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Annular Dehn fillings

Cameron McA Gordon1 and Ying-Qing Wu2

Abstract. We show that if a simple 3-mamfold M has two Dehn fillings at distance A > 4,

each of which contains an essential annulus, then M is one of three specific 2-component link
exteriors in S3 One of these has such a pair of annular fillings with A 5, and the other two
have pairs with A 4
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§1. Introduction

Let M be a (compact, connected, orientable) 3-mamfold with a torus boundary
component To If r is a slope (the isotopy class of an essential unonented simple
loop) on To, then as usual we denote by M(r) the 3-mamfold obtained from M
by r-Dehn filling, that is, attaching a solid torus J to M along To in such a way
that r bounds a meridian disk in J

We shall say that a compact, connected, orientable 3-mamfold M is simple if it
contains no essential surface of non-negative Euler characteristic, l e sphere, disk,
annulus or torus If M has non-empty boundary and is not the 3-ball, then M is

simple if and only if M with its boundary ton removed has a complete hyperbolic
structure of finite volume with totally geodesic boundary [Thl, Th2] If M is

closed, then the geometrization conjecture asserts that M is simple if and only if
M is either hyperbolic or belongs to a certain small class of Seifert fiber spaces
[Thl, Th2]

If M is hyperbolic, then Dehn fillings on M are hyperbolic if we exclude finitely
many slopes from each torus boundary component [Thl, Th2] By doubling M
along its non-torus boundary components, we see that if M is simple then M(r) is

simple for all but finitely many slopes r on any given torus boundary component To,
and a good deal of attention has been directed towards obtaining a more precise

1 Partially supported by NSF grant #DMS 9626550
2 Partially supported by NSF grant #DMS 9802558
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quantification of this statement. Denote by A(r\,r2) the distance, or minimal
geometric intersection number, between two slopes r\,r<2 on a torus. Define a
3-manifold to be of type S, D, A or T if it contains an essential sphere, disk,
annulus or torus, respectively. For Xt G {S, D, A,T}, i 1,2, define A(Xi,X2)
to be the maximum of A(ri,r2), where r\ and r% are Dehn filling slopes of some
simple manifold M such that M(rt) is of type Xt. These numbers A(Xi,X2) are
now known in all ten cases; see [GW2] for more details.

Except when (Xi,X2) (A,A), (A,T) or (T,T), it is also known that A(Xi,X2)
is realized by infinitely many simple manifolds M; see [EW]. On the other hand,
A(T, T) 8, and there are exactly two simple manifolds M admitting toroidal
fillings M{r\), M{r<2) with A A(ri,r2) 8, exactly one with A 7, exactly
one with A 6, and infinitely many with A 5 [Go]. Similarly, A(A,T) 5

[Go, GW1], and there is exactly one simple manifold M having an annular filling
M(r\) and a toroidal filling M(r2) with A 5, exactly two with A 4, and

infinitely many with A 3 [GW1]. In the present paper we complete the picture
by dealing with the case {A, A). In this case, A(A,A) 5 [Go, GW1], and there
are infinitely many simple manifolds M admitting annular fillings M(ri),M(r2)
with A 3 [GW1]. Here we show that there is exactly one such manifold M
with A 5, and exactly two with A 4. More precisely, we have the following
theorem.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, d-
irreducible, anannular Z-manifold which admits two annular Dehn fillings M{r\),
M(r2) with A A(ri,r2) > 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and A 4.

(2) M is the exterior of the 2-bridge link associated to the rational number
3/10, and A 4.

(3) M is the exterior of the (—2, 3, 8) pretzel link, and A 5.

The three manifolds listed in the theorem are the exteriors of the links in S*3

shown in Figure 1.1.

(1) (2) (3)

Figure 1.1

That each of these link exteriors does have a pair of annular fillings with A 4,
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4 and 5 respectively is proved in [GW1]. The fillings in question are also toroidal
[GW1], so in fact these are exactly the same manifolds which admit an annular
and a toroidal filling with A > 4 [GW1, Theorem 1.1]. Using [GW1, Theorem
1.1], Qiu has independently proved Theorem 1.1 in the special case where M is

the exterior of a knot in a solid torus [Q].
According to the proof of [GW1, Theorem 7.5], the annular fillings on the

three manifolds listed in Theorem 1.1 are non Seifert fibered graph manifolds. If
M admits some Seifert fibered surgery, then dM consists of tori, in which case

M is hyperbolic if and only if it is simple. Hence the following corollary is an
immediate consequence of Theorem 1.1.

Corollary 1.2. Suppose M is a compact orientable hyperbolic 3-manifold with at
least two torus boundary components, and suppose M(r\), M(r2) are Seifert fibered
manifolds. Then A(ri,r2) < 3.

The condition that M has at least two boundary components cannot be
removed. For example, if M is the figure 8 knot complement, then M(3) and M(—3)
are Seifert fibered, and A(—3, 3) 6. It is not known whether the bound 3 in the
corollary is the best possible.

The proof of Theorem 1.1 proceeds as follows. For a 1,2, let Aa be an
essential annulus in M(ro), meeting the Dehn filling solid torus Ja in na meridian
disks, with na minimal over all choices of Aa. This gives rise to a punctured
annulus Fa Aa n M in M, such that the boundary components of Fa which
lie on To have slope ra, a 1,2. The arcs of intersection of F\ and F% then
define labeled graphs Ga in Aa with na vertices, a 1,2. We assume that
A A(ri,r2) 4 or 5, and show by a detailed analysis that there are only three
such pairs of graphs, corresponding to the three examples listed in the theorem.

The paper is organized as follows. In Section 2 we give some definitions and
establish some basic properties of the graphs Ga. In Section 3 we show that any
graph in an annulus with no trivial loops or parallel edges must satisfy one of
four possibilities; if the reduced graph Ga is of the fourth type we say that Ga is

special. Section 4 is devoted to showing that if one of the graphs G\, G<i is special
then they both are, and (up to relabeling) n\ 1, n<i 2. Section 5 considers the
generic case, n\,ri2 > 2. This is shown to be impossible, by eliminating in turn
the first three possibilities of Section 3 for the reduced graphs Ga. Section 6 shows
that the case n\ 2, n^ > 2 is also impossible. In Section 7 we show that if G\
and G*2 are special, so n\ 1 and n^ 2, then there is exactly one possible pair
Gi, G*2, with A 4, corresponding to case (1) of Theorem 1.1. Finally in Section
8, we show that if G\,G^ are not special and ni,ri2 < 2, then there are exactly
two possible pairs G\,G2, one with A 4, n\ n<i 2, and one with A 5,

nl n1 2, corresponding to cases (2) and (3) of Theorem 1.1.

We would like to thank the referee for his/her careful reading and helpful
comments.
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§2. Preliminary Lemmas

Throughout this paper, we will always assume that M is a compact, connected,
irreducible, d-irreducible, anannular 3-manifold, with a torus boundary component
To- We use a, ß to denote the numbers 1 or 2, with the convention that if they both
appear, then {a, ß} {1,2}. Let r\,r<2 be slopes on To such that M{r\),M{r<2) are
annular, and let Aa be an essential annulus in M(ro) such that na, the number of
components of intersection of Aa with the Dehn filling solid torus Ja, is minimal
among all essential annuli in M{ra), a 1,2. Denote by Fa the punctured
annulus Aa n M. Denote by A A(ri,r2) the minimal geometric intersection
number between r\ and r%. By [Go, Theorem 1.3] we have A < 5. Throughout
this paper, we will always assume A 4 or 5, unless otherwise stated.

Minimizing the number of components of F\ DFy by an isotopy, we may assume
that F\ n F% consists of arcs and circles which are essential on both Fa. Let

«1,... una be the disks that are the components of Aa n Ja, labeled successively
when traveling along Ja. Similarly let v\,... ,vnß be the disks in Aß n Jg. Let
Ga be the graph on Aa with the m^'s as (fat) vertices, and the arc components of
F\ n F<i with at least one endpoint on To as edges. Note that we do not regard
an edge endpoint on the boundary of the annulus as a vertex, so we are abusing
terminology somewhat in that our graphs may have edge endpoints that do not
lie on vertices. The minimality of the number of components in F\ l~l F<i and the
minimality of na imply that Ga has no trivial loops, and that each disk face of
Ga in Aa has interior disjoint from Fß.

An edge e of a graph G on an annulus A is a boundary edge if it has one
endpoint on the boundary of A, otherwise it is an interior edge. A vertex v of G
is a boundary vertex if it is incident to a boundary edge, otherwise it is an interior
vertex. Similarly, a face of G is a boundary face if it contains a boundary edge.

If e is an edge of Ga with an endpoint x on a fat vertex ut, then x is labeled j
if x is in dut n dv0. When going around the boundary of a vertex in Ga, the labels
of the edge endpoints appear as 1, 2,... ,nß repeated A times.

An edge e at a vertex ut of Ga is called a j-edge at ut if it has an endpoint at
ut labeled j. Dually, a j-edge at ut is also an i-edge at v3 in Gp. We say that e is

an (i, k)-edge if it has labels i and k at its two endpoints.
Each vertex of Ga is given a sign according to whether Ja passes Aa from the

positive side or negative side at this vertex. Two vertices of Ga are parallel if they
have the same sign, otherwise they are antiparallel. Note that if Aa is a separating
surface in M(ra), then na is even, and ut,Uj are parallel if and only if i,j have
the same parity. An interior edge of Ga is a positive edge if it connects parallel
vertices. Otherwise it is a negative edge. We use val(u,G) to denote the valency
of a vertex v in a graph G.

By considering each family of parallel edges of Ga as a single edge E, we get
the reduced graph Ga on Aa. It has the same vertices as Ga. Denote by \E\ the
number of edges in Ga represented by E.
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A cycle in Ga consisting of positive edges is a Scharlemann cycle if it bounds a
disk with interior disjoint from the graph, and all the edges in the cycle have the
same pair of labels (i, i + 1) at their two endpoints. (i + 1 1 if i riß.) The pair
(i,i + 1) is called the label pair of the Scharlemann cycle. In particular, a pair of
adjacent parallel positive edges with the same label pair is a Scharlemann cycle.
The boundary of the disk D bounded by a Scharlemann cycle consists of edges of
the Scharlemann cycle and some arcs on the annulus Ct on To between dvt and
dv%+\. When riß 2, the two annuli C\ and C<i are still distinct, allowing one to
differentiate between a (1,2)-Scharlemann cycle and a (2,1)-Scharlemann cycle. A
pair of edges {ei,e2J is an extended Scharlemann cycle if there is a Scharlemann
cycle {e'1; e^} such that e% is parallel and adjacent to e'.

A subgraph G' of a graph G on a surface F is essential if it is not contained
in a disk in F.

Lemma 2.1. (1) (The Parity Rule) An edge e is a positive edge in G\ if and only
if it is a negative edge in G%.

(2) A pair of edges cannot be parallel on both G\ and G%.

(3) If Ga has a set of riß parallel negative edges, then onGß they form mutually
disjoint essential cycles of equal length.

(4) If Ga has a Scharlemann cycle, then Aß is separating, and riß is even.

Moreover, the edges of the Scharlemann cycle and the vertices at their endpoints
form an essential subgraph of Gß.

(5) Ga contains no extended Scharlemann cycle.

Proof. See [GW1, Lemma 2.2], except for (2) in the case that the pair of edges

ei,e2 are boundary edges. If ei,e2 are boundary edges parallel on both G\,G%,
then they cut off bands B\,B2 on the punctured annuli F\,F<2, which can be

glued together to get an annulus in the manifold M, which intersects the Dehn
filling torus To m an essential circle. This contradicts the assumption that M is

d- irreducible and anannular. D

Let E be an edge of Ga representing riß parallel negative edges on Ga, connecting

ut to u3. Then E defines a permutation (p : {1,... ,riß\ —s- {1,... ,riß\, such
that an edge e in E has label k at ut if and only if it has label <p(k) at u0. Call (p

the permutation associated to E. Because of the ambiguity in the order of ut,Uj,
the permutation is only well defined up to inverse. An E-orbit is an orbit of tp.
Such an orbit determines a cycle in Gß consisting of the edges of E with endpoint
labels in this orbit, called the cycle of this orbit. Note that all the vertices in a

cycle are parallel. Topologically each such cycle is a circle. Lemma 2.1(3) says
that these circles are mutually disjoint, mutually parallel, essential circles on the
annulus Aß.

Lemma 2.2. (1) Any two Scharlemann cycles on Ga have the same label pair.
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(2) If E is a positive edge in Ga, then \E\ < riß/2 + 1. Moreover, if \E\
iiß/2-\- 1, then the corresponding edges of Ga contain a Scharlemann cycle.

(3) Any family of parallel interior edges in Ga contains at most riß edges.

Proof. See [GW1, Lemma 2.5]. D

Lemma 2.3. (1) If some vertex ofGa has more than riß negative edge endpomts,
then Gß contains a Scharlemann cycle.

(2) No vertex of Ga has more than 2riß negative edge endpomts.

Proof. For any label i of Gß, let G~ï(i) be the subgraph of Gß consisting of all
vertices of Gß and all positive i-edges of Gß. The edges of G~ï(i) correspond to
the negative edges of Ga incident to the vertex «,. Let the number of such edges
be k. Then if / denotes the sum of the Euler characteristics of the faces of G~ï(i),
we have

0 X{Aß) =nß-k + f.

Therefore, if k > riß, G~ï(i) has a disk face D. Then there is a Scharlemann cycle
of Gß in D by [HM, Proposition 5.1]. This proves (1).

To prove (2), assume k > 2riß. Then by the above we have / k — riß > riß,
so G~ï(i) has more than riß disk faces, and by [HM, Proposition 5.1] each such
face contains a Scharlemann cycle of Gß. Hence Gß contains s > riß Scharlemann
cycles, all on the same label pair, say (1,2), by Lemma 2.2(1). Define a graph
H in Aß as follows; see [GL, Proof of Theorem 2.3]. The vertices of H consist of
the vertices of Gß, together with a vertex vn in the interior of each disk face of
Gß bounded by a Scharlemann cycle. The edges of H are defined by joining each

vertex vo, within D, to the vertices of Gß in 3D. Thus H has riß + s vertices and
at least 2s edges. An Euler characteristic argument then shows that H has a disk
face E. This disk E contains a 1-cycle of Gß (see [CGLS, p. 279] for définition),
and hence a Scharlemann cycle [CGLS, Lemma 2.6.2]. But this contradicts the
fact that E is a face of H, because by définition H would have a vertex in the disk
bounded by this Scharlemann cycle. D

Let P, Q be two edge endpoints on the boundary of a vertex u in Ga. Let
Pq P,P\,... ,Pfc_i,Pfc Q be the edge endpoints encountered when traveling
along du in the direction induced by the orientation of«. Then the distance from P
to Q (at the vertex u) is defined as pu(P, Q) k. Notice that since the valency of m

is Ariß, we have pu(Q,P) Ariß — pu(P, Q). If e\,e<2 is a pair of edges, each having
a single endpoint Pt on the vertex u in Ga, then define /0M(ei,e2) pu{Pl,P2)-

A pair of edges e\,e<2 connecting two vertices u,v in Ga is an equidistant pair
if Pu(e\,e2) pv(e2,ei). In particular, one can check that if e\,e2 are a pair
of parallel edges connecting a pair of parallel vertices in Ga, then e\,e2 is an
equidistant pair in Ga.
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Lemma 2.4. (The Equidistance Lemma.) Let e\, e<i be a pair of edges connecting
the same vertices on G\ and the same vertices on G%. Then e\, e% is an equidistant
pair in G\ if and only if it is an equidistant pair in G%.

Proof. See [GW1, Lemma 2.8]. D

Given two slopes r\,r% on the torus To, let / be a curve intersecting r\ at
a single point. Choosing / and the orientations of the curves properly, we may
assume that homologically r<i qr\ + A/, where 1 < q < A/2. The number q is

called the jumping number of r\,r<2- Note that if A 4 then q 1, and if A 5

then q 1 or 2.

Lemma 2.5. (1) If the jumping number q=\, in particular if A A, then a pair
of j-edges at a vertex ut in Ga are adjacent among all the j-edges if and only if
on Gß they are also adjacent at v3 among all i-edges.

(2) If q 2, then a pair of j-edges at a vertex ut in Ga are adjacent among all
j-edges if and only if on Ga they are not adjacent among all the i-edges at v3.

Proof. This is essentially [GW1, Lemma 2.10]. It was shown that if P\,...,P^
are the consecutive j-edge endpoints at u%, then on dv0 they appear in the order
PqiP2qT--,Pù^qj hence the result follows. D

A graph G on an annulus A is special if every vertex has at least two nonparallel
boundary edges. Note that G is special if and only if the corresponding reduced
graph G is special.

Lemma 2.6. (1) If G is special then every vertex has exactly two boundary edges

in G, going to distinct boundary components of A.
(2) If Ga has 2n,ß parallel boundary edges, then Gß is special. Ga cannot have

more than 2nß parallel boundary edges.

(3) If some edge E of Ga represents nß negative edges, and if Ga has some
positive edges, then Ga has at most nß parallel boundary edges, and each vertex of
Gß has at most one boundary edge.

Proof. (1) Otherwise there would be a pair of edges of G at some vertex v going
to the same boundary component of A. By looking at an outermost such pair one

can see that some vertex m of G has a single boundary edge in G, contradicting
the définition of a special graph.

(2) If Ga has 2n,ß parallel boundary edges, then for any label i it has two
parallel i-edges. Since no two edges are parallel on both graphs, these two edges
are non-parallel on Gß, hence Gß is special. If Ga has more than 2ng parallel
boundary edges, then there is a label i such that Ga has three parallel boundary
i-edges. Since by (1) the vertex vt in Gß has only two boundary edges, two of
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these edges would be parallel on both graphs, contradicting Lemma 2.1(2).
(3) Since Ga has some positive edges, the vertices of Gß cannot all be parallel,

so there are at least two S-orbits, which form parallel essential cycles on Gß.
Hence all boundary edges at a vertex of Gß must be parallel to each other. If Ga
has more than riß parallel boundary edges then two of them would be parallel on
both graphs, contradicting Lemma 2.1(2). D

Lemma 2.7. Suppose all vertices of Ga are boundary vertices, and suppose there

are two boundary edges E\, E% of Ga incident to the same vertex v and going to
the same boundary component of Aa. Then Ga has a vertex v' of valency at most
3 which is incident to a single boundary edge, and Gß is special.

Proof. Let D be the disk on Aa cut off by E\ U E%. Since E\, E% are nonparallel,
D contains a vertex v\ ^ v, hence by adding an edge if necessary we may assume
that there is an edge incident to v other than E\,E2- Let D be the double of D
along E\ UÊ2, and let G be the double of Ga n D. Then each vertex of G has

a boundary edge. By [CGLS, Lemma 2.6.5] G has a vertex v' of valency at most
3^ and incident to at most one boundary^edge. Since v has valency at least 4 in
G, v1 =/= v. Hence v&\(v',Go) val(-u',G) < 3. By Lemma 2.2(3) each interior
edge of Ga represents at most riß edges. Since A > 4, this implies that the unique
boundary edge at v' represents at least 2ng edges. By Lemma 2.6(2) in this case

Gß is special. D

§3. Reduced graphs on annuli

By a reduced graph on a surface we mean one with no trivial loops or parallel
edges; in other words, no faces of the graph are monogons or bigons.

Definition 3.1. Let G be a reduced graph on an annulus A. Then G is said to
be triangular if

(i) every vertex has at most one boundary edge;

(ii) every interior vertex has valency 6;

(iii) every boundary vertex has valency 5;

(iv) every face of G is a disk with three edges.

We remark that the only properties of a triangular graph that we will use are
(i), (iii), and the fact that the graph has at least one boundary vertex (which
follows from (iv)).

Proposition 3.1. Let G be a reduced graph in an annulus A. Then either
(1) G contains an interior vertex of valency at most 5; or
(2) G contains a boundary vertex of valency at most 4 with exactly one boundary
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edge; or
(3) G is triangular; or
(4) G is special.

Proof. Let G\ be a graph obtained from G by adding extra edges so as to make
each face of G\ a disk with three edges. In particular, in G\, each boundary face
has three edges, and if some vertex v has two boundary edges ei,e2, then v has

an edge on each side of e\ U e<2, so it has valency at least 4.

Let G<i be the union of G\ and dA, with the obvious graph structure. Thus
the points of G\ n dA are now considered vertices, and the segments of dA cut by
these vertices are considered edges of G<i- Note that val(w, G2) 3 for all vertices
v on dA, and each boundary face now has four edges. Let G3 be obtained from
G*2 by adding a diagonal edge in each boundary face of G2, all sloping in the same
direction; in other words, no two edges added have a common vertex on dA. We
have val(w, G3) 4 if v G dA. One can see that if we remove all edges and vertices
on dA then we get a graph that is obtained from G\ by adding an extra copy of
each boundary edge. Hence if val(v,Gi) p and v has q boundary edges in G\,
then val(w, G3) p + q. In particular, if v has two boundary edges in G\, then its
valency in G3 is at least 4 + 2 6. Each face of G3 is now a triangle.

The double of A along dA is a torus T, and the corresponding double of G3
is a reduced graph G3 on T with triangular faces. _By an Euler characteristic
argument, one^can show that the number of edges in G3 is three times the number
of vertices of G3. Thus either (i) some vertex v of G3 has valency at most 5, or (ii)
all vertices ofjG3 have valency 6. All vertices on dA have valency 4 in G3, hence

valency 6 in G3, and we have shown that if v has two boundary edges in G\ then
it has valency at least 6 in G3; therefore (i) implies that either v is an interior
vertex of G with valency at most 5, or it is a boundary vertex of G with valency
at most 5 — q < 4 and incident to at most one boundary edge, so the graph is of
type (1) or (2) in the proposition. Hence we may assume that all vertices of G3
in the interior of A have valency 6.

If no vertex of G\ has two boundary edges then each boundary vertex of G\ has

valency 6 — g 6 — 1 5. Since each interior vertex of G\ has valency 6, it follows
that G\ is triangular. Since G is a subgraph of G\ with the same vertices, either
G G\ and hence G is of type (3), or G has a vertex v with val(w, G) < v&\(v, G\
in which case G is of type (1) or (2).

Now assume some vertex v of G\ has two boundary edges e\,e<2 going to
different boundary components. Then the valency of v in G\ is at most 6 — 2 4.

Since each face of G\ has three edges, there is exactly one interior edge e' on each
side of e\ U e<i- Let v' be the other endpoint of e'. Since each face has three edges,
v' must also have two boundary edges going to different boundary components of
A. Repeating this process, we see that G\ is a special graph such that each vertex
has valency 4. Since G is a subgraph of G\, either it is special, hence of type (4),
or it has a vertex of valency at most 3 and incident to at most one boundary edge,
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in which case it is of type (1) or (2)
Finally, assume G\ has a vertex v which has two boundary edges going to the

same boundary component Then they cut off a disk D from the annulus, which
we may assume to be outermost However, arguing as in the previous paragraph,
we see that the vertex on the other end of an edge e' in D incident to v must
have two boundary edges, which is a contradiction Therefore this case does not
happen D

§4. Special graphs

Recall that a graph G on an annulus A is special if every vertex has two nonparallel
boundary edges By Lemma 2 6(1) this implies that every vertex of G has exactly
two boundary edges in G, going to different boundary components of A

To simplify notation, denote riß by n

Lemma 4.1. If Ga is a special graph, then Gß is also special

Proof First notice that since each vertex ut of Ga is incident to at most two
families of interior edges and each such family contains at most n edges (Lemma
2 2(3)), there are at most two interior j-edges at ut for any j Hence there are
at least A — 2 boundary j-edges at ut Since this is true for all i,j, we see that
each vertex v3 of Gß has at least 2na (3na if A 5) boundary edges Since each

parallel family contains at most 2na edges (Lemma 2 6(2)), the lemma follows
immediately when A 5

Now assume A 4, and assume Gß is not special Then it has a vertex vt
such that all boundary edges are parallel By Lemma 2 6(2) and the above, vt has

exactly 2na boundary edges, all parallel to each other In particular, there are
only two boundary 1-edges e\, e^ at vt Dually this means that e\, e^ are the only
boundary «-edges at u\ Since they are parallel on Gß, they cannot be parallel on
Ga, so they belong to different families of boundary edges Since these two edges

are adjacent among all 1-edges at vt, by Lemma 2 5(1) they must also be adjacent
among all «-edges at u\ This implies that the two interior «-edges at u\ are on
the same side of e\ U e^, so they belong to the same edge E m Ga because there

is only one interior edge of Ga on each side of e\ U e^ Since by Lemma 2 2(3) E
contains at most n edges, this is impossible D

In the remainder of this section we will assume that both G\ and G<i are special
The sign of a vertex u m Ga induces an orientation on du, called its preferred

orientation Thus the preferred orientations of the du 's are all m the same direction
on To Let e\,e<2 be a pair of adjacent boundary edges at some vertex u of Ga
When traveling on du along the preferred orientation, the labels at the endpomts
of e\, e2 appear as i, % + 1 for some % {% + 1 1 if % n) They cut off a band B on
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the surface Fa, called an i-band at u (of Ga). Note that the label i is determined
by the pair e\, e<i even if n 2. The edge labeled i at u is called the initial edge

of B, the other the terminal edge. Two i-bands of Ga are of different types if their
initial edges are nonparallel on Gß; otherwise they are of the same type.

If ei,..., efc are all the edges of a parallel family E at a vertex u, appearing in
this order when traveling along the preferred orientation of du, then e^ is called
the ending edge of E, and the label of e^ at u is called the ending label of E. Note
that if a boundary i-edge e is not an ending edge, then it is the initial edge of an
i-band.

Lemma 4.2. There is a label i such that all i-bands of Ga are of the same type.

Proof. Assuming otherwise, then there are two i-bands B] ,B^ of different types
for each i. Since the graph Gß is special, there are only two families of parallel
boundary edges for each vertex vt in Gß, so each family contains the initial edge

of some B°%. Therefore, the terminal edge of each B°% is parallel to the initial edge

of some £>f_|_i, so there is a band D°% on Fß connecting these two edges. Note that

Dl degenerates to a single edge if these two edges coincide.
Consider the 2-complex Q U(Sf UD\). Then QC\Tq U(ef Ud\) is a graph

G on To, where e\ B\ n To and d\=D\C\TQ. We have Q Gx I. Shrinking
each dl to a point, and orienting e\ so that its endpoint is on d\, we get an oriented

graph G' in which each vertex d\ is the tail of some edge e^+1. Hence G' contains
an embedded oriented cycle. The corresponding cycle C in G is then an embedded
loop in To • Let 7 be a parallel copy of some boundary component of Fß on To,

intersecting some e^ in C transversely at a single point. The définition of B\ and

the orientation of e\ implies that C intersects 7 always in the same direction; hence
C is an essential curve. Thus j4 Cx/cQisan annulus properly embedded in
M intersecting To in the essential curve C, which contradicts the assumption that
M is d- irreducible and anannular. D

Lemma 4.3. Each family of boundary edges in Ga contains at least n edges.

Proof. Let E\,...,E^ be the four edges of Ga at u\, with Ei,E% the boundary
edges. If \E\ \ < n then there is a label i which does not appear at the endpoints of
edges in Et. If A 5 then we would have \E3\ 5n- \Et\ - \E2\ - |£4| > 2n+ 1,

contradicting Lemma 2.6(2). Hence A 4. Since \E%\ < 2n, E% contains at most
two i-edges, so each of E<i,E/± contains one i-edge. Let e\,e<i be the i-edges of
E<i,E/± at u\, and let e3,e4 be the i-edges of E3. Since e3,e4 are adjacent i-edges
at u\, by Lemma 2.5(1) they are adjacent 1-edges at vt. On Gß the two edges

e3, e4 belong to different families of boundary edges at vt, because they cannot be

parallel on both graphs. Therefore the two edges e\, e% belong to the same family
of interior edges. Since they both have label 1 at vt, this would imply that the
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interior family containing them has at least na + 1 edges, contradicting Lemma
2.2(3). D

Lemma 4.4. The jumping number q 1.

Proof. This is automatically true if A 4. Hence assume A 5. First assume
that there is a vertex u3 of Ga which has two interior i-edges ei,e2 for some
i. Since each interior family contains at most n edges, e\,e<2 are nonparallel on
Ga. By Lemma 4.3 each boundary family contains an i-edge, hence e\,e<i are non
adjacent among the i-edges at u3. Dually on Gß these are j-edges at the vertex
vt. For the same reason, they are non adjacent among all j-edges at vt. Therefore
by Lemma 2.5 the jumping number q 1.

Now assume that u3 has at most one interior i-edge for all i. Then it has at
most n interior edge endpoints. On the other hand, since each boundary family
contains at most 2n edges and the valency of u3 is An 5n, we see that it cannot
have less than n interior edge endpoints; therefore it has exactly n interior edge

endpoints, and each boundary family contains exactly 2n edges. If u3 has two
interior families, so each family contains less than n edges, then the two boundary
families have different ending labels. In this case for each label i there are three
i-bands, which cannot all be of the same type because each boundary family of vt
has at most two j-edges. This contradicts Lemma 4.2. Therefore u3 has only one

family of interior edges, which contains n edges. For the same reason, each vertex
of Gß has only one family of interior edges, containing na edges. By the parity
rule one of these families is negative, and by Lemma 2.1(3) they form cycles on the
other graph, so each vertex of that graph would then have two families of interior
edges, contradicting the above conclusion. D

Lemma 4.5. Suppose all i-bands at a vertex u3 of Ga are of the same type. Then
(1) there are n parallel interior edges at u3, and
(2) each family of n parallel interior edges atu3 has i as its ending label.

Proof. Let E\,..., £4 be the edges at u3 of G\, appearing in this order around du3
along its preferred orientation, with E\,Es the boundary edges. Let e\, ...,e\ be
four i-edges at u3, appearing successively along the preferred orientation of du3.

First assume that all e% are boundary edges. Then we may assume that e\,e<2 G

E\, and e%, e^ G £3. Thus e\, e% are not ending edges, so they are initial edges of
some i-bands Bi,B%. Since the jumping number q 1 (Lemma 4.4), and since

ei,e3 are non adjacent among i-edges at u3, by Lemma 2.5 they are non adjacent
among j-edges at vt in Gß, hence they are non parallel boundary edges on Gß.
Therefore B\,B^ are of different type.

Now assume that E% contains an i-edge e%, say. Since each of E\, Es contains
at least n edges, we must have e\ G E\ and e% G £"3. Assume that either e% is not
the ending edge of £2 or I-E2I < n- Then e\ is not an ending edge of E\, and there
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is an i-band B\ with e\ as the initial edge. If e% is not an ending edge either, then
there is an i-band B% with e% as initial edge. For the same reason as above, B\,B%
are of different type, and we are done. So assume that e% is the ending edge of
£3. Now we must have \E^\ < n as otherwise £4 would have n edges and have
the i-edge e^ as its ending edge, contradicting the assumption. Hence e^ is in E\,
and so there is an i-band with e^ as an initial edge. Since e\,e± are parallel on
Ga, they are nonparallel on Gß, so again B\, B4 are of different type. This proves
(1). To prove (2), notice that if \E%\ n but e<i is not the ending edge, then ei,e3
are not ending edges of E\,E%, so from the above the two i-bands B\,B^ are of
different type. D

Lemma 4.6. Suppose n > 2. Then each positive edge of Ga represents at most
n/2 edges.

Proof. When n > 2, the special graph Gß has at most one edge connecting any
two vertices. If Ga has n/2 + 1 parallel positive edges, then it has a Scharlemann
cycle e\ U e<i with label pair (1,2), say. So the two edges e\, e<i would be parallel
on Gß, contradicting Lemma 2.1(4). D

Proposition 4.7. If Ga is special then up to relabeling we have n\ 1, n^ 2,
and G\ has exactly two interior edges.

Proof. First assume na > 2 for a 1,2. By Lemma 4.2 for each graph Ga there
is a label i such that all i-bands of Ga are of the same type. Let u3 be a vertex
of Ga. By Lemma 4.5(1), it has a set of n parallel interior edges E with i as its
ending label at u3. Let uu be the vertex on the other endpoint of E, then by
Lemma 4.5(2), E also has ending label i at U].. If E is negative, then the ending
edge e of E at u0 is the same as that at u^soe would have the same label i on its
two endpoints, and hence is a loop on Gß. Since n > 2 and Gß is special, this is

absurd. If E is positive, then the two ending edges would give rise to two negative
edges at vt in Gß, which must be nonparallel because they cannot be parallel on
both graphs. Thus both families of interior edges at vt are negative. Replacing
Uj by vt in the above argument, we get a contradiction because now E must be

negative. Therefore up to relabeling we must have n\ 1.

By Lemma 4.5(1) the only vertex u\ of G\ has n^ parallel interior edges, which
by the parity rule must be negative edges on G<i, hence n<i > 2. If n<i > 2, then by
Lemma 4.6 G\ has at most n<ij2 interior edges, which is a contradiction. Hence
the result follows. D
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§5. The generic case

In this section except for Lemma 5.1, we assume na,riß > 2. By Proposition 4.7,
Ga and Gß are not special. Again denote riß by n.

Lemma 5.1. Suppose na > 2, n > 2, and suppose Ga has a negative edge E with
\E\ n, and a positive edge E' with \E'\ n/2 + 1. Let (1, 2) be the label pair of
the Scharlemann cycle in E'. Then

(1) Gß has at most n/2 boundary vertices;
(2) when n A, the two vertices «3, «4 of Gß cannot both be boundary vertices;

and

(3) when n A, Ga cannot have both a {l,A)-edge and a {2,2>)-edge.

Proof. Let k be the number of £?-orbits. Since E' contains more than n/2 edges,
hence contains a Scharlemann cycle, the annulus Aß is separating, so Gß has the
same number of positive and negative vertices. Each £?-orbit contains the same
number (n/k) of vertices, all of the same sign, so the number of orbits containing
positive vertices is the same as the number of those containing negative ones, and
hence k must be even. Recall that each £?-orbit forms an essential cycle on Gß,
so only the vertices on the two cycles adjacent to the two boundary components
of Aß could be boundary vertices. Hence the number of boundary vertices is at
most 2{n/k), and since k is even, (1) follows unless k 2.

Assume k 2. Let C\, C<i be the two cycles of £?-orbits on Gß, and let e\, e<i be
the edges of the Scharlemann cycle in E'. By Lemma 2.1(4) e\ Ue2 is an essential
cycle on Gß. The two vertices v\, v<i of e\ VJ&2 are on different C\, C<i because they
are antiparallel, so the cycle e\ Uey lies between C\ and C*2, separating the vertex
«3 on the first orbit from the vertex vn on the second. On the other hand, since E'
contains more than two edges, there is an edge adjacent to the Scharlemann cycle
which is a (3, n)-edge, so on Gß there would be an edge connecting «3 to vn. This
is a contradiction, showing that k 2 is impossible. In particular, this proves (1).

Now assume n A. Since we have shown that k is even and k ^ 2, we must
have k A. In this case each vertex vt of Gß has an essential loop Ct coming from
the n parallel negative edges in Ga. These loops and their vertices form essential
circles on Aß which are parallel to each other. As above, there is an edge in E'
which connects «3 to «4. Hence the circles C3 and C4 are adjacent to each other,
so «3,^4 cannot both be boundary vertices. This proves (2). Since the edges in
the Scharlemann cycle connect v\ to vy, C\ is adjacent to C%. Thus either C3

separates «4 from v\,V2, so there is no edge connecting «4 to v\, or C4 separates
«3 from v\,V2, so there is no edge connecting «3 to v%. This proves (3). D

Lemma 5.2. Suppose E\,...,Ez, are the edges of Ga at a vertex u of valency 5.

If E\, E2, E3 are positive, and E^ is an interior edge, then \E§\ > n; in particular,
Ez, is a boundary edge.
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Proof. Assume \E^\ < n. By Lemma 2.2(2) we have \Et\ < n/2 + 1 for i < 3, and

by Lemma 2.2(3) \E^\ < n. Since n > 2, we must have A 4, and

4n An= |£i| + • • • + \E5\ < 3(| + 1) + 'In -n + 3,

which implies that n < 6. Moreover, n must be even, otherwise by Lemmas 2.2(2)
and 2.1(4) we would have \E%\ < n/2 for i 1,2,3, hence An < 3(n/2) + 2n, which
is absurd.

If n 6, then all the above inequalities are equalities. In particular, A 4,

|i?4| |i?5| 6, and \Et\ =4 for i 1,2,3, so each of E\,E<2,E-i, contains a
Scharlemann cycle, and by Lemma 2.2(1) they all have the same label pair, say
(1,2). But since \E^\ \E§\ n, these labels also appear in £4 and £5. Thus the
label 1 appears 5 times, contradicting the fact that A 4.

Now assume n 4. If each of Ei,E2,E% contains a Scharlemann cycle with
label pair (1,2), say, (in particular, if \Et\ =3 for i 1,2,3), then again the labels

{1,2} appear three times among the endpoints of E\ U E<i U £3 at u. Also, since

£4 U £5 has at least 16 — 3 x 3 7 edge endpoints at u, one of the labels {1, 2}
appears at least twice among the endpoints of £4 US5 at u, so it appears 5 times at

u, contradicting the fact that A 4. Hence we may assume that \E\\ \E^\ 3,

\E%\ 2, £3 contains no Scharlemann cycle, and \E^\ \E§\ 4. Since the two
edges of £3 have labels 3,4 at u, they must have label sets {1,4} and {2, 3}. Since

|i?4| 4, the edges in E4 are negative. This contradicts Lemma 5.1(3), completing
the proof of the lemma. D

Lemma 5.3. Ga has no interior vertex of valency at most 5.

Proof. Let E\,... ,£5 be the edges of Ga incident to u. Since all these edges

are interior edges, by Lemma 5.2 they can have at most two positive edges, say
E\, Ei- By Lemma 2.3(2), u has at most 2n negative edges in Ga, hence E\ U E<i

represents at least 2n positive edges. By Lemma 2.2(2) we have 2n < 2(n/2 + 1),
which contradicts the assumption that n > 3. D

Lemma 5.4. Ga cannot have a boundary vertex u of valency at most 4 with a

single boundary edge.

Proof. Let Eq be the boundary edge, and Ei,E2,E% the interior edges of Ga at
u. By Lemma 2.6(2) and Proposition 4.7 we have \Eq\ < 2n. By Lemma 2.3(2),
u can have at most 2n negative edges in Ga, so one of the interior edges, say E\,
must be positive, and by Lemma 2.2(2) \E\\ < n/2 + 1 < n. Since each of E<2, £3
represents at most n edges, we have |£o| > n-

We claim that either Ga or Gß contains a Scharlemann cycle. If u has more
than n negative edges, then by Lemma 2.3(1) Gß contains a Scharlemann cycle.
So assume u has at most n negative edges. Since u has less than 2n boundary
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edges, it must have more than n positive edges. If at most two of the E\,E<2, £3
are positive, then one of them represents more than n/2 positive edges; if all the
three interior edges at u are positive, then since they represent more than 2n edges,

again one of them represents more than n/2 edges. In either case these parallel
edges contain a Scharlemann cycle. This completes the proof of the claim.

Now |£"o| > n implies that some vertex of Gß has two nonparallel boundary
edges. In particular, Gß cannot be triangular. It follows from Lemma 5.3 and

Proposition 3.1 that Gß must also have a boundary vertex v of valency at most 4

with a single boundary edge. Since one of Ga and Gß has a Scharlemann cycle, by
considering v instead of u if necessary, we may assume without loss of generality
that Ga contains a Scharlemann cycle with label pair (1,2).

We claim that |£o| < n + 2. Otherwise each vertex of Gß has a boundary
edge, and some vertex vt other than v\,V2 has two such edges ei,e2- Since the
edges of the Scharlemann cycle form an essential subgraph of Gß (Lemma 2.1(4)),
separating the two boundary components of Aß, the edges e\,e2 must go to the
same boundary component. Applying Lemma 2.7, we see that Ga is special, a
contradiction.

Since |£o| > n an(i u has some positive edges, by Lemma 2.6(3) the graph Ga
cannot have n parallel negative edges. Thus if k of the E\,E<2,E-i, are positive,
then

4n < (n + 2) + k(^ + 1) + (3 - k)(n - 1) (4 - -)n + (2k - 1)

which implies that n < 4. But since Ga contains a Scharlemann cycle, n is even.
This contradicts the assumption that n > 2. D

Lemma 5.5. If both G\,G<2, are triangular, then each boundary vertex has exactly
two positive and two negative edges in Ga.

Proof. Let £o,...,£4 be the edges of Ga at a boundary vertex v, with £0 the
boundary edge. Since Gß is also triangular, £0 represents at most n edges. Therefore

by Lemma 5.2 at most two of the Et are positive. On the other hand, by
Lemma 2.3(2) v has at most 2n negative edges, hence at least n positive edges.
Since each Et represents at most n/2 + 1 < n positive edges, v must have two
positive edges in Ga. D

Lemma 5.6. Suppose both G\, G% are triangular. Then all vertices of G\, G% are
boundary vertices.

Proof. Let £o,...,£4 be the edges of Ga at a boundary vertex v, with Eq the
boundary edge. By Lemma 5.5 we may assume that E\,E<i are negative edges,
and £3, £4 are positive edges.

Suppose Gß has some interior vertices. Then |£o| < n- Since v has at most 2n
negative edges, it has more than n positive edges, so £3 U £4 contains a Scharle-
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mann cycle with label pair (1,2), say, and n is even Also, one of E\,E<2 must
represent n parallel edges, for otherwise Eq L)E\ UE2 would contain at most 3n — 3

edges, so one oî Es,E^ would contain at least n/2+ 2 edges, contradicting Lemma
2 2(2) Now we can apply Lemma 5 1(1) and conclude that Gß has at most n/2
boundary vertices Thus \Eq\ < n/2 We have the inequality

4n<\E0\+ +\E5\ < ^ + 2n+2(^ + 1) < -n + 2

Since n is even, this implies n 4, \Eq\ 2, \E\\ E%\ 4, and IE3I \E±\ 3

Now each of E^,E^ contains a Scharlemann cycle on label pair (1,2), so these
labels appear 4 times among the interior edge endpomts at v Thus the labels of
Eq must be 3,4 This contradicts Lemma 5 1(2) D

Lemma 5.7. G\,G<i cannot both be triangular

Proof Assume G\,G% are triangular Then by Lemma 5 6 all vertices of G\,G%
are boundary vertices, and by Lemma 5 5 each vertex v of Ga has exactly two
positive edges and two negative edges in Ga Since a positive edge in Ga is a

negative edge in Gß, it follows that either (1) some vertex v of one of the graphs,
say G\, has more positive edge endpomts than negative ones, or (11) all vertices of
G\ and G<i have the same number of positive and negative edge endpomts

In case (1), (writing n n^), v has at most 2(n/2 + 1) n + 2 positive edges,
at most n + 1 negative edges, and at most n boundary edges From the inequality

4n< (n + 2) + (n+l) + n

we see that n < 3 But if n 3 then v has at most 2(n/2) n positive edges, at
most n — 1 negative edges, and at most n boundary edges, which would lead to
the contradiction that 4n<n+(n — l)+n

In case (11), any vertex v of Ga has at most n+2 positive edges, the same number
of negative edges, and at most n boundary edges, so from An < (n + 2) + (n + 2) + n
we see that n 4, \E\ 3 for all positive interior edges of Ga, and \E\ 4 for
all boundary edges of Ga Each label appears three times among the interior edge

endpomts at any vertex v of Ga, but since each of the two families of positive edges
at v contains a Scharlemann cycle, which must all have the same label pair (1,2),
it follows that these labels appear only once among the negative edge endpomts
at v, so the label 3 appears twice among the negative edge endpomts at v Since
this is true for all vertices v in Ga, it means that the vertex «3 on Gß has 2na
positive edge endpomts, and na negative ones, a contradiction D

Proposition 5.8. One of the graphs Ga has at most two vertices

Proof Assume n\,n<2 > 3 By Proposition 4 7, Ga is not special, by Lemma 5 3

Ga does not have an interior vertex of valency at most 5, and by Lemma 5 4 it
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cannot have a boundary vertex of valency at most 4 with a single boundary edge.
Thus by Proposition 3.1 both G\,G<2 are triangular, which contradicts Lemma 5.7.
D

§6. Nonspecial graphs with n\ 2 and n<2 > 2

Throughout this section we will assume that G\,G^ are not special graphs. We

will show that the case n\ 2 and n^ n > 2 does not happen. Together with
Propositions 4.7 and 5.8, this shows that na must be at most 2 for both a 1

and 2.

Lemma 6.1. If n\ 2 then G\ is a subgraph of that shown in Figure 6.1.

Proof. Since G\ is not a special graph, one of the vertices mi,«2 has at most one
boundary edge. If either u\ or u<i does not have a loop, then one can find a vertex
u of valency at most 3 in G\, with at most one boundary edge. Since each interior
edge represents at most n edges, u would have at least 2n boundary edges, which
would imply that G% is a special graph, a contradiction. Hence each vertex ut has

a loop. It is now easy to see that G\ must be a subgraph of that in Figure 6.1. D

Figure 6.1

Label the edges of G\ as in Figure 6.1. Denote by m the number of non-loop
interior edges of G\, i.e. m IE3I + |£"4|-

Lemma 6.2. Suppose n\ 2, and n > 2.

(1) Either m 2n, or m 2n — 2 and E% contains a Scharlemann cycle.
(2) The two vertices of G\ are antiparallel.

Proof. (1) If no label appears twice among the endpoints of edges in E<2, then from
the labeling on du\ one can see that either m > 2n or \E\\ > 2n. But the second
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possibility does not occur because then by Lemma 2 6(2) the graph G% would be

special Hence in this case we have m > 2n Since each of £3, £4 represents at
most n edges, we conclude that m 2n

Now assume that some label appears twice among the endpomts of edges in
£2 Then £2 contains a Scharlemann cycle e\, e%, with label pair (1,2), say Since

n > 2, £2 contains no extended Scharlemann cycle (Lemma 2 1(5)), so one of
these two edges, say e\, must be an outermost edge among those in £2 Thus the
endpomts of e\ are either adjacent to those in £3 U £4 or to those in E\ In the
first case, the label sequence of £3 U £4 at u\ is 3,4, n, so m n — 2 mod n
If m 2n — 2 then we are done If m =/= 2n — 2, then since |£s|, I-B4I < n, we
must have m n — 2 Thus \E\ \ An — m — 2|£>2| > 2n, which by Lemma 2 6(2)
would imply that G<i is special, a contradiction Therefore e\ must be adjacent
to E\ As above, we have either \E\\ 2n — 2, or \E\\ n — 2 and m > 2n In
the second case we have m 2n because |£s|, I-B4I < n It remains to show that
\E\\ 2n — 2 is impossible

Assume \E\\ 2n — 2 Notice that this happens only if £2 contains a Scharlemann

cycle Moreover, if (1, 2) is the label pair of the Scharlemann cycle then all
labels other than 1,2 would appear twice among endpomts of edges in E\ Thus
on G<i each vertex other than t>i,t>2 would have two boundary 1-edges But since
the edges in the Scharlemann cycle and the vertices v\,V2 form an essential
subgraph of G<i, these two parallel 1-edges must go to the same boundary component
of A<i By looking at an outermost vertex one can see that there is a vertex vt
with j^ 1,2, at which the two boundary 1-edges are parallel, so they are parallel
on both graphs, contradicting Lemma 2 1(2)

(2) If u\,u<2 are parallel then 2n — 2 < |£3| + |£4| < 2(n/2 + 1), implying that
n 4 and |£3| |£4| 3 In this case both £3, £4 contain Scharlemann cycles,
and by Lemma 2 2(1) they must have the same label pair (1, 2) as the one in £2
But since each of the labels 1, 2 appears only once among the endpomts at u\ of
edges in £3 U £4, this is impossible D

Lemma 6.3. Suppose n\ 2, and n > 2 Then G\ cannot have 2n negative
edges

Proof We must have |£2| > 0, otherwise \E\\ > 2n, so G<i would be special,
contradicting our assumption Assume that G\ has 2n negative edges Then
1-^31 1-^41 n) an(i by Lemma 2 6(3) we have \E\\ < n, hence |£2| > n/2 On
the other hand, by Lemma 2 2(2) |£2| < n/2 + 1 Hence £2 contains either n/2
or n/2 + 1 edges We want to show that |£2| ^ n/2 + 1 Assuming otherwise,
then since £3 contains n parallel negative edges, by Lemma 5 1 the graph G\
has at most n/2 parallel boundary edges On the other hand, we have \E\
An — m — 2|£2| > n — 2, and since £2 contains a Scharlemann cycle with label

pair (1,2), say, n is even Therefore we must have n 4 Now in this case the
labels of the edges in E\ are 3,4, contradicting Lemma 5 1(2)
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(a) (b)

Figure 6 2

We have shown that \E%\ n/2, and \E\\ n. For the same reason, we have
1-^51 n/2 and \E§\ n- Without loss of generality we may assume that u\ is

a positive vertex, u<i is negative, and the edges of E\ have label sequence 1, ...,n
at u\. See Figure 6.2. Let t n/2. Since \E%\ n/2, the label sequence of the
endpoints at u\ of the edges of £3 is t + 1, ...,n, 1, ...,£. There is a number k such
that the label sequence at the other end of E3 is t + k,t + k+1,...,t+ k — 1. The
number k ^ 1, otherwise these edges would be loops in G%, so n > 2 would imply
that some vertex of G% does not have a boundary edge, contradicting the fact
that \E\\ n. Now from Figure 6.2 we can see that the label sequence of Eq is

k, ...,n, 1, ...,k — l, hence the two edges e3,e4 in Eq labeled n and 1 respectively, are
adjacent (because k =/= 1). Let e\, e<i be the edges of E\ labeled 1 and n respectively.
By Lemma 2.6(3), each vertex of G<i has at most one family of parallel boundary
edges, so e<i is parallel to e%, and e^ parallel to e\ in G%. Let B{e\,e<2) be the band
on F\ between e\ and e%, and let B(es, e^) be that between e% and e^. Similarly, let
B(e2,es) an(i -B(e4,ei) be the bands on F% between e2,e3 and e±,e\, respectively.
Now we can form an annulus A B(e\, e%) U B(e2,e^) U _B(e3,e4) U -B(e4, e\) in
the manifold M. Since the boundary curve G of A on To intersects the circle dvy
transversely at a single point (on the arc B(e\,e2) l~l du\), it is an essential curve.
This contradicts the fact that the manifold M is <9-irreducible and anannular. D

Lemma 6.4. Suppose n\ 2, and n > 2. Then G\ cannot have exactly 'In — 2

negative edges.

Proof. If G\ has 2n —2 negative edges, then (up to symmetry) either \E%\ |i?4|

n — 1, or |i?3| n and \E^\ n — 2. Looking at the labeling, one can see that
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the two loops of Ei near £3 U £4 form a Scharlemann cycle, with label pair (1,2),
say. If IE3I n then by Lemma 2.6(3) we have \E\\ < n, hence \E^\ > n/2 + 1.

Now by Lemma 5.1(1) the graph G2 has at most n/2 boundary vertices, which
contradicts the fact that \E\\ n. Therefore we must have \E%\ \E^\ n — 1.

For the same reason, the two loops in £5 near £3 U £4 form a Scharlemann
cycle, which by Lemma 2.2(1) must have the same label pair (1,2). Now we can
see that £3 has label sequence 3,4, ...,n, 1, at u\, and has label sequence 2, 3, ...,n
at «2- However, in this case £3 has only one orbit, containing all the labels, so all
the vertices of G<i are parallel to each other, hence all edges of G\ are negative.
But since G\ contains some loops, this is a contradiction. D

Proposition 6.5. If M{r\),M{r<2) are annular, and A > 4, then na < 2 for
a= 1,2.

Proof. By Proposition 4.7 this is true if one of the Ga is special. By Proposition
5.8 one of the graphs, say G\, has at most two vertices. Since the two possibilities
in Lemma 6.2(1) have been ruled out by Lemmas 6.3 and 6.4, the case n\ < 2 and

ri2 > 2 cannot happen. D

§7. Special graphs with n\ 1 and n<i 2

Proposition 7.1. If Ga is special, then A A, up to relabeling n\ 1, ny 2,
and the manifold M is the exterior of the Whitehead link.

Proof. By Lemma 4.1, both graphs must be special. By Proposition 4.7, up to
relabeling we must have n\ 1, n<i 2, and G\ has exactly two interior edges

elje2-
Assume A 5. By Lemma 4.4 the jumping number q 1. There is a pair of

adjacent boundary 1-edges e\, e<i at v\ in G<2, which by Lemma 2.5(1) should also
be adjacent at u\ in G\ among all 1-edges; but since the two families of boundary
edges at «i are separated by two interior edges, e\, e% must be in the same family,
so they are parallel on both graphs, a contradiction. Therefore we must have
A 4.

Now the Whitehead link exterior W does admit two annular Dehn fillings
W(ri),W(r2) with A(ri,r2) 4, n\ 1, and ni 2, see [GW1, Theorem 7.5].
It remains to show that the manifold satisfying these conditions is unique.

Each vertex of G2 has two boundary edges, which are nonparallel because G2 is

special. Thus the graph G2 must be as shown in Figure 7.1(b). Similarly, since G\
is special it has two families of parallel boundary edges. The loops have different
labels at their two endpoints, so each family of boundary edges of G\ contains an
even number of edges. Hence G\ must be as shown in Figure 7.1 (a).

Label the six edges of G\ as in the figure. Orient e3,e4 so that on G\ they
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(a) (b)

Figure 7.1

have label 1 at their tails. Up to symmetry we may assume that the edge e\ on G%

is as shown in Figure 7.1(b). The label 1 endpoints of edges e\,eziebie^ appear
successively on du\, hence by Lemma 2.5(1) they also appear in this order on dv\
in G<2, so these edges must be as shown in the figure. Similarly by looking at the
label 2 endpoints of &i1 e^, eß, e3 one can determine the edges e^ and eg. Therefore

up to symmetry the graphs Ga are exactly as shown in the figure. We need to
show that these graphs uniquely determine the manifold M.

Recall that Fa denotes the punctured annulus Aa n M. Let X N{F\ U To),
and let Y N(F\ U F2 U To), where the regular neighborhoods are taken in M.
The frontier of X in M, i.e. XnM-X,isa surface F, which is a four punctured
sphere. Note that Y is obtained from X by adding regular neighborhoods of
the faces of G%. Each of the four faces of G<i is a disk D% with dD% ct U c',
where c' is an arc on dM, and ct an arc on F\ U To. Let Z% be the arc D% n F.
Then the frontier of Y X U (L)N(Dl)) in M is a properly embedded surface F',
homeomorphic to the surface obtained by cutting F along the arcs Z%. Thus Y
and X are homeomorphic, but they are embedded in M differently. Note that Y
is uniquely determined by the graphs G\ and G%.

It is easy to see that all the ct are essential arcs on F. Since each boundary
component of F meets Uct twice, after cutting along all these ct, the remnant,
and hence F1, consists of either two disks, or two disks and an annulus. In fact,
by examining the graphs, one can see that F' indeed consists of two disks and
an annulus. Since M is irreducible and d-irreducible, the disk components of F'
are boundary parallel. If the annular component A of F' is incompressible in M
then A is also boundary parallel because M is anannular and irreducible, so M
would be homeomorphic to Y, which in turn is homeomorphic to X. Let C be

an essential curve on To disjoint from dF\. Then C x / in To x / would be an
essential annulus in X, contradicting the fact that M is anannular. Therefore A
must be compressible. Let D be a compressing disk of A in M. Then D lies in
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either Y or M — IntY. We show that the first case is impossible.
First notice that the surface F\ cuts X into a manifold F x /, in which both F

and the two copies of F\ are incompressible. By an innermost circle argument one
can show that F is incompressible in X. Under the homeomorphism Y X, A
can be considered as a subsurface of F, hence A is also incompressible unless the
core of A is a trivial curve on F. On the other hand, notice that A is a component
of dY - IntF", where F" Y C\ {dM - To) is a neighborhood of dAi U dA2
on dM, which is connected. Since dA C F", it follows that the core of A is

nonseparating on dY, hence it is nontrivial on F. This completes the proof that
A is incompressible in Y.

Hence the compressing disk D of A lies in M — IntY. Let M' be the union
of Y and a regular neighborhood of D. Then the frontier of M' in M is a set of
disks, which must be boundary parallel because M is irreducible and d-irreducible.
Therefore M' is homeomorphic to M. It follows that M is obtained from Y by
adding a 2-handle along the core of A, and hence is uniquely determined by the
graphs G\ and G%. D

§8. Nonspecial graphs with na < 2

First note that if na 1 and Ga is not special, then the unique vertex of Ga has

valency at most 3 in Ga, and hence by Lemma 2.2(3) Ga has at least 2ng parallel
boundary edges. By Lemma 2.6(2) this implies that Gß, and therefore (by Lemma
4.1) Ga, is special, a contradiction. Hence if G\, G<i are not special and n\,n<i < 2,

we must have n\ n2 2.

Lemma 8.1. Suppose that n\ n2 2 and G\,G2 are not special. Then for
a 1,2, the two vertices of Ga are antiparallel, Ga is a subgraph of the graph G

in Figure 6.1, and one of the following holds.

(i) A A, each interior edge of Ga represents two edges of Ga, and Ga has

no boundary edges.

(n) A 5, each edge of Ga represents two edges of Ga, and the jumping
number q 2.

Proof. By Lemma 6.1, Ga is a subgraph of the graph G shown in Figure 6.1.
Each vertex v of Ga must have a loop, otherwise some vertex would have valency
3 in Ga with a single boundary edge, so by Lemma 2.6(2) Gß would be special,
contradicting the assumption. Since a loop in Ga is a non-loop negative edge of
Gß, it follows that each graph Gß has some negative edges, hence the two vertices

of Gß must be antiparallel, ß 1,2. By Lemma 2.2(3) each interior edge of Ga

represents at most two edges of Ga. Similarly, each boundary edge of Ga also

represents at most two edges of Ga, by Lemma 2.1(2).
First assume A 4. Notice that a vertex of Ga has either no boundary edge or
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two boundary edges, for if it has exactly one boundary edge then the loops based at
that vertex would have the same label at their two endpoints, which contradicts the
parity rule. Since two boundary edges at a vertex of Ga correspond to boundary
edges at different vertices of Gß, it follows that either both vertices of Ga have

two boundary edges, or they both have no boundary edges. The second possibility
gives rise to conclusion (i) in the lemma.

Assume that each vertex of Ga has two boundary edges. Then there are a total
of 6 interior edges in each graph. Note that an interior edge is a loop on Ga if and
only if it is a non-loop on Gß because of the parity rule, hence one of the graphs,
say G\, has at least three loops. Without loss of generality we may assume that
there are two loops e\, e<i based at the vertex u\. Consider their label 1 endpoints.
Because there are two boundary edges at u\, these two endpoints are non adjacent
among all label 1 endpoints at u\. Now look at the graph G%- By Lemma 2.5(1)

ei,e2 are non adjacent 1-edges at v\ among all 1-edges. However, since they are
non-loops in G%, they are contained in the two adjacent families E%, E4 in Figure
6.1. Since E3UE4 contains a total of at most four edges, ei,e2 are adjacent among
all 1-edges at v\. This contradiction completes the proof of the lemma for the case
A 4.

Now assume A 5. Since each vertex of G has valency 5, and since each edge
of Ga represents at most two edges of Ga, A 5 implies that each edge of Ga
represents exactly two edges. By the same argument as above one can show that
the jumping number q cannot be 1, so we are in case (ii). D

Lemma 8.2. There is a unique irreducible, d-irreducible, anannular manifold M
which admits two annular Dehn fillings M(ri),M(r2) with A(ri,r2) 5.

Proof. By Lemma 8.1, the graphs must be as shown in Figure 8.1. We first show
that the edge correspondence and the labelings of the vertices are unique up to
symmetry.

Reflecting the annuli vertically and changing their orientations if necessary,
we may assume that the vertices u\,v\ are positive, and the labeling of edge

endpoints at du\, dv\ are as shown. Any non-loop edge has the same label on its
two endpoints, because it is a loop edge on the other graph. Thus the labeling on
du2,dv2 is determined by that on du 1, dv\, respectively. Orient the edges so that
a non-loop edge goes from u\ to «2 (resp. v\ to v^)- Then dually the orientation
of a loop edge must go from label 1 to label 2. Label the edges of G\ as in Figure
8.1(a).

If Pi, ...,P5 are the points of u\ n v\, appearing in this order on du\ along
its orientation, then since the jumping number q 2, they appear in the order
Pl,Pz,P§,P2,P± on dv\ either along or against the orientation of dv\. In other
words, along the orientation of dv\ they either appear in this order, or in the order
Pl,P4,P2,P5,P3. In the second case, write (Qi, Q2,..., Q5) (Pi,P4,P2,P5,P3);
then {P\,...,P^) (Qi,Q3,Qs,Q2tQ4)- Hence by interchanging the roles of G\
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and G<i if necessary, we may assume that the points appear as {P\, P-$, P5, P2, P4)
on dv\ along the orientation of dv\

Now we can see that the labeling of the edges on G% is completely determined
by that of G\ The 1-edges at u\ appear m the order a,c,e,k,d in the positive
direction, so at v\ they appear in the order a,e,d,c,k, where a is the unique
boundary edge at v\ labeled 1 The order of the 2-edges at u\ is b,d,f,l,c, so

dually the 1-edges at v% are in the order 6, /, c, d, I Similarly by looking at «2 one
can determine the labeling of the remaining edges in G<i See Figure 8 l(b)

(a) (b)

Figure 8 1

It remains to show that the manifold M is uniquely determined by these graphs
As in the proof of Proposition 7 1, consider the submamfold X N(A\ U J\) of
M{r\) Since J\ intersects A\ in two meridian disks of opposite sign, the frontier
F of X consists of two components Fb,Fw, each being a twice punctured torus,
called the black surface and the white surface respectively A face of G<i is black
or white according to whether it intersects the black surface or the white surface
Note that each face of G<i intersects F in a circle or an arc, so it is either black or
white, but not both

Let D\ be a face of G% bounded by a pair of parallel loops, and let D% be
the triangular interior face of G% adjacent to D\ Since they have an edge in
common, they are of different colors, so we may assume that D\ is black and D% is

white The boundary of D\ intersects a meridian of J\ twice in the same direction,
hence dD\ is a nonseparatmg curve on Ft, After adding a neighborhood of D\
to X, the black frontier is homeomorphic to the surface obtained by 2-surgery
on Fb along dD\, hence is an annulus Ab Since its boundary components are
essential curves on dM, and since M is 9-irreducible, Ab is incompressible in
M, and hence is boundary parallel in M Similarly, since the boundary of D%

intersects a meridian of J\ three times, c)D<i is a nonseparatmg curve on Fw, so
after adding N(D<2) the white frontier becomes an annulus Aw, which for the same
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reason must be boundary parallel in M. It follows that M is homeomorphic to
N(F\ UTqUDiUDz), where F\ is the punctured annulus A\ DM. The boundary
curves of Dt are determined by the graphs, which have been determined (up to
symmetry) as above. Hence the manifold M is uniquely determined. D

Lemma 8.3. There is a unique irreducible, d-irreducible, anannular manifold
M which admits two annular Dehn fillings M(ri),M(r2) with A(ri,r2) 4 and

nl n2 2.

Proof. The proof is similar to that of Lemma 8.2. In this case the jumping number
is 1, and one can show that up to symmetry the graphs must be as shown in Figure
8.2. The proof that M is determined by the graphs is the same as in the proof of
Lemma 8.2. D

(a) (b)

Figure 8.2

We now prove Theorem 1.1, which we restate here for the reader's convenience.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, d-
irreducible, anannular 3-manifold which admits two annular Dehn fillings M(r\),
M(r<2) with A A(ri,r2) > 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and A 4.

(2) M is the exterior of the 2-bridge link associated to the rational number
3/10, and A 4.

(3) M is the exterior of the (—2, 3, 8) pretzel link, and A 5.

Proof. By Proposition 6.5, we must have na < 2 for a 1,2. If Ga is special, then
by Proposition 7.1 the manifold M is the exterior of the Whitehead link. If Ga is

nonspecial, then by Lemma 8.1 the graphs Ga must be as in Figure 8.1 or 8.2, and
by Lemmas 8.2 and 8.3, in each case the manifold M is uniquely determined by the
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graphs, hence there are at most three manifolds M which may admit two annular
Dehn fillings of distance at least 4 apart On the other hand, it has been shown in
[GW1, Theorem 7 5] that each of these manifolds admits two such fillings Hence
the result follows D
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