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Symplectic invariants of elliptic fixed points

Karl Friedrich Siburg

Abstract. To the germ of an area—preserving diffeomorphism at an elliptic fixed point, we
associate the germ of Mather's minimal action This yields a strictly convex function which is
symplectically invariant and comprises the classical Birkhoff invariants as the Taylor coefficients
of its convex conjugate In addition, however, the minimal action contains information about
the local dynamics near the fixed point, for instance, it detects the C°—integrability of the
diffeomorphism Applied to the Reeb flow, this leads to new period spectrum invariants for
three-dimensional contact manifolds, a particular case is the geodesic flow on a two-dimensional
Riemanman manifold, where the period spectrum is the classical length spectrum

Mathematics Subject Classification (2000). 37J, 37E, 53D

Keywords. Elliptic fixed point, Birkhoff normal form, Aubry—Mather theory, minimal action,
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1. Introduction

In this paper, we study the dynamics of an area-preserving diffeomorphism in a

neighbourhood of an elliptic fixed point It is a classical result by G D Birkhoff
that, under certain nondegeneracy conditions on the linearization, there exists a
normal form which is invariant under symplectic coordinate changes This Birkhoff
normal form describes an mtegrable map whose asymptotics, as one approaches the
fixed point, coincide with those of the given non-mtegrable map The coefficients
of the Taylor polynomial (or series) for the normal form are the so-called Birkhoff
invariants

The goal of this paper is to construct a new "local" symplectic invariant which
includes the Birkhoff invariants, but, in contrast, reflects part of the dynamical
behaviour near the fixed point To do so, we introduce a vanational principle
analogous to that in Aubry-Mather theory for monotone twist maps, namely, we

minimize the Lagrangian action over all orbits with a given rotation number This
yields the minimal action, a function canomcally associated to the given symplectic
map and invariant under symplectic coordinate changes The key point is to prove
that this function is real valued, and hence a nontrivial invariant Then it follows
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from Aubry-Mather theory that the minimal action contains certain information
about the local dynamics near the fixed point. For instance, its differentiability
at a rational rotation number is tantamount to the existence of a periodic invariant

circle. We will prove the following result; see Theorem 3.2 for the precise
formulation.

Theorem. Given an area-preserving diffeomorphism </> near an elliptic fixed point,
the minimal action a is a strictly convex, symplectically invariant function. In
addition, one has the following:
1. The Birkhoff invariants are the Taylor coefficients of the convex conjugate a*.
2. <f> possesses an invariant circle of rotation number p/q, consisting of periodic

orbits, if and only if a is differentiate at p/q.
3. If <f> has an invariant circle of rotation number to, its enclosed area is given by

Moreover, in the integrable case, the minimal action is a complete invariant, a fact
which is not true for the Birkhoff normal form (unless the map is analytic). We
show that the following is true; see Theorem 3.4.

Theorem. Given a symplectic diffeomorphism <f> near an elliptic fixed point, let

a denote the associated, minimal action. Then the following holds true:
1. If (p is integrable, a determines <f>; in fact, a* is an integrable Hamiltonian (i.e.,

already in action-angle variables) generating (p.

2. If a is differentiable then </> is C° -integrable.

Symplectic mappings near a fixed point appear often as Poincaré section maps
of a closed trajectory. We explain this for the Reeb flow on a contact manifold,
a particularly interesting example of which is the geodesic flow. It turns out that
the minimal action depends only on the period spectrum of the contact manifold
which, in the case of geodesic flows, is the length spectrum from Riemannian
geometry. Therefore, the minimal action is a new local length spectrum invariant
for compact two-dimensional manifolds, as are all quantities that can be obtained
from it (e.g. the Birkhoff invariants).

Minimal orbits — or measures, respectively — play also an important role
in other contexts. For planar convex domains, the minimal action is a length
spectrum invariant under continuous deformations of the domain [Si3] ; this can be

seen as a global version of the results presented here. The minimal action appears
even in Ho fer 's geometry of the Hamiltonian diffeomorphism group of cotangent
bundles, where it yields a lower bound for the distance of a convex diffeomorphism
from the identity [Sil, IS]. A comprehensive exposition of the role of the minimal
action in the various contexts is given in [Si4].
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1. An estimate in Aubry—Mather theory

The Principle of Least Action states that, for sufficiently short times, trajectories
of a Lagrangian system minimize the action amongst all paths in configuration
space with the same end points If the time interval becomes larger, the Euler-
Lagrange equations describe just critical points of the action functional, they may
well be saddle points

In the eighties, Aubry [Aub] and Mather [Mai] discovered that monotone twist
maps on an annulus possess orbits which minimize the (discrete) action with fixed
end points on all time intervals These minimal orbits turned out to be of crucial

importance for a deeper understanding of the complicated orbit structure of
monotone twist mappings In this section, we give a quick review of the relevant
theory and prove a perturbation result for the minimal action that we will need

later
Let S1 x (a, 6) C S1 x R T*& be a plane annulus with S1 R/Z, where

we allow the cases a — oo or b +oo (or both) Given a diffeomorphisin
4> of S1 x (a, b) we consider a lift </> of </> to the universal cover R x (a, b) of
S1 x (a, b) with coordinates x, y Since </> is a diffeomorphisin so is </>, and we have

4>(x + 1, y) </>(x, y) + (1,0) In this section, we will always work with (fixed) lifts
for which we drop the tilde again and keep the notation </>

In the case when a or b is finite we assume that </> extends continuously to
R x [a, b] by rotations by some fixed angles

4>(x,a) (x+ ui-,a) resp </>(x,6) (x + w+, 6)

The numbers lo± are unique after we have fixed the lift For simplicity, we set

lü± ±oo if a — oo or b oo

By definition, a (monotone) twist mapping is a C^-diffeomorphisin

4> Rx (a,6) -^lx (a,b)

satisfying <j>{xq + l,yo) 4>{xOiyo) + (1,0) as well as the following conditions
1 </> preserves orientation and the boundaries of R x (a, 6), in the sense that

VI (xo, yo) —> a, b as yo —> a, b,

2 if a or b is finite </> extends to the boundary by a rotation,
3 <f> satisfies a monotone twist condition
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4. <f> is exact symplectic; in other words, there is a C2-function h such that

yi dx\ -yodxo dh(xo,x\)

The interval (w_,w_|_) C R, which can be infinite, is called the twist interval of

Remark 2.1.
1. The twist condition states that images of verticals are graphs over the x-axis.

This implies that </> can be described in the coordinates xq,x\ rather than
xo,VO-

2. The function h, which is unique up to an additive constant, is called a
generating function for </> and serves as a discrete version of the Lagrangian action.
It is defined on the strip {(£, rj) G M2 | u>- < r/ — S, < ui-\-} and can be extended
continuously to its closure. Moreover, it satisfies did^h < 0 as well as the
periodicity condition h(£ + 1, rj + 1) h(£, rj).

Example 2.2. The simplest example is what is called an integrable twist map
which, by definition, preserves the radial coordinate:

<t>(xo,yo) {xo

with /' > 0. Then h h(x\ — xq), with h' f~^, is strictly convex.

Note that an orbit ((xt,yt))tez of a monotone twist map </> is completely
determined by the sequence (xt)tez via the relations

y%

Similarly, an arbitrary sequence (£j)»ez corresponds to an orbit of </> if and only if

ö2ft(e.-i,e.) + öi'i(e.,e.+i) o (2.1)

for all i G Z. Thus, on a formal level, orbits may be regarded as "critical points"
of the (discrete) action "functional"

on Rz. From this point of view, the minimal orbits we are looking for will be

"minima" of that "functional".
To make this precise, we call a sequence (xt)tez minimal if every finite segment

minimizes the action with fixed end points; this means that
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for all (£fc, ...,£;)€ R'~fc+1 with Çk xk and £; x;. By (2.1), each minimal
sequence (xt)tez corresponds to an orbit ((xt,yt))tez; these are called minimal
orbits.

The rotation number of an orbit ((xt,yt))tez of a monotone twist map is

given by

lim — hm ;

\t\—>oo % \%\—>oo %

if this limit exists.
The following theorem is the basic result in Aubry-Mather theory. The reader

may consult [Ban, Gol, KH, MF] for more details.

Theorem 2.3. ([Aub, Mal]) A monotone twist map possesses minimal orbits for
every rotation number in its twist interval; for rational rotation numbers there are
always periodic minimal orbits. Moreover, every minimal orbit lies on a Lipschitz
graph over the x-axis.

In view of the latter property, minimal orbits resemble invariant circles which,
by a classical theorem of Birkhoff, must be Lipschitz graphs (cf. [Si2] and the
references therein). By an invariant circle we mean an embedded homotopically
nontrivial invariant closed curve in S1 x (a, 6), respectively, its lift to R x (a, b).

Remark 2.4.
1. If a monotone twist map possesses an invariant circle of rotation number to

then every orbit on that circle is minimal [MF, Thm. 17.4].
2. Theorem 2.3 remains true if one considers the more general setting of a monotone

twist map on an invariant annulus {(x,y) | w_(x) < y < w_|-(x)} between
the graphs of two functions u±; see [MF].

By associating to each a; G (w_, w_|-) the average action of some (and hence any)
minimal orbit ((xt,yt))tez having rotation number lu, one defines the minimal
action

a : ((x>-,

nZo2N
x=—N

Proposition 2.5.
1. a is strictly convex; in particular, it is continuous.
2. a is differentiate at all irrational numbers.
3. If lu p/q is rational, a is differentiate at p/q if and only if there is an

invariant circle of rotation number p/q consisting entirely of periodic minimal
orbits.
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4- If Tw is an invariant circle of rotation number lu then a is differentiate at lu

with a\ui) Jp ydx.

Proof. Everything is well known and can be found in [MF, Ma2], except perhaps
for the precise value of a'(u)) in the last part. This follows from Moser's observation
that every twist map can be interpolated by a convex Hamiltonian [Mo3], together
with [Sil, Thm. 2.1]. D

We will see now that the minimal action for a perturbation of an integrable
twist map is a perturbation of the minimal action for the integrable map. This is

made precise in the next theorem; compare [Kat, Lemma 6] for a related argument.

Theorem 2.6. Let h, ho he generating functions for two monotone twist maps
such that /io(s) c(s—•~f)k-\-O((s—•~f)k^~ with c > 0, k > 2 generates an integrable
twist map, and

Ht, rj) hoir! -0+ O{{n - £ - l)k+m)

as rj — £ —> 7 with 2m € N \ {0}. Then the corresponding minimal actions o.,o.q
satisfy ao(w) ho(iv) and

«H aoH + O{{uj - 7)fc+m)

as u) —> 7.

Later, we will apply this theorem when 7 u;_ is the lower boundary point of
the twist interval.

Proof. Let us first convince ourselves that «o ^0- All orbits of rotation number
u! lie on the invariant circle S1 x {(/io)~1(w)} and have the same average action
ho(iü). Hence the minimal action ao(w) is indeed ho(cü).

In the following, C always denotes some positive constant that may vary from
time to time. Write h(£,r)) ho(r] — £) + f(£,r]). Since / vanishes up to second
order at {rj — £ 7} we know that minimal orbits of rotation numbers to close

enough to 7 are located near {rj — £ 7} where we have

\f(Lv)\<Ch0(rj-O1+2f- (2-2)

Pick a minimal /i^sequence (xt)tez of rotation number lu. The idea is to compare

the action of a segment

to that of the segment

(x_Ar,XQ + (-N + 1)UJ,. ,XQ - UJ,XQ,XQ + LO, XQ + (N - l)uj, XN
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with the same end points. Note that, up to the two end points, the second segment
belongs to the minimal Zio^equence {xq +i^)%ei- The minimality of the sequence
(a^)»ez implies that

xt — xq — iiv\ < 1 (2-3)

for all ieZ; see [Ban, Cor. 3.16]. Since (xt)-N<i<N minimizes the action we can
estimate

N-l

i=-N
N-2

(N-l)u;,xN)
N - 2)

+ 2 mini max |/i(^,?y)|, max
|Ç|<1+|| Ç

(2N - 2)ho(uj) + (2N - 2) max |/(£,

where the second inequality uses h ho + f and (2.3). Dividing this inequality
by 2N and taking the limit as N —> oo yields

~~
ç

' ~

For the reversed estimate, we obtain from (2.2) that

N-l N-l
^2 h(xnxt+l)> X] [ho(xt+l ~ xt) ~ Cho(xt+i - x,)^^] (2.4)

i=-N i=-N

Now observe that, because of k > 2, the function ho — Ch0 k is convex near

7 because ho itself is. This is easily shown by taking the second derivative and

comparing the orders in lu — 7 for the three different terms. But a convex function
g satisfies g(s) + g(t) > 2g((s +t)/2). Applying this to (2.4) we find

N-l -yN-1 x _xJ2 K^^+l) > 2N(h0 - Chl+^) ~N2N+1 l)
%=—N

Again, dividing by 2N and taking the limit yields

a{uj) > ho(co) - Cho(iv)1+^ > ao(iv) - C\iv -
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and the theorem is proven D

Since a is a convex function it possesses a convex conjugate (or Fenchel
transform) a* defined by

a* (/) max [luI - a{ui)} (2 5)

Since a is strictly convex, a* is a convex C^-function with

whenever a1 {lu) exists [RW, Thm f f f 3] Flat parts of a* correspond to points of
non-differentiabihty of a

1

3. Elliptic fixed points of area—preserving maps

We consider the germ of a symplectic diffeomorphism at the fixed point 0 G (R2, Q)
where Q is some area form on R2 In the following, whenever we pick a representative

<f> U —> R2, we assume that U is a simply connected neighbourhood of 0,

this is no loss of generality Then, by Pomcaré's Lemma, the symplectic form Q

is exact, l e there is a 1-forin A with Q dX

Suppose there is a point p G U \ {0} whose iterates pt 4>%{p) exist for all
!€Z We want to define the average action and the rotation number of the orbit
(Pi)iez Since </> is symplectic the 1-forin </>*A — A on U is closed, hence exact

4>*X - A dS

S is called a generating function for </>, and we make it unique by normalizing
S(0) 0 2 The average action of the orbit (pt)tez with respect to A is defined
as

N-l
A((Pl)) Inn -L

%=-N

if this limit exists
We claim that this definition does not depend on the choice of the 1-forin A

Indeed, taking another 1-forin A' with d\' dX Q the closed 1-forin A' — A is

See [RW] for any question about smooth or non—smooth convex analysis
o

As an aside, we remark that this normalization is in accordance with setting H(t, 0) 0

when H is a Hamiltoman whose flow generates <f> and leaves 0 fixed, for, then the generating
function J A — Hdt vanishes at 0
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exact: A' — A dF. The new generating function is given by S' S + <f>*F — F.3
But the average of <f>*F over an orbit is the same as that of F, proving our claim.

Moreover, the average action is invariant under local symplectic coordinate
changes $ fixing the origin (which are always exact symplectic). The invariance
follows from the same argument as above because the generating function for
$ o </> o &-1 is given by <J>*5 + F - ($ o </> o §~1)*F where we assume that the
coordinate change $ is generated by F.

Next, we want to define the rotation number of an orbit (p,),,ez in £/ \ {0}.
Roughly speaking, this is its average winding number around the origin. More
precisely, we introduce polar coordinates on R2\ {0} S1 x (0, oo), and lift </> : U\
{0} —> R2\{0} to a map </> which is then defined on some strip in the universal cover
R x (0,oo) of S1 x (0,oo). Since </> is an orientation-preserving diffeomorphism,
4> is a diffeomorphism of degree 1. Given an orbit (pt) of </> projecting onto (pt)
and a natural number N, we choose a curve F : [-N, JV] -> Ix (0, oo) with
f (i) pt. Call T : [-N,N] -> R2 \ {0} the projection of f, and close it up to
a closed curve F at by adding a "short" piece (whose lift upstairs lies inside one
fundamental domain). Then we define the rotation number of (pt) to be

„lim, ^ [TN] e ffi(R2 \ {0},R)

if this limit exists. Clearly, if we fix the lift </>, the class p does not depend on the
particular choice of (pt) and F^r. Moreover, choosing a different lift </> means adding
the class [4> — </>] of the deck transformation 4> — 4>. Finally, we have a canonical
identification i?i(R2 \ {0},R) R if we take as generator of i?i(R2 \ {0},R) the
class represented by the positively oriented unit circle.

Summarizing, we view the rotation number of an orbit (p,),,ez in C/\ {0} as

a real number p((p,)) p{{p%),4>), well defined up to integer shifts and invariant
under conjugation by homeomorphisms.

Analogous to Aubry-Mather theory, we introduce the following variational
principle for the symplectic map </> : U \ {0} —s- R2 \ {0}. Having fixed some

lift <f> of </>, we denote by a(iv) the infimum of average actions of orbits in U \ {0}
with rotation number to where, as usual, the infimum over the empty set is oo.
This defines the minimal action

a : R —s- (—00,00]

u » M{A((Pl)) I p((p,)) u;} (3.1)

as a symplectic invariant of the given symplectic germ. Of course, it may be always
infinité since it is not clear whether there are any orbits in C/\{0} at all. Therefore,
we have to find situations where the minimal action is a nontrivial invariant.

Note that S' satisfies our normalization condition S'(Ö) 0.
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We make the following assumptions on </>:

I. </> is a symplectic C°°-diffeomorphism defined on a simply connected open
neighbourhood U of 0 G (R2, Q) with </>(0) 0;

II. 0 is an elliptic fixed point of </>, i.e., the eigenvalues A, A of D(j>(0) lie in

III. A satisfies the nonresonance condition Afc ^ 1 for 1 < k < 4.

In order to remove the ambiguity in the rotationjiumber, we write A e2ma

with 0 < a < 1 and fix the lift </> in such a way that 4>{9,r) —> (0 + a,r) as r —> 0.

This means that we associate to the fixed point the rotation number a (and not
some integer shift of it).

Then, under the assumptions I. III., there is an analytic symplectic change of
coordinates fixing 0 and transforming </> into a certain normal form in the standard
symplectic space (R2,Qo dx A dy). In these new coordinates the map </> takes
the form

\ / — sin27r©
COS2.6

e a + b(x2+y2) (3.2)

as x? + y2 —> 0. This result goes back to G.D. Birkhoff; a proof can be found in
[Mol]. The leading term, the so-called Birkhoff normal form, is a rotation by
an angle © that depends on the radius as long as b =/= 0. The numbers a and b are
symplectic invariants and called Birkhoff invariants.

Our last assumption is a nonlinearity condition on the Birkhoff normal form:
IV. 6^0, respectively, b > 0.

If all four conditions I.-IV. are fulfilled we call 0 a general elliptic fixed point
of <f>.

Remark 3.1.
1. Without loss of generality we assume b > 0; the case where b < 0 can be

reduced to that by considering <f>~^ instead of </>.

2. The notion of a general elliptic fixed point is intrinsic, i.e., the above conditions
are invariant under smooth symplectic coordinate transformations.

Let us call the half—sided germ of a function at a point x G R the equivalence
class of functions defined on intervals [x, z), where two such functions are equivalent
if they agree on some (maybe smaller) interval [x,y). Finally, from now on, the
term invariant circle always means an invariant circle that goes around the fixed
point.

The following is the main result in this section. Recall that A e?ma with
0 < a< 1.

Theorem 3.2. Given the germ of a symplectic diffeomorphism <f> at a general
elliptic fixed, point, the half-sided germ of the minimal action a at the point a is a

nontrwial symplectic invariant. In addition, one has the following:
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1. The Birkhoff invariants are the Taylor coefficients of the convex conjugate a*
at 0.

2. <f> possesses an invariant circle of rotation number p/q, consisting of periodic
orbits, if and only if a is differentiate at p/q.

3. If <f> has an invariant circle of rotation number to, its enclosed area is given by

Proof. Let a : R —> (—00,00] be the minimal action for </>. We may assume that
</> is already given in the form (3.2); since a is symplectically invariant this does

not change anything. To prove that a is nontrivial (i.e. not identically 00) we
introduce symplectic polar coordinates (9,r) gS'x (0, 00) on R2 \ {0} by

x \/2rcos2ir9

y \/2r sin27ré>

It is a straightforward calculation to show that

— (xdy — y dx) 2irr d,6

so that the map

(R2\{0},dxAdy) -> (S1 x (0,oo),27rdr A d£)

is exact symplectic with respect to the 1-forms 1/2 (xdy — y dx) and 2irr dO,

respectively. Hence the average action of corresponding orbits stays the same if we

pass to (9, r)-coordinates. The map </> has the form

<f> : (0o,r0) ^ (0i,ri) (0O + a + 2bro,ro) + O(r^/2) (3.3)

as ro —s- 0. For small enough ro > 0, </> satisfies the monotone twist condition

d9i/dro 2b + ö(rl/'1) > 0.

Since </> is smooth, KAM-theory applies and yields the existence of invariant
circles accumulating at the fixed point, respectively the boundary circle S1 x {0};
see [Laz, Mo2]. On each of these circles Fw the map </> is conjugated to the rotation
by some Diophantine number lu near a; since the twist constant b is positive we
have lu > a.

Therefore, perhaps after restriction to a smaller domain, </> is defined on an
invariant annulus in S1 x (0, 00) with lower boundary S*1 x {0}. This annulus itself
is divided into a sequence of invariant annuli Ak, approaching S1 x {0} as k —> 00
and being bounded by KAM-circles Fw± with rotation numbers lu^ > lu^ > a.

According to (3.3), the map </> on each Ak Ui^i is a smooth monotone twist map
whose generating function with r\ d,9\ — ro d9o dh is given by

Ht, rj) ^ (r? - e - «)2 + O{(r, - Ç - af'2) (3.4)
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as f] — £ -^ a The function

describes the mtegrable twist map </>o(#o,ro) (#o + a + 26ro,ro) approximating
</> Notice that h is normalized according to our convention, namely, h(£, r/) —> 0

as f] — £ -^ a which means that the (hypothetical) value of h at the fixed point is
0

Now we apply Aubry-Mather theory for </> on each "double" annulus AkUA^i
In view of Theorem 2 3 and Remark 2 4, there are minimal orbits for every rotation
number lu g (w^w^j) This allows us to define the minimal action a in the sense

of Section 2, which is a strictly convex function on the interval (ui~^, ui^.^)
We claim that this a is the minimal action as defined in (3 1) First of all, the

notions of average action and rotation number agree Therefore, the only thing to
check is that the set of orbits over which we minimize is the same in both settings
This follows from the fact that all orbits of rotation numbers lu g (lu^ ,lu^^) he

in the annulus A]~ U A^i Indeed, suppose that a monotone twist map possesses
two invariant circles Fw± of rotation numbers iv~ < lo+ Then, if an orbit lies
outside the annulus formed by Tu- and Fw+, its rotation number must he outside
(w~ ,<jj~t), this is a simple consequence of the twist property

Thus, the minimal action a is a real valued, strictly convex function on each
interval (lü^,lü^, ^) Note that the annuh Ak Ui^i overlap so each rotation
number uj^ is an interior point at some stage, and the different pieces of a really
fit together Moreover, as A; —> oo, the rotation numbers ujj: tend to a and the

average actions to zero, so that the minimal action extends to a strictly convex
function a [a, a + ö) —s- R with a(a) 0

This proves the first part of the theorem The assertion that the minimal action
determines the existence of periodic invariant circles as well as the enclosed areas
of invariant circles follows immediately from Proposition 2 5 It remains to prove
that the minimal action encodes the Birkhoff invariants For this, we consider the
convex conjugate a*(I) m&XuluiI — a(ui)] which is a strictly convex C¦'¦-function
defined on some interval [0,(5*) Applying Theorem 2 6, we conclude from (3 4)
that

«H Äo(w) + O{{uj - af'2) -L (lü - a)2 + O({lu - af'2) (3 5)

asw^o which implies an analogous formula for a* (I) as / —> 0 [RW, Ex 8 8]

a*(I) h^(I) + O(I5/2) al + bl2 + O(I5/2) (3 6)

Hence the Taylor coefficients of a* at 0 are indeed the Birkhoff invariants a and
b, and the theorem is completely proven D
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Remark 3.3.
1. Theorem 3.2 shows that the minimal action is a local invariant in the sense

that it contains information not just about the asymptotic behaviour of </> at
the fixed point, but also about the dynamics away from it.

2. The assumption that </> is smooth is not really necessary; in fact, Theorem 3.2
is true for C5-diffeomorphisms [Mo2]. For the sake of simplicity, however, we
restrict ourselves to the smooth case.

3. If the Birkhoff normal form approximates the given map </> up to order (x2 +
j/2)fc with k > 2, then the Taylor coefficients of a* exist up to order k and
Theorem 2.6 implies that they are precisely the k Birkhoff invariants of </>.

4. The fact that the Birkhoff invariants are determined by the actions of perio¬
dic orbits (via the labelled length spectrum) was first formulated by Colin de
Verdiere [CdV2]. The minimal action, respectively its convex conjugate, can
be viewed as an extension of the labelled length spectrum from the rational
numbers to the reals.

5. The minimal action a may be interpreted as a "partial integral" for the map
4>. This goes as follows. Consider the set Ai C U\ {0} of minimal orbits. Then
the function p i—> a(p(4>1(p))) from Ai to R is constant along orbits but not
constant everywhere.

In general, the "partial integral" mentioned in the last remark is neither defined
in a whole neighbourhood of 0, nor is it differentiable. In the special situation
when </> possesses a genuine integral, however, the minimal action turns out to be

an integral. In this context, recall that a smooth area-preserving map </> defined
near the elliptic fixed point 0 is called integrable if, perhaps after restricting </>

to some smaller neighbourhood U of 0, there is a smooth flbration of U \ {0} by
invariant circles. </> is called C°—integrable if there is a C°-fibration by invariant
circles.

Theorem 3.4. Given a symplectic diffeomorphism <f> near a general elliptic fixed
point, let a denote the associated, minimal action. Then the following holds true:
1. If (p is integrable, a* is an integrable Hamiltonian generating (p.

2. If a is differentiable then </> is C -integrable.

Proof. In order to prove the first assertion, we pass to angle-action coordinates
(00,-to) € S1 x (0,e) in which we have <£ : (<90,/0) <-> (0i, Ji) (0o + H'(I0),I0)
with a smooth strictly convex Hamiltonian H. Moreover, I\ d,9\ — Iq d0o dS*
with S(6q, Ii) 0qI\ + H(Ii), which means that S* H* is a generating function
for the integrable twist map </>. Hence H a* is an autonomous integrable
Hamiltonian generating </>.

We show the second assertion. According to Proposition 2.5, the minimal
action is differentiable at irrational numbers, and it is differentiable at rationals
if and only if there is an invariant circle consisting of (periodic) minimal orbits
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of the corresponding rotation number Therefore, if a is differentiable we obtain
invariant circles for all rotation numbers by taking limits of rational ones, so </> is
C°-integrable D

Remark 3 5
1 We see that, in the mtegrable case, the dynamics of </> are completely determined

by the symplectic invariant a This is not true for the Birkhoff normal form
unless </> is analytic, see [Ito]

2 As a strictly convex function, a is differentiable if and only if it is C1 [RW,
Thm 11 13]

Finally, we just mention that there are higher order Birkhoff normal forms
near an elliptic fixed point if the eigenvalue A e2?rîa at the fixed point satisfies

nonresonance conditions of higher order For instance, if A is not a root of unity
the Birkhoff normal form is a formal power series In general, the coordinate
transformation bringing </> to that normal form will be a divergent power series
We refer to [SM] for proofs and more details Everything in this section can also
be formulated in this more general context but we forgo such extensions

4. Contact flows near an elliptic closed characteristic

We consider a smooth compact manifold M of odd dimension 2n+ 1 > 3 equipped
with a contact form ß By definition, a contact form is a 1-form on M such that
ß A (dß)n is a volume form This means that the kernel of ß defines a maximally
non-integrable hyperplane field in TM The so-called Reeb vector field X is
defined by the equations

ixdß 0 and ixß =1 (4 1)

Periodic trajectories of the Reeb flow are also called closed characteristics

Example 4 1 If N is a Riemanman manifold then the unit cotangent bundle T£N
is a contact manifold with contact form ß X\t*n where A is the Liouville form
on T*N The Reeb vector field is the Hamiltoman vector field corresponding to
the geodesic flow on T\N

Assume 7 is a periodic trajectory of (prime) period T of the Reeb flow, and
consider a transverse local section W at some point p G 7 This is a 2n-dimensional
manifold, and we equip it with the symplectic form lu i*dß where 1 W ^-s- M
is the inclusion We denote by </> the Pomcaré return map, defined on a small
neighbourhood around p which we identify with a small neighbourhood U of 0 G

R2n, call S U -> R the first return time Then </>(0) 0 and 5(0) T
It is well known that </> is symplectic—this is just a reformulation of the fact

that time and energy are conjugate variables in Hamiltoman mechanics In fact, </>
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is even exact symplectic as the following observation shows, compare, for instance,
[FG, Prop 2 1]

Lemma 4.2. 6 is exact symplectic with generating function S, i e 4>*ß — ß dS

Proof We denote the flow of X by tp* and consider the family of mappings ft(z)
^ts(z)^ Then h 6 and ft(z) S(z)X(ft(z)) Therefore

6*3-3= / — f*3dt / f*(ifd3 + dif B)dt dS
.,0 Ol J0 '" ^

m view of (4 1) D

The general question is how much information about the geometry of the contact

manifold M is encoded m the closed characteristics In the following, let
us consider a continuous deformation ßs,s G [0,1], of contact forms on M such
that each (M,ßs) has the same period spectrum, îe the same set of periods
of closed characteristics Françoise and Guillemm [FG] conjectured that such a
deformation must be trivial, if it also fixes the set of (symplectic conjugacy classes

of) linearized Pomcaré maps They proved that, if 7S is a nondegenerate elliptic
closed characteristic without resonances, the Birkhoff invariants of 7S stay fixed
during the deformation This was generalized by Popov [Pop] who showed that
the Birkhoff invariants as well as the Liouville classes of invariant ton stay fixed,
even allowing resonances and dropping the condition that the deformation
preserves the linearized Pomcaré maps What we will do is to show that, for the
three-dimensional case, there is a stronger invariant than just the Birkhoff normal
form, namely the minimal action

For this, we consider a three-dimensional contact manifold M with a closed
characteristic 7 such that the corresponding Pomcaré map 6 has 0 as a general
elliptic fixed point (in the terminology of Section 3) This is independent of the
choices of the point on 7 and the transverse section because two Pomcaré maps
are syinplectically conjugated and the conditions I -IV stated at the beginning
of Section 3 are invariant under such conjugations We describe this situation by
saying that 7 is a general elliptic closed characteristic The eigenvalues of
D6(0) are called the Floquet multipliers of 7 Then, applying the theory from
Section 3, we can associate to 7 the half-sided germ of the minimal action a 4

Note that this is independent of the choices of the point on 7 and the transverse
section

Now let ßs, s G [0,1], be a continuous family of contact forms on M, all having
the same period spectrum, such that there is a continuous family of general elhp-

To be really consistent with our notation from the previous section where we assumed that
generating functions satisfy S(0) 0, we replace the first return time S( by S( — T
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tic closed characteristics 7S. The next proposition states that the corresponding
minimal actions as do not depend on s.

Proposition 4.3. Suppose ßs,s G [0,1], is a continuous deformation of contact
forms preserving the period spectrum, with a continuous family of general elliptic
closed characteristics js. Then, as germs, o.s «o for «^ s & [0,1].

Proof. Associated to each closed characteristic 7S, we have the germ of the minimal
action as for the corresponding Poincaré return map. Being continuous, each as is

uniquely defined by its values on Q. We will show below that, for a fixed rational
rotation number p/q, the values as(p/q) vary continuously with s. Postponing the
proof, we claim that these values must be constant. Indeed, the period spectrum
— which is independent of s by assumption — has Lebesgue measure 0 in R. This
follows from Sard's Theorem since closed characteristics correspond to critical
points of a smooth function; see, for instance, [Pop, Prop. 3.2]. Therefore the
values as(p/q) vary continuously in a set of measure zero, so they must stay fixed.

It remains to prove that as(p/q) is continuous in s. For this, we recall from
Theorem 2.3 that for rational rotation numbers there is always a periodic minimal
orbit. Besides being periodic, these so-called Birkhoff orbits have the additional
property that they are ordered as if they were orbits of a rigid rotation, and they
can be found by minimizing the (discrete) action on the compact space of ordered
periodic sequences [KH, Thm. 9.3.7]. As minima, the corresponding minimal
values as(p/q) are indeed continuous in s. D

In fact, one can even eliminate the assumption that we are given a family
of general elliptic closed characteristics; its existence follows already from the
preservation of the period spectrum. Compare [Pop, Lemma 3.5] for a similar
argument.

Proposition 4.4. Suppose /3s,s G [0,1], is a continuous deformation of contact
forms preserving the period spectrum, such that /?o admits a general elliptic closed,

characteristic 70.
Then there is a continuous family of general elliptic closed, characteristics 7S for

each ßs, s G [0,1]; moreover, their periods and Floquet multipliers do not depend
on s.

Proof. First of all, the condition that 70 is general guarantees that 1 is not a

Floquet multiplier of 70. This implies that one can continue the fixed point of
the Poincaré map, corresponding to 70, uniquely as a fixed point for small s > 0,

corresponding to a periodic trajectory 7S. Moreover, because everything changes
continuously with s, the new closed characteristics 7S are general elliptic provided
s is small enough, say, for s G [0,(5). In addition, since the period spectrum has

Lebesgue measure 0, the periods of 7S are all the same.
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To each 7S we associate the germ of the minimal action as. Proposition 4.3
implies as «o- It follows that the Birkhoff invariants of the Poincaré map — which
are the Taylor coefficients of a* (Theorem 3.2) — do not change along the
deformation. In particular, the Floquet multipliers stay fixed during the deformation.
This proves the assertion for s G [0,(5).

Taking limits of the closed characteristics 7S as s —s- ô, we find a closed characteristic

for s S. Moreover, the Poincaré maps of 7S converge in the C°°-topology
to the Poincaré map of 75. Our assumption that the period spectrum remains
unchanged implies that 75 satisfies the conditions I.-III. from Section 3. On the
other hand, we know that the Birkhoff invariants of 75 are the same as those of
70. Thus, 7a is again a general elliptic closed characteristic.

This proves that the set of parameters s, for which there is a continuous family
of general elliptic closed characteristics, beginning with 70, is open and closed in
[0,1]. This finishes the proof of the proposition. D

Now we can translate our results for fixed points of symplectic mappings into
the language of contact geometry. The key point is that the minimal action is a

period spectrum invariant under continuous deformations of the contact form.

Theorem 4.5. Suppose ßs,s € [0,1], is a continuous family of contact forms
on a three-dimensional manifold that preserves the period spectrum, such that ßo
admits a general elliptic closed, characteristic 70.

Then there is a continuous family of general elliptic closed, characteristics 7S

whose half-sided germs of minimal actions do not depend on s. In particular, this
implies the following:
1. The Birkhoff invariants 0/70 and 71 are the same.
2. The Poincaré map 4>\ possesses an invariant circle of rotation number p/q,

consisting of periodic orbits, if and only if </>o does.

3. If (po and, (p\ each have an invariant circle of rotation number lu, their enclosed,

areas agree.
4- If 4>o %s mtegrable then <f>\ is C -integrable.

Proof. Proposition 4.4 implies that we have a family of minimal actions as which,
by Proposition 4.3, are all equal. Thus, the (half-sided germ of the) minimal
action a ao is & period spectrum invariant.

We prove the four implications. Since the Birkhoff invariants are the Taylor
coefficients of a* (Theorem 3.2), they are invariant too. Moreover, 4>\ possesses a

periodic invariant circle of rotation number p/q if and only if a is differentiate at
p/q; since a is invariant, the same holds true for </>o. A similar argument proves the
third statement because the area enclosed by an invariant circle is given by a'{lu).
Finally, if cfo is integrable then a* is an integrable Hamiltonian (Theorem 3.4); in
particular, a is smooth, which implies the C°-integrability of 4>\. D
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5. Geodesic flows near an elliptic closed geodesic

The geodesic flow on the unit tangent bundle of a smooth compact Riemannian
manifold N, respectively its conjugate Hamiltonian flow on T^N, is a particular
example of a Reeb flow (Example 4.1). Therefore, all statements from the previous
section apply to geodesic flows on surfaces, where the period spectrum becomes
the classical length spectrum of N, i.e. the set of lengths of closed geodesies.

More precisely, let gs,s G [0,1], be a continuous family of Riemannian metrics
on a surface preserving the length spectrum. Assume that go possesses a general
elliptic closed geodesic 70. Then, according to Proposition 4.4, we have a family
of general elliptic closed geodesies 7S for gs, and, associated to it, the half-sided
germs of their minimal actions o.s.

The next result is the analogue of Proposition 4.3.

Proposition 5.1. Under the above assumptions, one has o.q a\, i.e., the
minimal action is a length spectrum invariant under continuous deformations of
the metric.

We may formulate a more pointed version of this as

"Invariance Principle". Every quantity, geometric or not, that can be expressed

in terms of a is a length spectrum invariant under continuous deformations of the

metric.

Now, for geodesic flows, Theorem 4.5 translates as follows.

Theorem 5.2. Suppose gs, s € [0,1], is a continuous deformation of Riemannian
metrics on a two-dimensional manifold that preserves the length spectrum, such
thai go admits a general elliptic closed geodesic 70.

Then there is a continuous family of general elliptic closed geodesies js whose

half-sided germs of minimal actions do not depend on s. In particular, this implies
the following:
1. The Birkhoff invariants 0/70 and 71 are the same.
2. The Pomcaré map 4>\ possesses an invariant circle of rotation number p/q,

consisting of periodic orbits, if and only if </>o does.

3. If (po and (p\ each have an invariant circle of rotation number lu, their enclosed,

areas agree.
4- If 4>o %s mtegrable then <f>\ is C -integrable.

Steve Zelditch informed me that Giovanni Forni and he had proven the following stronger
version independently; see the announcement in [Zeil]. Suppose you are given an analytic,
rotationally symmetric metric g on S2 with certain nondegeneracy conditions; in this case, the

geodesic flow of g is completely integrable. Then, if h is another metric with the same Laplace

spectrum as g, the geodesic flow of h is completely C°—integrable.
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The problem to decide whether the length, respectively Laplace, spectrum
characterizes a manifold up to isoinetries (and in which class of metrics) is central
in Riemanman geometry For instance, Kac' famous question "Can one hear the
shape of a drum7" asked whether there are non-isometric domains in the plane
that have the same Laplace spectrum, it is well known that the answer is yes
The Laplace spectrum is related to the length spectrum via trace formulae and
Poisson relations, we refer to [CdVl, GM, Zeil] for details and more references
Zelditch [Zel2] showed that a special class of real analytic surfaces of revolution is

completely determined by the Laplace spectrum The Birkhoff normal form is still
an essential ingredient for the proof but does not suffice to obtain the full result
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