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On the ¯rst Laplacian eigenvalue and the center of gravity
of compact hypersurfaces
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Abstract For a closed hypersurface in a space form this work provides some sharp upper
bounds for its ¯rst positive Laplacian eigenvalue These bounds are extrinsic as they rely on the

mean curvatures and center s of gravity of the hypersurface
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1 Notations introduction and the result
Let M Mn+1 · ; g h¢; ¢i be a space form that is a connected simply con-
nected Riemannian manifold of dimension n + 1 ¸ 2 with constant sectional
curvature · 2 R d its Riemannian distance d~º its volume element

er its Levi-
Civita connection

er2 its Hessian
e
¢ ¡trace

er2 its Laplacian exp its exponen-
tial map and UpM the unit sphere of the tangent space TpM of M at a point p
If M is a closed compact without boundary connected hypersurface of M we

endow M with the induced metric also denoted by h¢; ¢i The induced volume

element connection Hessian and Laplacian are denoted by dº r r2 and ¢ re-
spectively We recall that its mean curvatures are the functions Hi 0·i·n de¯ned
by Q

n
i 1 1 + Xki P

n
i 0 ¡n

i¢HiX i where ki 1·i·n are the principal curvatures

of M By the generalized Jordan theorem M is orientable and divides M into two
connected components one of which say  is relatively compact and has M as

its oriented boundary We introduce the function sn· solution of the di®erential
equation Äy + ·y 0 with the initial conditions y 0 ; _y 0 0; 1 and its prim-
itive h· which vanishes at 0 A center of gravity of M is a critical point of the

smooth function E : M R : p
7 RM h· ± dp ¢ dº This de¯nition di®ers slightly

from the one commonly used The introduction of h· has an immediate utility:
the distance function dp may be non smooth at some points but thanks to h· E
is nevertheless smooth on the whole manifold M Center s of gravity has several
applications: for example we recall that it can be used to prove that any compact
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group of isometries in an Hadamard manifold has a ¯xed point In this paper we

will use center s of gravity to provide some sharp upper bounds for the ¯rst pos-
itive Laplacian eigenvalue involving the mean curvatures of M The method used
here is to apply the min-max principle to a collection of appropriate functions and
goes back to Bleecker and Weiner [2] Their work with the generalization given
by Reilly [3] dealt with Euclidean submanifolds The author was naturally led to
expect similar results for space form submanifolds This attempt has been possible
by the introduction of center s of gravity The proof will show that the function
h· will make possible the use of generalized Hsiung-Minkowski formulae For sake

of simplicity this work concerns only hypersurfaces but for higher codimension
similar formulae can be derived Our result is the following one the case · 0 is
the one studied by the authors quoted above :

Theorem Let M be a closed connected hypersurface of M ¸1 the ¯rst positive

eigenvalue of the Laplacian of M and c a center of gravity of M
i If · is non-negative then we have the following inequalities:

¸1
Z

M
sn2

· ± dc ¢ dº · nVolM 1

¸1 µZ
M

Hi _sn· ± dc ¢ dº¶
2

· nVolM Z
M

H2
i+1 ¢ dº 2

¸1 n + 1 2 µZ


_sn· ± dc ¢ d~º¶

2

· nVol 2M 3

for any i 2 [0; n ¡ 1] where VolM denotes the volume of M Equality occurs in
one of these three inequalities if and only if M is a geodesic sphere centered at c

In this case ¸1 n sn2·r r being the radius of this geodesic sphere
ii If · is negative then

¸1
Z

M
sn2
· ± dc ¢ dº · nVolM ¡ · Z

M
sn2

· ± dc ¢ dº 4

For negative · inequality 4 is non sharp unfortunately see the ¯nal remark
and this means that the min-max principle has to be applied to \better" functions

Before going further the problem of the existence of a center of gravity has to
be studied: while for positive · two centers of gravity at least exist by the

compactness of M the question for non-positive · is solved by the following result:

Proposition 1 The function h· ± dp satis¯es:

er2 h· ± dp _sn· ± dp ¢ g

If · is non-positive M admits a unique center of gravity
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2 Proof

2 1 Preliminaries

We ¯rst prove proposition 1: the claim is trivial for · 0 For non-zero · it is well-
known that if we equip the space Rn+2 with the pseudo-metric hx; yi "x0y0 +
P

n+1
i 1 xiyi where " sign· and its associated Levi-Civita pseudo-Riemannian

connection D then a model space for M is the sphere Sn+1 1 p· fx 2
Rn+2

hx; xi 1 ·g for positive · and the upper hyperboloid Hn+1 ¡1 p¡·fx 2 Rn+2
hx; xi 1 · and x0 > 0g for negative · with the induced metric

which is Riemannian The announced formula follows then from two elementary
facts: the distance of two points x and y of M is d x; y _sn¡1

· ·hx; yi which
implies that h·±dp is the restriction to M of the linear form ¡hp; ¢i+1 · on Rn+2

On a second hand DXY q
erXY q¡·hX; Y iq for any point q 2 M and vector

¯elds X; Y on M We deduce immediatly that if ° is a 1-time speed geodesic of M
then E ±° " t RM er2 h·±dq ° t h

_° t ; _° t i¢dº q RM
_sn·±dq ° t ¢dº q >

0 which shows the strict convexity of E and proves the assertion ¤

As c is a critical point of E we note that 0 h erE c ; ui RM h er h· ± dq c ; ui ¢

dº q for any u 2 UcM and the key point is the following:

Lemma Let u and v be unit vectors tangent to M at c and q respectively q being

arbitrary in M Then the smooth function Fc;u : M R : q
7 h er h· ± dq c ; uisatis¯es:

Z
UcM

F 2
c;u q ¢ du n+1 ¢

sn2
· dc q 5

Z
UcM

h erFc;u q ; vi
2

¢ du n+1 n1 ¡ hv;
erdc q i2· sn2· dc q o 6

where du is the canonical measure of UcM and n+1 the volume of the unit ball of
Rn+1

Formula 5 follows from the classical trick on quadratic forms:

Proposition 2 Let B : V £V R be a bilinear form on a real n+1 -dimensional
inner product space V and S; du the unit sphere of V endowed with its canonical
measure du Then

Z
S

B u; u ¢ du n+1 ¢ trace B

To prove 6 we introduce for convenience the function ¹· t sn·t t and we set
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` d c; q Then we can write Fc;u q ¡¹· ` h
exp¡1

c q; ui and

h
erFc;u q ; vi ¡ _¹· ` h

erdc q ; vihexp¡1
c q; ui¡ ¹· ` h

erJ 0 ; ui
where J : [0; 1] TM is the unique Jacobi vector ¯eld along the geodesic ° :
[0; 1] M : t 7 expc t exp¡1

c q in M joining c to q with the initial conditions

J 0 ; J 1 0; v Let us write v vT + v where vT
hv;

erdc q ierdc q

hv; _° 1 i _° 1 `2 is the tangential component of v relatively to the geodesic speed
vector _° 1 Solving the di®erential equation satis¯ed by J one easily obtains that

J t hv;
erdc q i

` t _° t +
sn· t`

sn·`
P t

where P is the unique parallel vector ¯eld along ° with P 1 v This implies

that

erJ 0 hv;
erdc q i

`
_° 0 +

1

¹· `
P 0

So

h
erFc;u q ; vi ¡¿½ _¹· ` + ¹· `

`
¾

hv;
erdc q i _° 0 + P 0 ; uÀ

¡¿ _sn·`
` hv;

erdc q i _° 0 + P 0 ; uÀ

As P is parallel along the geodesic ° and perpendicular to the geodesic at t
1 P is of constant norm jv j and always perpendicular to the geodesic By
proposition 2 and the straightforward relation _sn2

·t + · sn2·t 1 one obtains that
1

n+1

Z
UcM

h
erFc;u q ; vi

2
¢ du jv

T
j
2 _sn2

·` + jv j
2 1 ¡ jv

T
j
2· sn2·` ¤

2 2 Proof of the theorem

Let ´ be the outward smooth unit vector ¯eld normal to M that is the one pointing

in the opposite direction to D The previous lemma the Green formula which by
proposition 1 is: RM h er h· ±dc ; ´i ¢ dº R e

¢ h· ±dc ¢ d~º n+1 R _sn· ± dc ¢ d~º
and the generalized Hsiung-Minkowski formulae [1]: RMfHi _sn·±dc +Hi+1h er h·±
dc ; ´ig¢dº 0 for any i 2 [0; n¡1] show formulae 2 and 3 as easy consequences

of 1 Formulae 5 et 6 prove 1 : indeed if we denote by fc;u the restriction
of Fc;u to M then jrfc;uj

2
jerFc;uj

2 ¡ h erFc;u;´i2 and we deduce immediatly
from 6 that

1

n+1

Z
UcM

jrfc;uj
2

¢ du n¡ ³1 ¡ h´;
erdci2´· sn2· ± dc 7
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The de¯nition of c imply that the integrals of the functions fc;u u2UcM on M all
vanish By the Rayleigh min-max principle the ¯rst positive Laplacian eigenvalue

of M satisfy ¸1 RM f2
c;u¢dº · RM jrfc;uj

2
¢dº for any vector u 2 UcM and equality is

achieved if and only if fc;u is an eigenfunction that is ¢fc;u ¸1fc;u Integrating

this last inequality on UcM using Fubini theorem 5 and 7 we obtain

¸1
Z

M
sn2· ± dc ¢ dº · Z

M
nn¡ ³1 ¡ h´;

erdci2´ · sn2
· ± dco ¢ dº

If · is negative inequality 4 is immediate For non-negative · the right term is
bounded from above by nVolM and we arrive to the announced inequality 1

If · is zero and equality holds then ¢fc;u ¸1fc;u for any vector u In order to
be self-contained we recall the classical argument [4] which concludes the proof:
it is an easy result that ¢fc;u nH1h´; ui where H1 is the 1-mean curvature of
M This implies that nH1´ ¡¸1

er h· ± dc We choose a local orthonormal
basis Xi 1·i·n of principal vectors in TM associated to the principal curvatures

ki 1·i·n and we di®erentiate this last equation by Xi Using Weingarten equation
and proposition 1 we obtain n XiH1 ´ ¡ nH1kiXi ¡¸1Xi Taking its scalar
product with Xi and summing the relations obtained for all i we deduce that
¸1 nH2

1 This shows that M is of constant 1-mean curvature and by this way
included in a geodesic sphere centered at c with radius pn ¸1 As this geodesic
sphere is also n-dimensional and connected we deduce by the compactness of M
that M coincides with this geodesic sphere

If · is positive and equality holds this means that ´ §erdc Therefore the gradi-
ent of h·±dc jM

satisfy hr h·±dc jM ; »i h er h·±dc ; »i sn·±dc h
erdc; »i 0

for any vector ¯eld » on M As M is connected the function h· ± dc is then con-
stant on M i e M is included in a geodesic sphere centered at c As this geodesic
sphere is also n-dimensional and connected we deduce by the compactness of M
that M coincides with this geodesic sphere

For negative · we note at last that equality cannot hold in 4 : indeed equality
would imply that h´;

erdci 0 on M and this is in contradiction with the ¯rst gen-
eralized Hsiung-Minkowski formulae which says that 0 RMf _sn· ±dc +H1h er h· ±
dc ; ´ig ¢ dº RMf _sn· ± dc + H1 ¢

sn· ± dc h erdc; ´ig ¢ dº ¤
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