of H T —s- T (in
particular, X G d.J) Then

limmf-logcx(<9ap(T)) > logAj
p^+co p

for Y G dFn close enough to X

Proof With the notations of Section 1, let Q G T be the fixed point of H (î e the

origin of p) Choose jp as in the proof of Lemma 4 3 and define dp as d(Q,jpQ)
(where d denotes the distance in T) Note that

d(Q, a(jp)Q) d(Q, a(jp)HQ) d(Q, H3pQ) Xjd(Q,3pQ)

On the other hand, recall that the distance in J from a(jp) to jp^\ is bounded
independently of p (and of Y) Thus we obtain an inequality of the form

dp+i > Xjdp - A,

with A independent of p and Y
If Y is close enough to X in dFn, then jq is close to X in J U dJ, and therefore

do is large (by bounded backtracking, see section 3 of [5]) This implies

Inn inf - log dv > log Xj
p^+oo p

Finally, we observe that dp d{Q,jpQ) is bounded above by a constant times
\jp\j, hence by a constant times \jp\ D

Now we complete the proof of Theorem 4 2 If X(a) 1, then we are done by
Corollary 4 4 Assume X(a) > 1, and consider a tree T as in Proposition 3 2, with
stretching factor X(a) If X j(p) as in Lemma 4 5, we are done, with A X(a)
If not, then by Proposition 4 3 of [5] we have X G ôStabQ, where Q G T is the
fixed point of H (recall that points of T \ T have trivial stabilizer)

The subgroup StabQ is a-mvanant, malnormal, and has rank < n (see section
3) Repeat the argument, working with «|stab q After a finite number of steps we
find that X G dJ (with J invariant, malnormal, of rank < n), and either Xj 1

or X j{p) It follows from Lemmas 4 3 and 4 5 that Theorem 4 2 holds, with
X{a,X) Xj
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Conversely, consider \i G A($) First suppose \i X(a) Consider an R-tree
T as in Theorem 1 3, with A X(a) By Theorem 1 4 and Proposition 1 5, there
exist m G Fn and q > 1 such that mHq has an eigenray p Let ß im o aq, with
lm{g) mgm~^ Then X j{p) is a fixed point of dß, and X(ß,X) A(/3) \iq

For arbitrary /x Aj G A($), let a' G <J>r leave J invariant The previous
argument yields ß G cï>r9 and afixed point X of 9/3 in d.J such that A(/3|j,X) \irq
Since the inclusion d.J <-^ dFn is bi-Holder, X(ß,X) X(ß\j,X) has the required
form D
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