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The explicit general solution of trivial Monge-Ampère
equation
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Abstract. The general solution of the equation zxxzyy — z^.y 0 with minimal smoothness

requirements is presented in explicit form, it depends on 2 functions of one variable In particular,
it allows to describe explicitly all developable surfaces (without planar points) in ]R3 The domain
and singularities of the solution are investigated
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1. Main Theorem

The trivial Monge-Ampère equation is

Hess(z) zxxzyy - z2xy 0 (1)

and sometimes it is called the equation of developable surfaces [CH, p 10]

Theorem. The general solution of the equation Hess(z) 0, with the assumption
zxx 7^ 0 everywhere, is given in parametric form

x(u,v) g(u) — v f'(u)
y(u,v) —v,.u (2)

z(u,v)=u g(u) — I g(t) dt-\-v {f(u)—u f'(u)}
JO

where f(u) and g{u) are arbitrary functions such that f G C2, g G C1, </(«) ^ 0

everywhere Furthermore, the Hesse matrix is
1 (I f{u)_

9'{u)-v f"{u) \f{u) [f{u
I would like to thank Prof H Rubinstein and Prof W Neumann who kindly afforded me
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Since the change of variables (x,y) <—> (u,v) is C1 smooth, system (3) gives
the following corollary complementing and containing Theorem 1 from [U3].

Corollary. The general solution z(x,y) of the equation Hess(z) 0, with the

assumption zxx =/= 0 everywhere, is C2 smooth, but need, not to be C3. Moreover,
the quotient zxy : zxx is C1 and need, not to be C2.

In Section 3 we shall discuss how to remove the assumption zxx =/= 0.

An incomplete solution with g{u) u and arbitrary f{u) was presented in
[HW, pp. 169-170].

Solutions of a similar equation Hess(z) 1 over various domains have been
considered in [Jl, J2 and SW].

Proof of Theorem. Classical change of variables. The solution of equation (1)
can be written explicitly in new coordinates (u,v) which we will now introduce.
Let z(x,y) be a solution of equation (1) in the vicinity of the x-axis. Then we
assign

u zx(x, y)

v y

This new coordinate system has the following geometrical motivation: the xy-
plane is flbered on rectilinear generators along which the function zx is constant;
in the ww-plane these generators become the coordinate lines u const. Or, that
is to say, the surface (x,y, z(x,y)) is flbered on rectilinear generators along which
the tangent plane is constant. More detailed discussion can be found in [U3]. The
Jacobi matrix of the change (4) is

d(u,v)
d{x,y) ~ V 0 1

thus det —)—^—- zxx y^ 0 and (4) does give a change of variables.
\d(x,y)J

Now our goal is to express x, y and z as functions of u and v.

Introduction of function zy f (zx). It is not difficult to show that along the
rectilinear generators not only the function zx(x,y) but also the function zy(x,y)
is constant (see [U3]). Thus, zy depends only on the value of zx u, does not
depend on v, and we can introduce a new function /:

zy f[u). (5)

Then from (4) and (5) one can get

Uy (ZXy ZyX) f'(u) ¦ UX. (6)

In this equation the dependent variable is u(x, y). We shall transform the equation
to a new one with the dependent variable x(u,v). In order to do that we need:
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The connections between (xu,xv) and [ux,uy). The Jacobi matrix of the
change (4) {x,y) i—> (u,v) can be written as follows

d(u,v) _ ux uy
d{x,y)

The matrix of the inverse change (u,v) i—> (x,y) is

-i

d(x,y)
d(u,v) \yu VvJ \d(x,y)

Hence
xu ux 1 f Vu 0

and < (7)
xv ux + uy 0 [yv I

The function x(u,v). Now equation (6) can be transformed into
—xv ux f'(u) ux, hence xv —f'(u) (for ux zxx ^ 0) and therefore

x(u,v) g(u) - v f'(u), (8)

where the function g{u) is an arbitrary function (initial condition) assigning the
change u \-^ x on the x-axis x(u,0) g(u), the existence of the change requires
g'{u) ± 0

The function z(u,v). Now we can obtain the equation on z(u,v)

(4) (4)
u zx zu ux + zv vx zu ux,

hence
u (7)

zu — u xu (9)
ux

On the other hand,

r, (5) (4) (7) (9)j Z Z U + Z Vy ZU Uy+Zy ZU{~XV UX) + Zy ~Xy U + Zy

hence zv f + xv u f(u) — u f'(u) Therefore

z h(u) + v (f-u f)
In order to find the function h{u) (depending on f(u) and g(u) since they

completely determine the initial Cauchy problem) let us take advantage of (9)

u xu{Jzu ti + v (f'-f'-u f") h'-v u f"
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From (8) xu g'(u) — v ¦ f"(u), hence u ¦ g'{u) h'{u), and finally

h{u)= t-g'(t)dt ug(u)- g{t)dt.
JO JO

Evaluation of the partial derivatives zxx, zxy and 'VV

(4) (7) 1 (8) 1

zxx — ux —

Zrr,,,

xu g' - vf" '

(4) (7) (7) xv (8) /'
g,_vf,

(5)
r „ (7) (7) ,xv (8) (f'Y

zyy [J{u)\y I -uv -J ¦ xv ¦ ux -f — —
xu g> - vf"

•

Initial-value problem. Thus, the function z(x,y) z(u(x,y),v(x,y)) is a solution

of (1). It turns out that any solution allows representation (2), i.e., varying
f(u) and g(u) (preserving g' ^ 0) we obtain the full set of solutions. Indeed,

2

since zxx ^ 0, equation (1) can be represented as zyy -^L. Then the initial
zxx

conditions of the Cauchy problem for this equation can be set along the x-axis
as two functions in one variable: z(x,0) and zy(x,0). As we have seen before
on the x-axis the variables x and u are interchangeable: x g(u). Therefore,

(5)
zx(x,0) =u g~x{x)] besides that zy(x,0) f{u) f (g-1(x)). Altogether:

z(x,o)= f
JO (10)

Thus, the pairs of functions f{u), g{u) and z(x,0), zy(x,0) are interchangeable
which means system (2) gives the general solution of (1).

Smoothness of the initial conditions f(u) and g(u). As one can see from
(3), for the existence of zxx it is necessary that g{u) G C1 and f{u) G C2. At the
same time these conditions are sufficient for the existence of zxx, zxy and zyy. D

2. Domain of the solution. Caustic

The surface F C Es as the domain of the solution. The change of variables
(x,y) h^ (u,v) (4) is not accidental in the least. The matter is that the natural
domain for the solution of (1) is the surface F C Es with the radius vector
(x(u,v),y(u,v),z(u,v)) rather than the xy-plane. The surface F is rectilinear:

x
y ] a(u)+v-b(u) with a(u) | 0

>U9- Jg,
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Moreover, it is a torse (l e a rectilinear surface with tangent plane stable along
the generators), a characteristic property of which is the condition b G span {a, 6}

([Sp, p 284] or [U3]) Indeed, b=-Ça
Let us notice that the surface F is C2 smooth (because in the cartesian parame-

trization (x,y,z(x,y)) the function z(x,y) is C2) despite the C1 smoothness of
the parametrization given by (11) Such a drop in smoothness for this more
"geometrical" parametrization is a common occurrence — see Theorem 1 [U4]

There are no planar points on the surface F (due to zxx =/= 0) and consequently
it consists of the parts of cylinders, cones and tangent developables glued pairwise
along their rectilinear generators [Ul]

Singularities. If we assign the initial conditions f(u) and g{u) defined on the
segment [mi, «2] °f the x-axis (to be more precise on the segment [#i,£2] with
xl g{ul)i X2 g{u2)) then the equations (2) give the solution on the whole

strip (u,v) G [«1, «2] x (—00,00) Thus one can say, the solution is naturally
extended to infinity along the generators of the surface

Yet, in the general case on every generator there is a singular point at which
the tangent plane to F degenerates into a line Indeed, the tangent plane of the
surface a{u) + v b{u) is spanned by the basis tangent vectors a + v b and b

vb=(g'-vf")

and the degeneracy condition, rank < a + vb, b> < 2, is equivalent to

g'(u)-vf"(u)=0 (12)

Thus on the generator uq all points except v g' (mo) //" (mo) have non-degenerate
tangent planes

Cylinders. If we want to have no singularities in the strip [mi, «2] x (—00,00)
we must require f"(u) 0, 1 e f(u) au + ß with constant a and ß Then the
direction of the generators b(u) (—a, l,/3) is constant (see (11)), the surface F
is a cylinder a(u) x6c£3

The last statement in fact is equivalent to the well-known Pogorelov's theorem
a complete surface of vanishing Gaussian curvature is a cylinder [P, p 696] or
[Sp, pp 363- 367] (true, in that theorem planar points were also taken into
consideration, but our treatment could be extended to cover them too — see

Section 3)
The singularities found are preserved under the projection of the surface F

onto the xy-plane (that will be discussed further) Therefore the last statement
can be reformulated as follows the solution of equation (1) is defined and regular
over the whole xy-plane if and only if the initial function f(u) is linear
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Now we shall assume that there are no points with /" 0 on the segment
[«i,«2] Then equation (12) specifies the singularity curve

a*(u) a(u) + j^(u) b(u) (13)

on the strip [«i, «2] x (~°°: °°) of the surface F In order to understand the general
picture we impose two additional assumptions

a) Let us suppose the function g'/f" to be C1 smooth Then the singularity

curve (13) is also C1 smooth and its tangent vector is a* (g'/f")' b

b) We will assume that, on the segment considered, either (g'/f") 0

or (g'/f") is never zero

Cones. Let (g'/f") 0 Then a* 0 and the curve (13) degenerates into a point
a*(u) <3q All the generators of the surface F pass through that point Under
the projection onto the xy-plane the picture is preserved all the generators in the
plane pass through some fixed point Pq, the strip [«1,1*2] x (—00,00) is projected
onto the interior of two vertical angles between the straight lines (x (u\) ,Pq) and

Tangent developables. Let us now consider the case (g'/f") ^ 0 everywhere on
[«I,«2] In this case the singularity curve (13) is a genuine curve which envelopes
the generators of the surface F Such a surface is called a tangent developable and
the curve itself is called the edge of regression A general idea of what a tangent
developable looks like can be obtained from a drawing in [Sp, p 208] After the
projection of F onto the xy-plane, the edge of regression (13) turns into a curve
called the caustic of the solution (2) The generators u const in the xy-plane
are tangent to the caustic, each generator at its own point The caustic is a convex
curve since its tangent vector t(u) (which is the projection of b(u)) is (—/', 1) and
the frame {t,t} keeps its orientation as long as /" ^ 0 Comparing (12) and (3)
we notice that while approaching the caustic the Hesse matrix goes to infinity

Every generator is divided by the caustic point into two parts, correspondingly,
the domain of the solution (2) is decomposed into the parts consisting of the points
of the "bottom rays" and "top rays" of the generators The foregoing can be
illustrated as follows

Example. Let the functions f(u) |m|3 and g(u) u be given on the whole
x-axis Then the surface F is

'x\ u\ f-3u\u\"
y q1 + v I 1

The equation of the caustic (12) in the ww-plane is 6\u\v 1 In the xy-plane
the caustic is as follows
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hence, eliminating u, we get
12|a%=l, (14)

l e the caustic consists of two branches of hyperbolae

4-, for x > 0
V ' ' forx<0

When x approaches zero, the caustic goes to infinity and this is to be expected
since /" 6|m| —s- 0 There are three different branches of the solution z(x,y)
Branch 1. This is defined at the points of generators which are below the caustic,
on "bottom rays", l e whenever y < w^r The map (u,v) i—> (x,y)

x u — 2>v u u
(15)

y v

can be inverted in this domain

2x

where ip\ 1 — 12|x| y

2x2
The solution z(x,y) 1 —

Branch 2. This consists of the points of the "top rays" tangent to the right
hyperbola In this case u > 0, the branch is defined in the whole Quadrant II and

in Quadrant I below the hyperbola y yi- The inversion of (15) is

where ^2 1 — 12x y,

2x2 tbo
and the function z{x,y) 1

3 \ ft _

Branch 3. This consists of the points of "top rays" tangent to the left hyperbola
In this case u < 0, the branch is defined in the whole Quadrant I and in Quadrant
II below the hyperbola y —j^ The inversion of (15) is

9.T.

1 — \T¥i where ^3 1 + 12x y,
v y

2x2 1P3
and the function z(x,y) 1 —

3 I (\ _ ./x:^2(i-vW
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3. Points with zxx 0

In this Section we discuss the extension of Theorem 1 removing the assumption
zXx =/= 0. The points with zxx 0 are naturally split into two classes: parabolic
and planar points.

Parabolic points: zxx zxy 0, zyy ^ 0 The necessity for individual
consideration of these points (they are not in the solution (2) — see (3)) is entirely
generated by the choice of the coordinate system. If we swap the axes x and y
then the points zyy zxy 0, zxx ^ 0 (which are currently in the solution (2))
will be found in the same disadvantageous position.

It can be easily seen from (3) and by interchanging x and y that the parabolic
points with zxx 0 always lie on a generator parallel to the x-axis. Such a

generator cannot intersect the x-axis (unless it coincides with the whole x-axis)
and therefore setting the initial values for (2) along the x-axis, we automatically
exclude the points in question from consideration.

Changing the locus of initial values from the x-axis to an arbitrary (even space)
curve we can include the points discussed in the solution but lose the elegance of
formulae (2).

Planar points: zxx zxy zyy 0 These points in turn are split into two
classes:

(1) planar points possessing planar neighbourhood;
(2) planar points being a limit of parabolic points.
Points which are planar together with the vicinity lie on a flat piece of the

surface F; the function z in that vicinity is linear.
The planar points of type (2) inherit the rectilinear structure from close parabolic

points: these points fill the whole generator which is the limiting position of the
corresponding parabolic generators (this statement is implied by the following
easy-to-check fact: if a generator of the surface F has a parabolic point then all
the points of that generator are parabolic; a detailed discussion and bibliography
can be found in [U2]).

Therefore, the surface F without flat pieces is rectilinear; some generators are
parabolic, the rest are planar. The parabolic generators make up an open set;
the planar generators form a closed one. The latter may have a rather complicated

structure: for instance, they might cut out the Cantor set on a trajectory,
transversal to the generators.

The planar points of type (2) possess another interesting property. Despite
the C2 smoothness of the surface F, the vector field assigning the directions of
the generators (and its projection onto the xy-plane) is C1 smooth when we allow
only the planar points are present parabolic points and is only C° smooth. Such

an effect may appear even in the case of a single planar generator [U2].
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