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0. Introduction

0.1. Statement of the main result

A map F X —> Y between metric spaces is a quasi-isometry if there exist
constants C > 1 and D > 0 such that

C-Xdx{x,x')-D< dY{F{x),F{x')) < Cdx(x,x') + D

whenever x and x' are m X, and iî dy(y, f(X)) < D for every y G Y
In this paper, we study quasi-isometnes on a class of Tits buildings that we

call right-angled, Fuchsian buildings their apartments are hyperbolic planes and
their chambers are regular hyperbolic p-gons with right angles (see part 1 below
for more details) These buildings admit a length metric whose curvature is less

than or equal to —1 The mam result of the paper is

Theorem. Let A and A' he right-angled Fuchsian buildings Then, any quasi-
isometry F A —> A' lies within hounded distance from an isometry

The analogous statement was proved by P Pansu (see [Pa]) for quatermomc
and Cayley hyperbolic spaces, by developing a geometric analysis for Carnot-
Caratheodory spaces Using M Gromov's notion of asymptotic cone, B Kleiner
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and B. Leeb have proved this statement for irreducible affine buildings and
irreducible symmetric spaces of higher rank (see [KL1], [KL2]; see also [EF] for another
proof). M. Kapovich, B. Kleiner, B. Leeb and R. Schwartz have established it for
universal covers of compact manifolds with curvature —1, of dimension at least
3 and with a non empty totally geodesic boundary. Their proof (not written) is

based on a doubling construction and on the technique of R. Schwartz's paper
[Sc]. Recently, M. Kapovich and B. Kleiner [KK] have produced examples of word
hyperbolic groups where rigidity of quasi-isometries holds for purely topological
reasons. As an immediate consequence of our main result, we have

Corollary, a) Let G be a group of finite type. Suppose that G is quasi-isometric
(relatively to a word metric) to a right-angled Fuchsian building A. Then, G
admits the following decomposition

l-> AT -^G^T -> 1

where N is a finite normal subgroup of G and T is a co-compact lattice of the group
of isometries of A.

b) (Mostow-type rigidity) Let A and A' be two right-angled Fuchsian buildings
and let F and V be two co-compact lattices of the group of isometries of A and A'
respectively. Then, any isomorphism from F to V is conjugation by an isometry
from A to A'.

Note that the Mostow rigidity for right-angled Fuchsian buildings is established
more directly in [Bl].

Remarks and questions, a) Examples of lattices of the group of isometries of hyperbolic

buildings are studied in [H], [HP], [GP], [L], [R], [Bl], [B2], [B3]. However,
a little is known on these groups. For instance, we do not know if co-compact
lattices of the same hyperbolic building are all commensurable.

b) It seems possible that our main theorem remains true for some other Fuchsian

buildings, and maybe for all of them (see [B2] for définitions). However, some
arguments of this paper use the notion of « tree-wall » which is particular to
buildings with right angles (see section 1.2). In section 4.3, we will collect results of
this paper which remain true in the case of more general buildings.

0.2. Sketch of proof

The strategy of the proof is inspired by that of Pansu for quaternionic and Cay-
ley hyperbolic spaces (see [Pa]). The main idea is to study the quasi-conformal
structure of the boundary at infinity of hyperbolic buildings A.

Recall that a homeomorphism / : X —s- Y (where X and Y are metric spaces)
is quasi-symmetric if there exists a homeomorphism </> : [0, +oo) —> [0, +oo) so that

dx(x,a) <tdx(x,b)=>dY(f(x),f(a)) <4>(t)dY(f(x)J(b))
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whenever x, a, b are in X, and t in [0, +oo)
Note that the inverse of a quasi-symmetric homeomorphism and the composition

of two quasi-symmetric homeomorphisms are quasi-symmetric as well
If / X —s- Y is a homeomorphism, we define for every x £ X and r > 0,

Lj[x,r) =sup{dy(/(*),/(*')) <&(*,*') <r},

//(x,r) inf{dy (/(*),/(*')) d* (*,*') > r},

r I \ i Lf(xir)
Lf(x) lim sup —

r->0 r

Assume that X and Y have finite Hausdorff dimensions Denote by Hx and Hy
their Hausdorff dimensions and by Hx and Ky their Hausdorff measures (see

[Mat] for definitions) We say that / is conformai if / is quasi-symmetric and
satisfies

(l) Lf(x) lf{x) G (0, +oo) for Wx-almost every x £ X,
(u) Lf-i(y) lf-i(y) G (0,+oo) for Wy-almost every y G Y
The mam steps of the proof are the following Let A be a right-angled Fuchsian

building Its boundary at infinity (that we denote by <9A) carries a canonical
metric called combinatorial metric, which is induced by the building structure
(see section 2 f An abstract theorem of M Gromov [G] implies that any quasi-
îsometry F A —> A' induces a quasi-symmetric homeomorphism / dA —> dA'
By a fine analysis of the metric structure of the boundary, we show that

- / is a conformai homeomorphism from dA to dA' (theorem 3 0),

- / is the extension to the boundaries of an isometry from A to A' (theorem
4 0)

Our theorem follows from these results

Remarks a) The definition of «quasi-symmetric homeomorphisms» differs from
authors Our definition is due to P Tukia and J Vaisala [TV] In [HK], J Hemonen
and P Koskela use the following definition which seems a prtort weaker

A homeomorphism / X —s- Y is (weakly) quasi-symmetric if there exists a
constant C > 1 so that

Lf(xr)
-

whenever x £ X and r > 0 By a theorem of J Vaisaha [Vf], these two definitions
are equivalent if X and Y are path-wise connected and carry a doubling measure

b) Recall that a homeomorphism / X —s- Y is quasi- conformai if there exists
a constant C > 0 so that
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whenever x G X. If X and Y are bounded, Ahlfors-regular (with the same dimension

bigger than 1) Loewner spaces (see section 2), a quasi-conformal homeomor-
phism is quasi-symmetric by a theorem of J. Heinonen and P. Koskela (see [HK]
theorem 4.9). In particular, this result applies to the boundary of right-angled
Fuchsian buildings.

0.3. Organization of the paper

In part 1 we define the buildings A and we study shortly their building structure.
Part 2 is devoted to the careful study of the boundary of A. Its combinatorial
metrics and its conformai structure are discussed in section 2.1. We study curves
and geodesies of dA in section 2.2 and the Loewner structure of dA in section
2.3. In part 3, we show that quasi-symmetric homeomorphisms / : dA —> dA' are
conformai. In part 4, we prove that conformai homeomorphisms / : dA —s- dA'
are extensions to the boundaries of isometries from A onto A'.

1. Right-angled Fuchsian buildings

In this paper, we deal with buildings that we call right-angled, Fuchsian buildings.
Throughout the paper, they will be denoted by A. In section 1.1, we recall their
définition following [B2] section 1.5.1. We also discuss their negatively curved
geometry and the existence of lattices in their group of isometries. Section 1.2 is

devoted to the description of their building structure and to the définition of the
notion of trees-walls that will be a useful tool in part 2.

1.1. Definition and basic properties of A

Let r be an integer with r > 5, let R be a regular r-gon with right angles in the
hyperbolic plane H^ with curvature —1, and let (q\, ...,qr) be a r-tuple of integers
so that qt > 2 for i 1, ..,r.

We label clockwise the edges of R by {1},...., {r} and its vertices by {1,2},...,
{r — l,r}, {r, 1} (see figure 1 for r 5). Then, we define an orbihedron structure
on R as follows. To the face of R, we attach the trivial group; to the edge {i},
the group I\ Z/(qt + 1)Z; to the vertex {i,i+ 1}, the group rM_|_i I\ x I\_|_i.
By an abstract theorem of A. Haefliger ([Hae]), this orbihedron is developable;
its universal cover, denoted by A, is a labeled cell 2-complex with the following
properties:

(i) A is contractible;
(ii) its edges and its vertices are labeled by the same symbols as above;
(iii) its 2-cells are copies of the labeled complex R;
(iv) each edge labeled by {i} belongs to (qt + 1) 2-cells, the link of each vertex

labeled by {i,i + 1} is the complete bipartite graph with (qt + 1) + (qt-\-\ + 1)
vertices (see figure 2 in the case (qt,q,,-\-i) (2,3)).
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{4,5} {1,2}

{3,4} {2,3}

Figure 1

Figure 2

Recall that the link of the vertex x of A is the graph L(x) such that
- its vertices are the edges of A containing x,
- two vertices J and K of L{x) are connected by an edge if a face of A contains

both the edges represented by J and K
The link L{x) is homeomorphic to the boundary of a little open contractible

neighborhood of x, and the labeling of the edges of A containing x induces a
natural labeling of the vertices of L{x)

If all the integers qt are equal, we say that A has constant thickness
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We endow A with the length metric induced by its 2-cells. Properties (i), (ii),
(iii) and (iv) above characterize A up to isometry (see [Bl], proposition 2.2.1).
The metric space A is geodesic and is a CAT( — 1) space (which means that its
triangles are thinner than those of the hyperbolic plane with curvature — 1, see

[Ba]). This follows from a criterion of W. Ballmann [Ba], from the contractibility
of A, and from the description of the links of A (properties (i) and (iv) above).

Denote by Isom( A) the group of isometries of A. This group is locally compact
(for the topology of uniform convergence on compact subsets of A). Let F be the
fundamental group of the orbihedron described above. It admits the following
presentation

F (st,i e Z/rZ | sf+1 1, [a,, s,+1] 1).

By construction, F acts simply transitively on the set of 2-cells of A. Hence,
F is a co-compact lattice of Isom(A). Other examples of lattices of Isom(A) are
described in [H], [GP], [R], [B2].

Note that the subgroup of Isom(A) preserving the labeling of A is a simple,
non linear, uncountable and normal subgroup of finite index, by a theorem of F.

Haglund and F. Paulin [HP].

1.2. Building structure and trees-walls

In this section, we describe the basic notions of building theory in the special
setting of buildings A introduced in 1.1. See [Br] and [Ro] for complete treatment
about buildings. We also define the notion of « trees-walls » which plays a crucial
role in sections 2.1 and 2.2. This notion was introduced in [Bl] 2.4.A, and is

particular to buildings with right angles.

A. Chambers and apartments. 2-cells of A will be called chambers. Let W be
the co-compact Fuchsian Coxeter group generated by inversions in the edges of R
(see [Ma], IV.H.ll). The group W possesses the following presentation:

W (st,ieZ/rZ | s,2 l,[s,,s,+i] l),

and generates a tiling (denoted by WR) of H^ by copies of R. Its edges and
its vertices are labeled in the same manner as in 1.1. An apartment of A is a
labeled cell sub-complex of A, which is isomorphic to the labeled 2-complex WR.
Apartments are totally geodesic in A (this can be seen in the links). An abstract
theorem of J. Tits (see [Ro], theorem 4.9), together with properties 1.1 (i) to (iv)
give the following result.

Proposition. The 2-complex A is a Tits building, in other words A satisfies the

following properties:
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(i) two chambers of A are always contained in an apartment of A.;
(ii) if A and A' are two apartments of IS. whose intersection is not empty, there

exists an isomorphism of labelled cell complexes </> : A —s- A' fixing A D A'. D

B. Retractions. Let A be an apartment of A and let c be a chamber of A. The
retraction from A onto A centered at c is the morphism of labeled cell complexes
p : A —> A defined as follows. Let d be a chamber of A. By the previous
proposition, part (i), there exists an apartment B containing c and d. Moreover,
by the same proposition, part (ii), there exists an isomorphism of labeled cell
complexes </> : B —> A fixing B C\ A. We let p{d) <j>{d).

C. Types, walls and trees-walls. From now on, we call type of a vertex or
of an edge of A its label. A wall of A (respectively of an apartment A of A) is

a bi-infinité geodesic contained in the 1-skeleton of A (respectively of A). The
description of the links of the vertices of A shows that the edges of a wall m have
all the same type that we call the type of m.

Consider now a complete bipartite graph L whose vertices are labeled by {s}
and {£}. We say that two vertices of L are diametrically opposite if their simplicial
distance is equal to 2. The relation on the set of vertices of L defined by «two
vertices are equivalent if they are diametrically opposite or equal » is an equivalence
relation and has two equivalence classes, namely the set of vertices labeled by {s}
and the set of vertices labeled by {£}.

Therefore, we obtain an equivalence relation on the set of edges of A as follows:
two edges of A are equivalent if they are contained in a wall of A. An equivalence
class is called a tree-wall of A. The edges of a tree-wall T have all the same type
that we call the type of T. Let T be a tree-wall of type {i}. Then, we have the
following properties:

(i) T is a totally geodesic, bi-homogeneous tree in A;
(ii) T divides A into qt + 1 connected components;
(iii) Two distinct tree-walls share at most one vertex of A (since they are totally

geodesic);
(iv) A geodesic line which intersects transversely a tree-wall intersects it at

exactly one point (for the same reason as in (iii)).

2. The boundary of A

Since A is a CAT( — 1) space, it possesses a boundary at infinity denoted by dA
and defined as follows (see [CDP] or [GH] for more details). Recall that a geodesic

ray of A is an isometric embedding r : [0, oo) —> A. The boundary of A is the
set of geodesic rays r so that r(0) x where x is a base-point in A. We endow
dA with the topology of uniform convergence on compact subsets of [0, oo). By
an argument of N. Benakli [Be], dA is homeomorphic to the Menger sponge (see
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[A])
In this part, we define some useful tools for the proof of the mam theorem

Section 2 1 is devoted to the construction of combinatorial metrics on <9A, to the study
of the induced conformai structure and to a characterization «à la Sullivan» of
isoinetries of A In section 2 2, we investigate the structure of the set of boundaries

of apartments in order to give nice properties of geodesies and curves on the
boundary of A The Loewner structure of dA is discussed in section 2 3

2.1. Metric structures on dA

In this section, we define combinatorial metrics on dA, and the associated notions
of horosphencal distance and of Gromov product (see [Led] or [Ham] for their Rie-

manman analogues) These notions have been introduced in [Bl] 2 4, for buildings
A with constant thickness In subsections 2 1 A, 2 1 B, 2 1 C, 2 1 D we give their
definitions and their basic properties The conformai structure of dA is discussed

in 2 1 E In section 2 1 F we give a characterization of isoinetries of A based on
Sullivan's ideas [S], which will be useful for the proof of the mam theorem

We first define a metric on the dual graph of A which depends on the thickness
at each edge of A

A. Dual graph of A. Let G (A) be the dual graph of A its vertices are centers
of chambers of A, they are connected by an edge if the corresponding chambers
share an edge of A To each edge of G (A) corresponds an edge of A If the type
of this edge is {i}, we decide that the length of the corresponding edge in G (A) is

\ogqt In such a way, we obtain a length metric on G (A) that will be denoted by
— | By property 1 1 (iv), it is left invariant under Isom(A)

We are going to give an other useful formulation of this metric Let T be the
set of trees-walls of A For any tree-wall T of type {t}, and any pair of chambers of
A or points of dA, denoted by c\, c%, we set «t(ci c<i) log qt if c\ and c<i belong
to two distinct connected components of (A U dA) \(TU dT), and ax{ci,c<i) 0

otherwise

2.1.1. Proposition. For any pair c, d of chambers of A, we have

c-d\= ^2 ar{c,d)
TeT

Proof Consider a geodesic segment of A joining the interior of c to the interior
of d We can assume that it does not contain any vertex of A (even if it means

moving its endpomts) The tree-walls that it intersects are exactly those that
separate c and d The chambers that it intersects define a continuous path in
G (A) whose endpomts are c and d and whose length is the right-hand side member
of 2 1 1 Since any continuous path of G (A) joining c and d must intersect the
trees-walls that separate c and d, the proof of proposition 2 1 1 is now complete D
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B. Horospherical distance. For three chambers c, d, e of A, consider the
function defined by

Ne{c,d) \c-e\-\d-e
By proposition 2 1 1, we also have

Ne{c,d) Y^ aT{c,e) - aT{d,e) (2 12)
TeT

Let T{c, d) be the finite set of trees-walls separating the chambers c and d By
a connectedness argument, the term ax{c, e) — ax{d,e) m 2 1 2 is zero when T
belongs to T \ T{c,d) Hence, for £ G <9A, the following quantity is well-defined
(see [Bl] for more details)

(2 13)
TeT

We call it the combtnatortal horosphertcal distance from c to d relatively to £ It
satisfies the cocycle equality

Note that the combinatorial horospherical functions are locally constant on the
complement in dA of endpomts of walls of A In the sequel, we will denote this
set by <9regA, its elements will be called regular points of dA

C. Gromov product. If c, d and e are chambers in A, their Gromov product is
defined as

{d\e}c
2

(Ie - d\ + Ie - el - \d ~ ell
2 X] "T(c' ^ + "T(c' ^ ~ "T^' ^

TeT

Denote by <92A (respectively by <9r2egA) the set (<9A)2 (respectively (<9regA)2) minus
the diagonal For any chamber c and any pair d, e of chambers or points of dA, let
T{c, d, e) be the set of trees-walls T so that the sets {c} and {d, e} are contained
in two different connected components of (A U dA) \(TU dT) Note that the
set T{c, d, e) is finite By a connectedness argument, the general term in the sum
above is zero for T in T\T(c, d, e) Hence for (£,??) in <92A, the following quantity
is well-defined

\ (2 1 4)

TeT
We call it the combinatorial Gromov product with base-point c Note that { | }c
is locally constant on <92egA If we change the base-point, we have the following
transformation rules (by (2 1 3) and (2 14))

c {Ç\ri}d + l (Nç(c, d) + Nv(c, d)) (2 1 5)
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D. Combinatorial metrics on dA. Let A be an apartment of A. Using a

retraction, one sees that its dual graph is totally geodesic in (Ç(A), \. — .|). Choose
a chamber c as an origin and denote by Q{A) the set of chambers of A. Set

T limsup f-log#{d€ g(A);\c-d\ < n}

Note that t depends neither on A nor on c.

For any chamber c of A, we now define a combinatorial metric Sc on dA. For

this, we start with some définitions. Let £ G dA and let r G (0,+oo). We define

Bc(£,r) as the set

Bc{£,r) <r] edA: e^Tii'vic <

For a continuous path 7 in dA, we define its «length» lc(j) by

lim inf I V rt }

where the infimum is taken over all the finite coverings {Bc{^%, rt)} of 7 with £4 G 7
and Tj < r. Finally, we set for £, ry G 9A,

<^c(£j 7?) inf {/c(7); 7 is a continuous path in dA joining £ and ry}

The following result is proved in [Bl] 3.1.D and in [B2] 2.2.7.

2.1.6. Proposition. The function 5C is a length metric on dA and satisfies the

following properties:
(i) There exists a constant C > 1 so that

whenever £, 77 G <9A.

(ii) Lei iï (respectively Tic) he the Hausdorff dimension (respectively the Haus-
dorff measure) of (dA,Sc). Then we have H 1 + 1/t- Moreover, (dA,öc,Tic) is

an Ahlfors-regular space, this means that there exists a constant C > 1 so that

CJ-lrH < HC{B) < CrH

whenever B is a ball in dA whose radius r is less that diam(dA,ôc). D

Remark. The number t is the unique positive solution of the following equation
(see [B2], 0.2):

ax 4- ax -,

îGZ/rZ i-\-\>
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In the special case where all the qtJs are equal to q, then

Argch((r - 2)/2)
logq

E. Conformai structure of <9A. In this section, we will show that combinatorial
metrics induce a conformai structure on <9A which is invariant by Isom(A). Recall
that conformai homeomorphisms have been defined in 0.2. Two metrics on the
same space are said conformai if the identity map is a conformai homeomorphism
(relatively to these metrics).

2.1.7. Proposition, (i) The combinatorial metrics on dA are pairwise conformai.

More precisely, for £ G 9regA, we have

(ii) Any g G Isom(A) is a conformai homeomorphism of (dA,öc). More
precisely, whenever £ G <9regA, we have

Proof. Note first that the complement of <9regA in <9A has zero measure. Indeed,
the set of trees-walls is countable and the Hausdorff dimension of the boundary of
a tree-wall is 1/t which is a real number strictly less than the Hausdorff dimension
of dA. Since Sc and ôj are bilipschitz equivalent (see 2.1.6 (i) and (2.1.5)), they
are quasi-symmetric equivalent. To show the equality in (i), apply (2.1.5) and note
that the horospherical distance between c and d is constant in a neighborhood of
a regular point of dA. We complete the proof of (ii) by using (i) and the fact that

whenever d g~1c. D

F. A Sullivan's criterion. By the proof of proposition 2.1.7, for any chambers
c and d of A, we have

and for g G Isom(A),

(g*"Hc is the pull-back measure of TLC by g).
It follows, from this and from (2.1.5), that the measure on <92A defined by

(2-1.8)



712 M. Bourdon and H. Pajot CMH

does not depend on the choice of c and is invariant under the diagonal action of
Isom(A) on <92A.

2.1.9. Proposition. (i) Let A and A' be two right-angled, Fuchsian buildings
and let fj, and fj,' be the measures on <92A and <92A' as defined, in (2.1.8). Then, a

homeomorphism f : dA —s- dA' satisfies (/ X /)*/x G\j! (for some constant C)
if and only if f is the extension to the boundaries of an isometry F : A —s- A'.

(ii) Moreover, \i is T-ergodic for any co-compact lattice T of Isom(A).

This characterization of isometries is due to D. Sullivan in the case of non-
compact rank 1 symmetric spaces (see [S], theorem 5). When A has constant
thickness, it has been proved in [Bl], proposition 4.4, as a consequence of a rigidity

result for the combinatorial cross-ratio ([Bl], proposition 2.4.7). This proof
extends without any change to the setting of general right-angled Fuchsian buildings.

2.2. Curves and geodesies on dA

In this section, we describe some geodesies of dA using boundaries of apartments
(see proposition 2.2.1 below). Then, we give two results on the repartition of
boundaries of apartments of A. The first (proposition 2.2.2) is a topological one,
the second (proposition 2.2.4) is a metric one. The results of this section will be
used in the sequel as technical lemmas.

A. Geodesies in dA. We fix a chamber c in A and denote by S and H the metric
Sc and the measure Hc respectively. Let A be the following set of boundaries of
apartments:

A {a dA : A is an apartment containing c}.

Since the retractions centered at c increase the Gromov product {.|.}c, they
contract the metric S. Henceforth, elements of A are isometrically embedded in
(dA,6).

2.2.1 Proposition. Any two points of dA are joined by a geodesic segment of
(dA,S) which is the union of at most 4 geodesies segments contained in elements

of A.

Proof Let £ and £' be two points of dA and let r and r' be two geodesic rays of
dA joining the interior of c to £ and £' respectively. Even if it means moving the
endpoint of r' in c, we can assume that r' does not pass through any vertex of A.
Let Aq be an apartment of A containing r. If this apartment contains also r', the
proof is complete. Suppose now that r' is not contained in Aq. Starting with Aq,
by «bending» we can construct an apartment Açx, containing r' as follows:

Let to max{t G [0,+oo];r'(s) G Aq for s G [0,t]} and let mo be the wall of
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Aq containing r'(to). By bending Aq along mo, we obtain an apartment A\ which
contains r'(t) for t G [0,£i] with t\ > to- By induction, we construct sequences
(Ak), (mk) and (tk) so that

(i) Ak is an apartment of A;
(ii) nik is a wall which is transversal to r' and which is contained in Ak and

(iii) (tk) is increasing and satisfies

[0,*fc] {te [0,+oo];r'(t) G Afc}, r'(tfc)Gmfc.

The limit of the sequence of apartments (Ak) is an apartment denoted by A^
which contains r'.

If no wall nik intersects r, then it is clear that Açx, contains r and r' and the
proof is complete. Otherwise, let niK be the first wall of the sequence (nik) which
meets r. Then, the apartment Ak contains r. Let T be the tree-wall of A that
contains niK- Its boundary separates £ and £' in dA. Indeed, a geodesic ray which
intersects transversely a tree-wall shares with it exactly one point (see 1.2.C (ii),
(iv)). Hence, any curve of dA joining £ and £' must meet dT. Therefore, our
proposition follows from the following lemma.

Lemma. Let £ and £' be two points in dA and let r be a geodesic ray connecting
the interior of c to £. Assume that £' is the endpomt of a wall w of A that meets

r. Then, there exists a geodesic segment of dA joining £ and £' which is the union
of at most two geodesic segments contained in elements of A..

Proof. Let r' be the half-wall of w whose endpoints are £' and the point of
intersection of w and r. Let Aq be an apartment which contains r and let Açx, be an
apartment which contains r' and which is obtained by the method described in
the beginning of the proof of proposition 2.2.1. If there exists no wall nik (with
the same notation as above) which intersects r, then A^ contains r and r1, and
the lemma is proved. Otherwise, let K ii\î{k G N; nik meets r}. Denote by m
and A the wall nix and the apartment Ak- Then, A contains r and m. Besides,
the walls nik are pairwise disjoint because they are orthogonal to the half-wall r'.
Hence, Açx, contains all of them. In particular, it contains m. Let Dc (respectively

D^>) be the half-apartment of A (respectively Aao) delimited by m and which
contains c (respectively £'). Then, A' Dc U D^> is an apartment which contains
c and £'.

To finish the proof of the lemma, we should show that there exists a geodesic
segment of A joining £ and £' and which is contained in dA U dA'. To do this,
consider a geodesic segment S of dA joining £ and £'. The tree-wall T which
contains m separates £ from £' in dA. Hence, S meets dT in at least one point r\.
Let 7 (respectively 7') be the part of S between £ and 77 (respectively £' and 77) and
let p (respectively p') be the retraction centered at c from A onto A (respectively
A'). Since retractions preserve types, we have

p(T U dT) p'(T UdT) mU dm.
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Moreover, restricted to T U dT, p is equal to p'. It follows that ^(7) U p'("/') is a
continuous path in dA U dA' joining £ and £'. Its length is less than those of S,
since p and p' contract the metric S. Hence, ^(7) U p'{^/') is a geodesic curve and
the proof is complete. D

B. Approximation of curves in dA. For £ G dA, set

Aç {a G A : £ G a}.

The proposition below «approximates» the curves in dA containing £, by elements
of .4c.

2.2.2 Proposition. For Ji-almost every £ in dA, the set A^ has the following
property:

(P) */ 7 : [0,1] —? <9A m a continuous curve with 7(0) £, then, for any
t g]0, 1], the sub-curve 7(]0,t]) intersects at least one element of

Let N be the complement in dA of the set of points £ satisfying property
(P). We should show that the measure of N is 0. We begin with a geometric
characterization of elements of N.

Lemma. Let £ G dA where A is an apartment containing c. Then, £ belongs to
N if and only if there exists a sequence (sk)keN of vertices of A which tends to £

so that
(i) each geodesic segment [sk,Sk-\-i], k G N, belongs to a wall m/. of A;
(ii) the walls nik separate c from £;
(iii) For every k G N*7 sfc_is£sfc+i ±tt/2 and sfc_i

Proof. Suppose that £ belongs to ./V. Let 7 : [0,1] —> <9A be a curve with 7(0) £

and so that a n 7QO, 1]) 0 whenever a G Aç.
Let r be a geodesic ray of A joining the interior of c to £. As usual, we can

assume that r does not meet any vertex of A. Since 7(1) is different from £, there
exists a tree-wall To which is transversal to r and whose boundary separates £ and

7(1). Hence, 7 meets dTo at time to < 1- Let xq be the point of intersection of To
and r, and let ro be the half-wall [#o,7(£o)) °f ^0- Since 7(to) does not belong to
any element of Aç, there exists a tree-wall Ti which is transversal to r and ro and
whose boundary separates £ and 7(^0) (see the proof of proposition 2.2.1). Hence,

7 meets dT\ at time t\ < to. We repeat this process, and we obtain sequences
(tn), (Tn), where (tn) is a decreasing sequence in [0,1] and Tn, for any n G N, is

a tree-wall which meets r so that 7(tn) G dTn, Tn =/= Tn_|_i and Tn n Tn_|_i =/= 0.

Using the continuity of 7, we see that tk tends to 0 and therefore, the sequence of
trees-walls Tn tends to £.

Consider now the images of Tn, n G N, by the retraction centered at c from
A onto A. The set of these images is a collection of walls of A which intersect
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Figure 3

r Their union, denoted by 1Z, contains a continuous path which tends to £ It
follows that 1Z contains a sequence of vertices (s^) which tends to £ and which
satisfies the assertions (l) and (u) of the lemma

We have now to prove (m) By passing to a subsequence of (s^), we can assume
that nik is different from m^i and mfc_|_2 Then, for k G N*, fife—fs^fe+1

±tt/2 Even if this means to change so by its symmetric relatively to si, we can
also assume that sosTs2 — sfS5«3 and we would like to show (*)sfc_fs^Sfc_|_i

—SkSk+lSk+2 whenever k > 2 Suppose that the relation (*) is not satisfied for
some k and consider the domains /„, Jn, n 1,2,3 defined as in figure 3 Since

r meets the walls m^^i and m^i, r has an endpomt a (respectively 6) in the
half-apartment I\ U1% UI3 (respectively J\ U J<i U J3) Since r meets mfc_2, mi--i
and nik, a belongs to I\ and b belongs to J3 Since r meets nik, Tifc+i and 171^2,
a belongs to 73 and b belongs to J\ This is a nonsense, and implication (=>) of
the lemma is proved

The proof of the converse (that we won't use in the sequel) is left to the reader
as an exercise D

We now prove proposition 2 2 2

Proof of proposition 2 2 2 A continuous path 7 is called alternate if 7 is a simple
path which is parameterized by arc length, which is contained in the 1-skeleton
of an apartment of A and which turns alternately on the left and on the right
Given a vertex s of A, denote by As the set of endpomts in dA of alternate paths
beginning at s It is a closed subset in dA with empty interior To see this,
consider an apartment A of A containing s The union of alternate paths starting
at s and contained in A is a quasi-convex tree in A (see figure 4) The set of their
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Figure 4

endpomts is a Cantor set contained m dA that will be denoted by As a Using
proposition 1 2 A (u), we see that

As n dA As a

Therefore, As has empty interior m dA
Set A |JS As where s runs over all the vertices of A By the previous lemma,

N is contained in A We are going to show that the measure of A is 0 Since A is
invariant under the action of Isom(A) and since the measure TL x TL is ergodic under
the diagonal action of Isom(A) on <92A (see proposition 2 19 (u)), it is enough to
prove that <92A doesn't contain any dense orbit of pair of distinct points of A

Let © be the orbit of a pair (£_|_, £_ of distinct points of A Let C+ and C_ be
alternate paths which converge to £_|_ and £_ respectively There exists R > 0 such
that the distance from any point of the geodesic (£-£+) to the set of vertices of
C_ UC-\- is less than R Denote by Sr the (finite) set of vertices of A whose distance
to c is less than R and denote by U the open subset of <92A whose elements are
the pairs (£, rj) so that the geodesic {£jj) passes through c Then, we have

eni/c I U AsxöAJlWöAx (J Asj
\sESr / \ sESr /

However, the right-hand side member is a closed subset with empty interior
Hence, © is not a dense orbit in d A D

C. Pencils of boundaries of apartments. Let Aq be an apartment
containing c and denote by ciq its boundary We denote also by p the contracting map
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from dA onto ao which is induced by the retraction p centered at c from A onto
Aq. The compact subgroup K of Isom(A) which stabilizes point-wise the chamber
c preserves any fiber of p. The argument given in [Bl] 2.3.B shows that it acts

transitively on A. Therefore, it acts transitively on any fiber of p. For Ç, € ao,
denote by v^ the probability measure on p~^{Ç) induced by the Haar measure of
K. Let dl be the 1-Hausdorff measure of the length space (ao,ö). The following
result is proved in [B2] 2.2.4 and 2.2.7.

2.2.3. Proposition. (i) The spaces (p~^(Ç),ô,i/ç), Ç G clq, are uniformly
Ahlfors-regular of dimension H — 1, this means that there exists C > 1 depending
only on A such that

whenever C, € ao, B is a ball of (A, S) centered in p (C) and of radius r < 1.

(ii) There exists C > 1 depending only on A such that for any Borel set B of
dA,

«0

D

For two points £ and r/ in ao, we call pencil joining £ and r/ the set «4^
Aç n Arf ¦ The following result which gives an estimate of the size of A^^ in each
fiber of p, generalizes and improves the key lemma (lemma 4) of [BP]. For C, in ao,
consider the closed subset of p~¦*¦(£) defined by

(J

2.2.4. Proposition. (i) There exists a constant C > 1 depending only on A
such thai

-1 < vd^L) <

where <j>^(() M(S((,0,S((,ri))-
(ii) The spaces (F^ S, vç) are uniformly Ahlfors-regular with dimension H — I:

there exists C > 1 depending only on A such that for every hall B whose center
belongs to iv and whose radius r is less than (pç^iC), we have

Proof. We first show (i). The right-hand side inequality follows from proposition
2.2.3(i), since by the triangle inequality, we have

p-1^). (l)
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Before proving the other inequality, we start with some reductions Let Cq be the
connected component of ciq \ {£, rf\ containing If £' and rj are two other points
of Cq separated by Ç,, then

To see this, consider a' G Aç' v' By gluing together the connected component of
a'\{£,',i]'} which meets p~^(C) with the connected component of ao\{£',v'} which
does not contain £, we obtain an element a of Ac n so that a'r\p~^-(Ç) aflp~ ¦*¦(£)

It follows that it is enough to show the left-hand side inequality under the following
assumptions

4
(b) the geodesic (£77) of Aq separates C, from c

To simplify, denote F$ by F Let us describe the geometry of F and p~^(C)
Let x be a point in the interior of c and denote hyr^,rri,r respectively the geodesic

rays [x£), [xry), [xQ of Ao Even if this means to move x in c, we can assume that
these rays do not contain any vertex of A The set p~^(r) is a tree whose root is

x The edges of A that it intersects induce a /^-invariant labeling of its vertices
The valency of a vertex of type {1} is qt + 1 The set p~^(C) ls the boundary of
the tree p~1(r)

Let wbe a point in p~^(C) an(i denote by rw the geodesic ray \xuj) of p~1(r)
This ray can be constructed by the « bending » method described in the proof of
proposition 2 2 1 In such a way, we see that to belongs to F if and only if no wall
along which we bend intersects rTj nor rTj

Let si, si be the vertices of r through which passes a wall of Aq intersecting
rç or rTj and denote by {«i}, ,{h} their types Then, F is the boundary of a
sub-tree of p~^(r) whose root is x and whose vertices s have valency 2 if p(s)
belongs to {si, ,s;} and qt + 1 (where {t} is the type of s) otherwise Hence,
since the group K acts on the tree p~1(r) and acts transitively on its boundary,
we obtain

Because the points £, rj, and the chamber c are all in Aq U OAq, the relation
(2 1 4) and the assumption (b) show that vç{F) is equal to e~N, where

It follows from proposition 2 16

MF) > c-1

where C is a constant depending only on A Moreover, assumption (a) implies
<*(£> C) ô(ri, C) and J(£, 77) 2J(£, C) This completes the proof of (1)
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We now prove (n) Let r G R such that 0 < r < <f>^ ri{C) By a classical covering
theorem (see for instance [Mat], theorem 2 1), there exists a finite collection of balls

{Bt,i G /} of (<9A,(5), whose centers are on F and whose radius is r, so that

fcUß„ (2)

and so that the balls —Bt, i G /, are pairwise disjoint (—Bt is the ball whose

center is the same as Bt and whose radius is r/5) Since K acts transitively on
A preserving fibers of p, the stabilizer of £ and rj m K acts transitively on A^ v
and therefore acts transitively by isoinetries on (F, S) Hence, by inclusion (2), we

obtain, for every ball B of (dA,S) whose center is on F and whose radius is r,

^ (3)

Moreover, we have by (1)

and then, by proposition 2 2 3 (l),

where C is a constant depending only on A Using this last inequality, inequality
(3) and proposition 2 2 4 (l), we obtain the left-hand side inequality of (u) The
reverse inequality follows easily from proposition 2 2 3 (l) D

2.3. Absolute continuity, Loewner spaces

According to [BP] theorem 1, the metric space (<9A, 5) admits Pomcaré
inequalities when A has constant thickness This result can be extended to all
right-angled Fuchsian buildings by proposition 2 2 4 (l) which is a generalization
of the mam lemma (lemma 4) of [BP]

Existence of Pomcaré inequalities on a metric space has important consequences
as showed by J Hemonen and P Koskela m [HK] Here, we explain some of these
which will be useful m the proof of our mam theorem strong properties of absolute
continuity of quasi-symmetric homeomorphisms and Loewner space structure of
dA

A. Absolute continuity. Let Y be an Ahlfors-regular metric space and let /
be a quasi-symmetric homeomorphism from dA to Y We denote by Hdim the
Hausdorff dimension
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2.3.1. Proposition, (i) We have Hdim(öA) < Hdim(Y);
(ii) If HdimôA Hdim(lA), then f and / are absolutely continuous with

respect to the Hausdorff measures of dA and Y.

Proof. The first assertion follows from [B2] theorem 2.1, or more generally from
[T] corollary 1.7, the second assertion follows from [HK] corollary 7.13. D

With the same notations as in 0.2, one gets the

2.3.2 Corollary. //Hdim(dA) HdimfT), then for H-almost all £ £ dA,
and Lf{£) belong to (0,+oo).

Proof. Let </> be the homeomorphism of quasi-symmetry of / (see 0.2). Then we
have

lf<Lf<4>{l)lf- (1)

Assume that Hdim(<9A) Hdim(Y) H. Proposition 2.3.1 (ii) implies that
the derivative (j,f of f*Hy with respect to H belongs almost surely to (0,+oo).
Moreover, for almost every £ G dA, we have by [Fe] 2.9,

Hence, there exists a constant C > 1 depending only on the regularity constants
of H and Hy such that

C~llf < fj,f < CLf a.e. (2)

Inequalities (1) and (2) show that //(£) and £/(£) belong almost surely to (0, oo).
D

The next result means that / is absolutely continuous along almost every rec-
tifiable curves. The definition of the modulus of a family of curves is recalled in
the next subsection.

2.3.3. Proposition. //Hdim(<9A) Hdim(Y), the modulus of the family of all
rectifiable curves 7 of dA along which f o 7 is not absolutely continuous is 0.

Proof. See [HK] theorem 8.1 or [T] corollary 1.8. D

B. Moduli. Loewner spaces. Let X be a metric space. For simplicity, we
assume that X is Ahlfors regular with dimension H > 1. Let T be a family of
curves in X. The modulus of T is

Mod(.F) inf <^ / uHdHx >
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where the infimum is taken over all ^-admissible functions u, namely measurable
functions u : X —> [0, +oo] so that, for every rectifiable curve 7 in J7, J uds > 1.

If no curve in T is rectifiable, we set Mod(jF) 0.

If E and F are two continua in X, we denote by Mod(E,F) the modulus of
the family of all curves of X joining E to F. The modulus admits the following
nice properties (see [HK] sections 2 and 3 for more details):

(a) Mod is an exterior measure on the set of families of curves of X, namely

< Mod(Ti) if T\ C

Mod(U~1.F,) <

(b) for 0 < r < 2R, we have

Mod(B(x,r),X\B(x,R)) < (logß/r)1^

where C is a constant depending only on X.
For two non-degenerate and disjoint continua E and F of X, we set

inf {dianxE, diamf1}
1 ' >~ distance^, F)

'

Definition. The metric space X is a Loewner space if there exists a non
decreasing homeomorphism ip : (0,+oo) —> (0,+oo) so that for every non degenerate
and disjoint continua E and F of X, we have

2.3.4. Proposition. The metric space (<9A, S) is a Loewner space.

Proof. This result follows from the existence of Poincaré inequalities on dA and
from [HK] theorem 5.7. D

3. Quasi-symmetric homeomorphisms of dA

This part is devoted to the proof of the following result (see section 0.2 for the
définitions).

3.0 Theorem. Let A and A' be two right-angled Fuchsian buildings. Then, any
quasi-symmetric homeomorphism f : dA —s- dA' is conformai.
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In section 3.1, we prove a differentiability property of quasi-symmetric home-

omorphism with respect to the family of boundaries of apartments (proposition
3.1.1). In section 3.2 a metric version of the classical Rademacher-Stepanov theorem

is established (proposition 3.2.1). Theorem 3.0 then follows easily.

Notations. We denote by ö the combinatorial metric on <9A with respect to a fixed
chamber c, by H its Hausdorff dimension, and by TL its Hausdorff measure. The
sets A, Aç (for £ G <9A) and the compact group K have been defined in section
2.2.A, 2.2.B and 2.2.C respectively. Recall that K acts transitively on A. We
denote by da the probability measure on A induced by the Haar measure of K.
The stabilizer in K of £ (where £ G dA) acts transitively on A^. We denote by
da^ the probability measure induced on A^. The Hausdorff 1-measure defined on
some a £ A will be denoted by dl. Given an orientation on the boundary of the
chamber c, we obtain an orientation on each element of A which is invariant under
retractions centered at c. Let d be the common diameter of each element of A.
For a G Aç, we denote by a(t), t g] — d, d[, the unique arc length parameterization
of a which is compatible with its orientation and so that a(0) £.

3.1. Differentiability

Let (Y, d) be an Ahlfors-regular space with the same dimension as dA and let

/ : dA -^Fbea quasi-symmetric homeomorphism. For £ G dA and t g] — d, d[,
set

whenever a G Aç.

3.1.1 Proposition. (i) For TL-almost every £ G dA, the functions D^t, t G

] — d, d[, converge uniformly on Aç (when t tends to 0) to a constant function
whose value denoted by /'(£) belongs to (0,+oo).

(n) IfY dA' where A1 is a right-angled Fuchsian building, then for almost

every r\ G dA', we have

The proof is divided into several lemmas.
For a G A and £ G a, set (if this limit exists)

|(0 limita).da t->0

If /(a) is a rectifiable curve of Y, the next result shows that -r—(£) exists for
da

dl-almost every £ G a.
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Lemma 1. Let (Y,d) be a metric space and let 7 [a,b] —* Y he a rectifiahle
curve Then, for almost every x G [a,&], the limit

hm d(7(x + Ax),7(x))
Az->0 I Ax

exists and belongs to (0, +00)

Proof Denote by h(x) the length of the sub-curve 7([a,x]) This function h is

continuous and increasing on [a, b] and hence is derivable almost everywhere (see

[Fe], 2 9 19)
Let 7s [0, /(7)] —s- Y be the arc length parameterization of 7 Then, we have

7 7s o h Maximal intervals with non empty interior on which h is constant are
disjoint Therefore, they are countable Let L be the complement in [a, b] of their
union It is enough to show that the limit exists for x G L Whenever x G L, we
have

+ Ax),7(x)) d(7s(t + At),7s(t)) \h(x + Ax) - h(x)\
\Ax\ \At\ \Ax\

where t h(x) and At h(x + Ax) — h(x) The first term of the right-hand side

is less than 1 Moreover, when At tends to 0, it tends to 1 almost everywhere on
[0, /(7)] (see [MM], lemma 9 1) Let N be the set of points of [0, £(7)] where it does

not tend to 1 For almost every x G L \ h~^(N), we have

hm
<*(7(* + Ax),7(*))) h'{x) (l)

Az-0 |Ax|
V ' V '

Since N has zero measure, the Radon-Lebesgue-Nikodym theorem implies that
h' vanishes almost everywhere on h~^(N) Therefore, equality (1) remains true
almost everywhere onlfl h~^(N), then on [a, b] D

Lemma 2. For H-almost every £ G dA, the derivative —— (^) exists dap-almost
da

everywhere on Aç

Proof We first show that for da-almost every a £ A, f(a) is a rectifiable curve
in dA' By proposition 2 3 3, it is enough to prove that, if T is a Borel set of A
with Mod(jF) 0, then da{T) 0 To see this, consider a retraction p centered
at c onto an apartment Aq Denote by ciq the boundary of Aq and let II be the
surjective continuous projection

n A x a0 -> dA
(a,C) » anp-\0

Observe that proposition 2 2 3 (11) means that

C-lnt{d,a xdl) <H< Cn*(da x dl) (1)
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Therefore, for all jF-admissible function u : dA —s- R, we have by Holder inequalities:

uHdH > CJ-1 f f uH\0dK0) da
dA JA \Ja J

(L denotes here the common length of elements of .A).
By taking the inflmum in the previous inequality, we obtain

Mod(.F) > C-1L1-Hda(T),

which gives the result.
By lemma 1, this implies that for da-almost every a £ A, the derivative exists

dl-sdmost surely on a. Consider now the following closed subset of dA x A

Define </> : A x ciq —s- T by 4>(a, (II(a, £), a)) and note that <f> is a homeomor-
phism. We will show that, in the coordinate system of T, the measure da x dl is

equal to m(£) x da^(a) where m H*(da x dl), namely for every non negative
measurable function h on T,

h{£,a)dat:{a)\dm{£)= I (h o 4>)da x dl. (2)
J JAxao

By inequalities (1), this will complete the proof of lemma 2. With the notations
of 2.2.C, the left-hand side of (2) is equal to Ja k(()dl(() where

a(

Since the probability measures fç(£) x da^(a) and da are if-invariant and since
</>(., C) is if-equivariant, it follows from transitivity that

k(Ç) / h o 4>(a,Ç,)da,
¦JA

and the proof of the lemma is complete. D

Lemma 3. For Ti-almost every £ € dA, the derivative —— (^") is da^-almost

surely constant on A^.
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Proof Let £ be a point of <9A where the derivative —— (£) exists for dat-almost

every a G *4ç (see lemma 2) Let K^ be the stabilizer in K of £ and fix ao in
*4ç We consider the measurable function h defined almost everywhere on K^ by

h(g) tj~(£) where a gao By transitivity of K^ on Aç and by definition of the

probability measure da^, it is enough to show that h is right Xç-mvanant
Let Aq be the apartment of A whose boundary is ao Let m be a wall of

Aq which contains an edge of c and so that c and £ are in the same connected
component of Aq \ m Denote by £_ and £+ the endpomts of m of ao Let L_
(respectively L_|_) be the stabilizer in K^ of the sub-arc S- [£, £_] (respectively

The function h is invariant under right actions of L_|_ and L_, since left and
right derivatives are equal We will show that L_ and L_|_ generate ifç, this will
complete the proof

Let g be an element of K^ By cutting along the tree-wall containing m and
along a geodesic ray joining m l~l c to £, it is easy to construct an element a_ of
*4ç which contains S- and grS'_|_ Let <;_ be an element of L_ so that g-ao a_
Then, g_gaQ contains S1-)-, and therefore g_g G L+ D

We now prove proposition 3 11

Proof of 3 1 1 We first show part (l) By lemma 3, for almost every £ G dA, the

sequence of functions Dç t, t g] — d, d[, tends da^-almost everywhere, when t tends
to 0, to a constant function on A^ We denote by /'(£) its value By corollary
2 3 2, we can assume that L/(£) < oo This last condition shows that

is finite
Let t g] — d, d[ and let ao G *4ç We would like to give an upper bound not

depending on ao of the following quantity

« =\Dit(a0)-f(0\
For this, consider C ao(t) Set T </(£),/(0) and let v ~J7 Then) for

every y

d(f(Ç),y)

d(f(O,y)> a —
t

vT aT
> a a —

t\ 2M\t\
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Using the definition of M, we obtain for every y G B{f{Ç),vT),

Let </> be the homeomorphism of quasi-symmetry of / (see 0 2) Set

u min{</> ^(v), 1} Then, we have

f(B(Ç,ut))cB(f(Ç),vT) (2)

Let £ao t u be the following closed subset of Aç

£aotu {ae Aç, a(t) G B((, ut)},

(as above denotes ao(t)) Applying proposition 2 2 4 to £ 77, there exists a

constant C > 1, depending only on A, so that

da^aotu^C-V*-1 (3)

Indeed, with the same notations as m 2 2 4, the measure induced by da^ on iy is

equal, by transitivity of Stab^(£), to

Relations (2) and (1) imply that for a G £ao t «,

By (3), it follows

\Dçt(a)-f'(Ç)\daç > ^-dat:(£aotu)
Ae Z

> c~x\

By the Lebesgue dominated convergence theorem, the integral above tends to 0

when t tends to 0 Therefore, Dç t tends uniformly on Aç to /'(£) This completes
the proof of (l)

We now show (u) Let 77 be a point of dA1 such that (1) of proposition 3 11
is satisfied for 77 and for S, f~^(i]), and such that proposition 2 2 2 is satisfied
for £ (see 2 3 1 (11)) Let a' be an element of A^ and denote by j(T) the curve
/~1(a'(T)) By 2 2 2, there exists a sequence {Tn} of real numbers tending to 0

and a sequence {an} of elements of Aç so that 7(Tn) belongs to an \ {£} Set

tn ö(£,-y(Tn)) Then, (f-^VT?) lim^.oo-^- and\\ \

We conclude using the uniform convergence D
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3.2. A Rademacher-Stepanov type theorem

By adapting Rademacher-Stepanov's arguments (see [V2], theorem 29 1), we prove
the following result

3.2.1 Proposition. Under the same hypothesis as in proposition 3 11, for
almost every £ G dA, we have Lf{£) /'(£)

Before going through the proof of this proposition, let us explain how to deduce
the proof of theorem 3 0 from 3 2 1 and 3 11

Proof of theorem 3 0 By proposition 2 3 1 (l), <9A and dA' have the same Haus-
dorff dimension (recall that the inverse of a quasi-symmetric homeomorphism is

quasi-symmetric) Moreover, by propositions 3 2 1 and 3 11 (u), for almost every
£ G <9A, we have Lf(£) /'(£) and

But in full generality, one has

1

Hence, £/(£) is almost everywhere equal to //(£)

We now give the proof of proposition 3 2 1

Proof of 32 1 For i e N*, set

K {ee 9A,Vr7 G

Since £/(£) < oo almost everywhere, we have TL(dA \ UtVt) 0 (see corollary
2 3 2)

Let e > 0 and consider i0 G N such that H(dA \ V%0) < e/2 For r > 0, set

hr(0 sup{\De t(a) - f'(0\, « € Ae, -r < t < r}

Proposition 3 11 shows that hr tends almost everywhere to 0 when r tends to 0

By Egoroff theorem, there exists a compact set F in dA so that H(dA \ F) < e/2
and so that hr converges uniformly to 0 on F when r tends to 0 Note that /' is
continuous on F

Let E F n V%0 and let G be the set of density points of E Then, we have

H{dA\E) < £ and H{E\G) 0 Hence, it is enough to show that Lf(£) /'(£)
for every £ G G
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To this issue, fix £ in G and define the following functions for r < 1/io'-

H(B(Ç,r)\E)

£2(r) snp{hr(f]);r\ G F};
e3(r) sup{|/'(0 - f'(v)\;V^e F,ô(Ç,ri) < r}.

These functions converge to 0 when r tends to 0. Let £' be a point of B(£, r). By
proposition 2.2.1, there exists a geodesic segment [£,£'] in dA which is the union
of at most 4 geodesic segments [£,£i], [£1,^2], [£2^3], [£3j£'] contained in elements
of A. We set £4 £'.

For 9 G dA and £ Ae, define

whenever t > 0. Propositions 2.2.3 (ii) and 2.2.4 (ii) (applied with £ r\ 9),
and the Ahlfors-regularity of H imply that there exists a constant C > 1 so that

Let C € #(£,r) n Ae and let t < r. Then we obtain

H(£e(C,t)\E) H(B(C,t)\E)
H(£g(C,t)) - H(B(C,t))

„H(B(^2r)\E)(2r)H< a

< C'e1{2r)

H(B(Ç,2r))
(2r)H

tH

where C is a constant depending only on C and on the regularity constant of H.
We set

t{r)=Ar{C'ei{2r))llH.
For t t(r), the right-hand side member of the last inequality above is strictly
less than 1. Therefore, £g((,t(r)) D E is not empty.

Hence, for i G {1,2,3}, let r\% be an element of £^+1(£»,£(r)) n E. Then, we
have

3io*(r)

3re3(r) + 3(/'(0 + e3 W)*(r) + 4re2(*) + 3iO*(r).
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Since t(r)/r converges to 0 when r tends to 0, we obtain £/(£) < /'(£), and then
the equality. D

Remark. Let / be as in proposition 3.1.1. From propositions 2.2.2, 3.1.1 and 3.2.1,
and by similar arguments as in the proof of proposition 4.1.1 of the next section,
one can show that / contracts moduli. Namely, for all family T of curves of <9A,

one has

Mod(/(.F)) < Mod(.F).

4. A Liouville type theorem for dA

If S and S' are non-compact symmetric spaces of rank one (and different from H^),
a classical theorem due to Liouville and generalized by Mostow (see [Mo]) shows
that any conformai homeomorphism from the boundary of S to the boundary of
S1 is induced by an isometry from S to S1. The main goal of this part is to give
an analogous statement in the setting of right-angled Fuchsian buildings.

4.0 Theorem. Let A and A' be two right-angled Fuchsian buildings and let

f : dA —> dA' be a conformai homeomorphism. Then, f is the extension to the
boundaries of an isometry from A to A'.

Our proof works in the setting of symmetric spaces too. According to 0.2,
theorem 4.0 completes the proof of the main theorem.

This part is organized as follows. In 4.1, we give a precise estimate on the size

of the conformai group of a Loewner space (proposition 4.1.3); it is basically due
to J. Ferrand [F]. In section 4.2, we combine it with Sullivan's criterion given in
2.1.9 to prove theorem 4.0.

4.1. The conformai group of a Loewner space

We start with an observation about conformai homeomorphisms. The notion of
modulus has been defined in section 2.3.B.

A. Preservation of moduli.

4.1.1 Proposition. Let X and Y be two Ahlfors regular metric spaces with the

same dimension H and let f : X —* Y be a conformai homeomorphism. Then,

f is absolutely continuous. Moreover, if H > 1, then f is absolutely continuous
along almost every rectifiable curves and f preserves moduli:

Mod(f(F)) Mod(.F)

for every family T of curves of X.
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The proof will use the following lemma.

Lemma. Let X and Y be two metric spaces. We assume thai the Hausdorff
measures of dimension H of X and Y are locally bounded. Let f : X —s- Y be a

homeomorphism and let fif be the derivative of f*Hy with respect to Hx- Then,
for Hx-almost every x G X, we have

(lf(x))H<^f(x)<(Lf(x))H.

Proof. Since this result is local, we can assume that Hx and Hy are bounded on
X and Y respectively. For t > 0 and x £ X, set

4 r<t r

We will show that fif < {L^)H almost everywhere, then the right-hand side
inequality will follow by taking the limit when t tends to 0. Consider the set

E={xeX;Ltf(x) <+oo}.

Let B be a Borel set of E and let e > 0. Since Hx(B) is finite, there exists a
countable partition {Vt} of B by Borel sets and there exist real numbers ct > 0 so

that, for x £ B,
{L){x))H <

;) < / {L))HdHx+e.
with

\ ^
„ OJ t~W \ / 1/1

1 / HSince the restriction of / to Vt is locally c% -Lipschitz, we have ',

CtHx(Vt). It follows

< I {L))HdHx+e.
IB

The other inequality can be proved by similar methods. D

We now prove proposition 4.1.1.
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Proof of \.1.1. The previous lemma implies that

(h)" Vf (Lf)H a.e.. (1)

Hence, fif and M/-1 (by changing the role of / and Z"1) belong almost everywhere

to (0,+oo). Therefore, the Lebesgue-Radon-Nikodym theorem shows that

/ and Z"1 are absolutely continuous. The absolute continuity along almost every
rectifiable curves follows henceforth from [T] corollary 1.8 (see also [Pa], 4.6).

We now show that / preserves moduli. For this, let T be a family of curves
of X and denote by T' the sub-family of T of curves along which / is absolutely
continuous. We have

Mod(.F) M

For an /(jF)-admissible function v of Y, let u be the following function of X

u(x)=v(f(x))Lf(x).

Since / is absolutely continuous along curves of J7', standard arguments show that
u is jF'-admissible. Equality (1) and the absolute continuity of/ imply

/ uHdHx I (vof(x))H^f(x)dHx
Jx Jx

/ VHdHy
Jy

This last equality and (2) imply Mod(Jr) < Mod(/(Jr)). By changing the role of

/ and Z"1, we obtain the desired equality. D

B. J. Ferrand's cross-ratio. Let X be an Ahlfors-regular Loewner space with
dimension H > 1. We assume that for every 4-tuples (xi, j/i,X2,y2) °f distinct
points of X, we can find disjoint continua C\ and C^ so that x\,y\ G C\ and

x1iV1 € C*2- Following J. Ferrand (see [F]), we define their cross-ratto by

b{x\,yi,x<2,y2) inf Mod (6*1,62)

where the infimum is taken over all disjoint continua C\, C2 such that x\,y\ G C\
and X2,y2 & C*2- The two propositions below have been proved by J. Ferrand in the
setting of Riemannian manifolds. Here, they follow from the Loewner property.

4.1.2. Proposition. The function b is continuous on the set of A-tuples of
pairwise distinct points ofX. It takes its values in (0,+oo). It admits a continuous
extension to the set of A-tuples with at least 3 distinct coordinates, by

6(xi,2/i,x2,2/2) 0 if xi =yi or xi 2/2,
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b(xi,yi,X2,V2) oo if {xi,yi} D {x<2,y<2} ^ &¦

Proof. On the set of 4-tuples of pairwise distinct points, b is positive by the
Loewner property. To prove the flniteness of b, we cover two disjoint continua
C\ and C*2 by balls with small radius in comparison with dist(Ci, C2). Then, we

apply properties (a) and (b) of moduli recalled in subsection 2.3.B.
Since X is a Loewner space, there exists a constant C > 1 so that, for every ball

B(x,r) and every point z G B(x,r), there exists a path in B(x,Cr) joining x to z
(see [HK], theorem 3.13). Moreover, the Loewner property gives us a lower bound
of the distance between continua C\ and C<i which almost realize the inflmum.
Combined with properties (a) and (b) of modulus, we obtain the continuity.

Similar methods show the continuous extension. D

Assume now that X is compact. We denote by C(X) and QS(X) the groups of
conformai homeomorphisms and of quasi-symmetric homeomorphisms of X. Let
M(X) be the group of homeomorphisms of X preserving J. Ferrand's cross-ratio.
We endow this group with the uniform distance.

4.1.3. Proposition, (i) We have C(X) C M{X) C QS{X).
(ii) The group M(X) acts properly on the set of triples of pavnmse distinct

points of X.

Proof. The first inclusion of (i) follows from proposition 4.1.1. The second inclusion
follows from a classical argument using Loewner property, which is due to Loewner
and Gehring (see for example [HK], proof of theorem 4.7).

Part (ii) is due to J. Ferrand (see [F], theorem A(a)), and the proof uses only
the continuity properties of the cross-ratio stated in 4.1.2 and Ascoli theorem. D

4.1.4 Remark. Here is a straightforward generalization of proposition 4.1.3. Let X
be a metric space as in 4.1.3 and denote by H{X) the group of homeomorphisms
equipped with the uniform distance. Let G be a sub-group of H{X). We assume
that there exists K > 1 such that, for every family T of curves of X and for every
element g G G, we have

K^ModiF) < Mod(g(F)) < KMod(F).

The same arguments show that G (namely the closure of G in H(X)) is contained
in QS(X) and acts properly on the set of triples of pairwise distinct points of X.

4.2. Proof of theorem 4.0

Denote by M and M' the groups M(dA) and M(dA') respectively. We first show
that the measure \i introduced in 2.1.8 is invariant under the diagonal action of
M on <92A. Let F be a co-compact lattice of Isom(A). Then, F is contained in
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M and its action on the set of triples of pairwise distinct points of dA is properly
discontinuous and co-compact (see [G]) Hence, by proposition 4 13 (n), the group
F is a co-compact lattice of M In particular, the Haar measure of M is bimvanant
Let m be the measure on F \ M that we obtain by restricting the Haar measure
of M to a fundamental domain of F m M Note that m is finite and is invariant
under the right-action of M We define a new measure v on <92A by

v{B) / n{s{g)B)dm{g)
Jr\M

whenever B is a Borel set of <92A and s is a measurable section from T\M into
M Since \i is F-mvanant and since m is invariant under the right action of M,
the measure v is M-invariant Moreover, this measure is absolutely continuous
with respect to /x Indeed, M is contained in QS(dA) (see proposition 4 13 (n))
and quasi-symmetric homeomorphisms are absolutely continuous by 2 3 1 (u)

Because /x is F-ergodic (see 2 19 (n)), we obtain that /x is equal to Cv where
C is a constant So, /x is M-mvanant

Consider now a conformai homeomorphism / dA —> dA1 Then, / preserves
J Ferrand's cross-ratio and therefore conjugates the groups M and M' Hence,
the measure (/ x /)*/x is M'-invariant on <92A' This measure belongs to the class

of /x' (this follows from the absolute continuity of /) By ergodicity it is equal to
C/x' where C is a constant Using Sullivan's criterion (proposition 2 19 (i)), we

can complete the proof

4.3. General Fuchsian buildings

In this section, we collect arguments of this paper that can be extended to general
Fuchsian buildings (see [B2] chapter 1 for their definition)

Let A be a Fuchsian building In section 2 B of [B2], are constructed a Gro-
mov product, a combinatorial metric on dA, and a probability measure on A
Using them, it is easy to generalize the results of subsection 2 2 C It follows that
dA admits (1,1) Pomcaré inequalities and satisfies the results of section 2 3, m
particular, dA is a Loewner space If we assume in addition that Isom(A) acts
transitively on A (see [L] for examples of such buildings), proposition 3 1 1 (l) is

still true
However, we do not know if propositions 2 2 1 and 2 2 2 remain true They

have been used to show propositions 3 11 (n) and 3 2 1 which imply theorem 3 0

The proof of theorem 4 0 follows from the Loewner property of dA and from
Sullivan's criterion (proposition 2 19) We conjecture that this last result is still
satisfied by all Fuchsian buildings
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