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Logarithmic cohomology of the complement of a plane curve

Francisco J Calder¶on Moreno1;¤ David Mond Luis Narv¶aez Macarro1

and Francisco J Castro Jim¶enez1

Abstract Let D; x be a plane curve germ We prove that the complex ² log D x computes

the cohomology of the complement of D; x only if D is quasihomogeneous This is a partial
converse to a theorem of [5] which asserts that this complex does compute the cohomology of
the complement whenever D is a locally weighted homogeneous free divisor and so in particular
when D is a quasihomogeneous plane curve germ We also give an example of a free divisor
D ½ C3 which is not locally weighted homogeneous but for which this second assertion con-
tinues to hold

Mathematics Subject Classi¯cation 2000 Primary 32S20; Secondary 32S40 14F40

Keywords Free divisor logarithmic de Rham complex plane curve local quasi-homogeneity

1 Introduction

In [5] the last three authors showed that if D is a locally quasi-homogeneous free

divisor in the complex manifold X then locally the complex ² log D of holomor-
phic di®erential forms with logarithmic poles along D calculates the cohomology of
the complement of D in X More precisely the following two equivalent statements

hold:

Theorem 1 1 With D as above

1 If V ½ X is a Stein open set then the de Rham map integration of forms over
cycles gives rise to an isomorphism

hk ¡ V;² log D » Hk V n D; C :

2 Denoting by U the complement of D in X and by j : U X the inclusion the

de Rham morphism gives rise to an isomorphism

² log D » Rj¤
CU : ¤

¤Supported by MEC of Spain and EPSRC of United Kingdom
1Partially supported by PB97-0723
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By analogy with Grothendieck's Comparison Theorem [8] in which the complex
² log D is replaced in these two statements by ² ¤D but which holds for an
arbitrary divisor we summarise this with a slogan: if D X is a locally quasi-
homogeneous free divisor then the logarithmic comparison theorem holds

The de¯nition of local quasi-homogeneity called strong quasi-homogeneity in
[5] is as follows:

De¯nition 1 2
1 The polynomial h z1; ¢ ¢ ¢ ; zn Pai1;¢¢¢ ;inzi1

1 ¢ ¢ ¢ zinn 2 OCn is weighted homo-
geneous if there exist positive integer weights w1; ¢ ¢ ¢ ; wn such that
h zw1

1 ; ¢ ¢ ¢ ; zwn
n is homogeneous

2 The divisor D ½ X is locally quasi-homogeneous if for all x 2 D there are

local coordinates on X centered at x with respect to which D has a weighted
homogeneous de¯ning equation

Every plane curve is a free divisor since the module of logarithmic vector ¯elds

Der log D is re°exive and thus has depth at least 2 In [4 Cor 4 2 2] the ¯rst
author showed that if D is a plane curve then the logarithmic de Rham com-
plex ² log D is perverse a necessary condition for the logarithmic comparison
theorem

In [6] the logarithmic comparison theorem has been tested for the following
non locally quasi-homogeneous plane curve cf [9] : D ff x4

1
+ x5

2
+ x4

2
x1

0g ½ X C2 A basis for Der log D is given by:

±1 16x2
1
+ 20x1x2

@

@x1
+ 12x1x2 + 16x2

2

@

@x2

±2 16x1x2
2
+ 4x3

2¡ 125x1x2
@

@x1
+ 12x3

2 ¡ 4x2
1
+ 5x1x2 ¡ 100x2

2

@

@x2
:

Let DX be the sheaf of linear di®erential operators with holomorphic coe±cients

on X and I the left DX-ideal generated by ±1; ±2 By [4 Th 4 2 1] we have a
canonical isomorphism in the derived category

² log D ' RHom
DX DX I ; OX ;

and so we can compute the characteristic cycle CC ² log D as the cycle Z in
T ¤X determined by the ideal J ¾ I generated by the principal symbols of
elements in I The symbols ¾1 ¾ ±1 ; ¾2 ¾ ±2 form a regular sequence in
OT¤X and so by [4 Prop 4 1 2] the ideal J is generated by ¾1; ¾2 An easy
computation shows that the multiplicity of the conormal at 0 in Z is 4 On the

other hand the multiplicity of the conormal at 0 in CC Rj¤ CU is equal to
mult0 D ¡ 1 3 cf [3] and so the logarithmic comparison theorem does not
hold for D

For the family of non locally quasi-homogeneous plane curves cf [9]

xq
1 + xp

2 + xp¡1
2 x1 0; p ¸ q + 1 ¸ 5;
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the multiplicities of the conormal at 0 in CC ² log D and in CC Rj¤
CU

are 2 q ¡ 2 and q ¡ 1 respectively and so these curves also do not satisfy the

logarithmic comparison theorem
A natural question is therefore whether or not the logarithmic comparison

theorem holds for a given free divisor
The purpose of this paper is to prove a partial converse to Theorem 1 1 We

prove:

Theorem 1 3 Let D be a reduced plane curve If the logarithmic comparison
theorem holds for D then D is locally quasi-homogeneous

Our proof shows that if h is a local equation of D and the logarithmic com-
parison theorem holds then there is a vector ¯eld germ Â such that Â ¢ h h
As a reduced curve has isolated singularities we can then apply the theorem of
K Saito [10]: if h 2 OCn;0 has isolated singularity and h belongs to its Jacobian
ideal Jh then in suitable coordinates h is weighted homogeneous

We conjecture that in higher dimensions the following version of our Theorem
1 3 holds:

Conjecture 1 4 If D X is a free divisor and if the logarithmic comparison
theorem holds then for all x 2 D there is a local equation h for D around x and
a germ of vector ¯eld Â vanishing at x such that Â ¢ h h

A singular free divisor of dimension greater than 1 has non-isolated singulari-
ties so even if this conjecture is true Saito's theorem cannot be used to deduce

local quasi-homogeneity Indeed it is not true in higher dimensions that if the

logarithmic comparison theorem holds for a free divisor D then D is necessarily
locally quasi-homogeneous This is shown by an example in Section 4 below: the

logarithmic comparison theorem holds for the free divisor

D f x; y; z : xy x + y zx + y 0g

the total space of a family of four lines in the plane with varying cross-ratio cf
[4] in the neighbourhood of 0; 0;¸ with ¸ 2 Cnf0; 1g; however it is well known
that this divisor is not locally quasi-homogeneous On the other hand it does

satisfy Conjecture 1 4
Adrian Langer has indicated to us that he has subsequently found a shorter

proof of Theorem 1 3 using globalisation and a comparison of Chern classes1

1Added on November 2001
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2 Preliminary results

In this section we recall the spectral sequence argument used in [5] to compare the

cohomology of the logarithmic complex ² log D with the cohomology of X n D
Except for referring to \local" rather than \strong" quasi-homogeneity we will
use the same notation as [5]

Without loss of generality we assume X Cn with coordinates zi and x0 0

Let V be a Stein neighbourhood su±ciently small of 0 let U be the open cover
of V n f0g consisting of the sets Ui V \ fzi 6 0g and let U

0 be the open cover
of V n D consisting of the open sets U 0i V n D \ fzi 6 0g Ui n D

We consider the two double complexes

Kp;q ·Cq
U;p log D

and

~K
p;q ·Cq

U
0;p ;

equipped with the exterior derivative d the horizontal di®erential and the ·Cech
di®erential ± the vertical di®erential There is an obvious restriction morphism
½p;q : Kp;q

~K
p;q which commutes with both di®erentials and thus gives rise to

morphisms of the two spectral sequences arising from each double complex These

spectral sequences have E1 terms

00Ep;q
1 ·Hq

U ;p log D
00 ~E

p;q
1 ·Hq

U
0;p

0Ep;q
1 ©1·i1<¢¢¢<iq+1·nhp³¡³\j Uij ;² log D ´´

0
~E

p;q
1 ©1·i1<¢¢¢<iq+1·nhp³¡³\j U 0ij ;²´´:

As both U and U
0 are Stein covers

·Hq
U ;p log D ·Hq V n f0g;p log D

and

·H
q

U
0;p ·H

q V n D;p :

As V n D is Stein ·Hq V n D;p 0 if q > 0 It follows that
00 ~E

p;q
2 ½ Hp V n D; C if q 0

0 if q
6

0 ;

and in particular the spectral sequence 00 ~E
converges to the cohomology of V n D

Now assume that outside 0 D is locally quasi-homogeneous so that by 1 1

Rj¤
CU ' ² log D again outside 0 As U and U

0 are Stein covers by 1 1 the

quotient of the restriction ½p;q de¯nes an isomorphism 0½p;q: 0Ep;q
1

0 ~E
p;q
1 for all

p; q This isomorphism persists to give an isomorphism of the cohomology of the
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total complexes Ktot and ~K
tot as calculated by the spectral sequences It follows

that the spectral sequence 00E like 00 ~E
also converges to the cohomology of V nD:

Hk V n D; C ' ©p+q k 00Ep;q
1 :

As D is a free divisor ·Hq V n f0g;p log D 0 for q
6

0; n ¡ 1 so 00E1
has only two non-null rows; writing for the moment p D and V ¤ in place of
p log D and V n f0g

00E1 thus looks like

·Hn¡1 V ¤;0 D d
1

¢ ¢ ¢

d
1 ·Hn¡1 V ¤;p D d

1
¢ ¢ ¢

d
1 ·Hn¡1 V ¤;n D

0 ¢ ¢ ¢ 0 ¢ ¢ ¢ 0

0 ¢ ¢ ¢ 0 ¢ ¢ ¢ 0

¡ V;0 D d
1

¢ ¢ ¢

d1 ¡ V;p log D d
1

¢ ¢ ¢

d1 ¡ V;n log D :

Note that as n ¸ 2 and as the p log D are free modules we have ¡ V ¤;p D
¡ V;p D

As this spectral sequence converges to the cohomology of V n D we have

Hn¡1 V n D; C ' E0;n¡1

1 © ¢ ¢ ¢ © En¡1;0
1 E0;n¡1

n+2 © hn¡1 ¡ V;² log D

Hn V n D; C E0;n
1 © ¢ ¢ ¢ © E0;n

1 E1;n¡1
n+2 ©

hn ¡ V;² log D
dn+1 E0;n¡1

n+2

;

where

E0;n¡1
n+2 Ker d1 : ·Hn¡1 V ¤;0 D ·Hn¡1 V ¤;1 D :

In [5] the main theorem was proved by showing that if D is locally quasi-homo-
geneous then the complex

·Hn¡1 V n f0g;² log D ; d1

is exact

3 Proof of the Theorem

We continue with the discussion of the last paragraph If the natural morphism
² log D Rj¤

CU is a quasi-isomorphism i e if the logarithmic comparison
theorem holds for D then by the formulae of the last section d1 : ·Hn¡1 V n

f0g;0 log D ·Hn¡1 V n f0g;1 log D is injective

Let f 1; ¢ ¢ ¢ ; ng be a free basis of 1 log D as OV -module and let ±1; ¢ ¢ ¢ ; ±n
be the dual basis of Der log D Then ·Hn¡1 V n f0g;0 log D ·Hn¡1 V n

f0g; OCn and ·Hn¡1 V nf0g;1 log D ' ©n1·Hn¡1 V nf0g; OCn : The morphism
d1 : ·Hn¡1 V n f0g;0 log D ·Hn¡1 V n f0g;1 log D now becomes

·Hn¡1 V n f0g; OCn
d1 ·Hn¡1 V n f0g; OCn n

[g]
7

[±1 ¢ g]; ¢ ¢ ¢ ; [±n ¢ g] :
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where g 2 ¡ V n [ifzi 0g; OCn ¡ Cn
n [ifzi 0g; OCn represents the class

[g] in ·Hn¡1 Cn
n f0g; OCn

For ± 2 DerC OCn we denote by d± the homomorphism

d± : ·Hn¡1 V n f0g; OCn ·Hn¡1 V n f0g; OCn ; d± [g] [± ¢ g]:

Proposition 3 1 Let mCn;0 be the maximal ideal of OCn;0 and let ± 2
mCn;0DerC OCn

± x1; ¢ ¢ ¢ ;xn 0
B@

a1;1 ¢ ¢ ¢ a1;n

an;1 ¢ ¢ ¢ an;n
1
CA

0
B
@

@ @x1

@ @xn
1
CA

+ ±¸1

with the ai;j 2 C and ±¸1 2 m2
Cn;0DerC OCn If d± is injective then the eigen-

values of A do not satisfy any relation with positive integer coe±cients in this
case we will say that ± satis¯es condition I

Proof By a coordinate change we can make A lower triangular Its eigenvalues

a1; ¢ ¢ ¢ ; an are then the elements of the diagonal The group ·Hn¡1 V n f0g; OCn
is isomorphic to the space of Laurent series convergent for all x x1; ¢ ¢ ¢ ; xn
with x 6 0 whose non-zero coe±cients are those with strictly negative indices in
all variables i e

Xi1;¢¢¢ ;in<0

ai1;¢¢¢ ;inxi1
1 ¢ ¢ ¢ xin

n :

For p ¸ n we set

Gp 8>>>
<
>>>:

X
i1; ¢ ¢ ¢ ; in < 0

i1 + ¢ ¢ ¢ + in ¡p

cixi1
1 ¢ ¢ ¢ xin

n
9>>>

>>>;
;

F p 8>>>
<
>>>:

X
i1; ¢ ¢ ¢ ; in < 0

i1 + ¢ ¢ ¢ + in ¸ ¡p

cixi1
1 ¢ ¢ ¢ xin

n
9>>>

>>>;
:

Then F p Gp
©Gp¡1

© ¢ ¢ ¢ ©Gn Each Gp is a ¯nite-dimensional C-vector space

whose dimension we denote by rp and d± restricts to morphisms of vector spaces

d± jF p : F p F p

and
d± jGp : Gp F p:
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Let us denote by dp
±;p the component of this second restriction lying in Gp Then

dp
±;p depends only on the weight 0 part ±0 of ± We claim that with respect to a

suitable ordered basis of Gp its matrix [dp
±;p] is lower triangular

As basis for Gp we take the monomials
1

xi1
1 ¢ ¢ ¢ xinn

with i1 + ¢ ¢ ¢ + in p
We have

d± x¡i1
1 ¢ ¢ ¢ x¡in

n ¡Xj;k
ik aj;k x¡i1

1 ¢ ¢ ¢ x¡ ik¡1
k ¢ ¢ ¢ x¡ ij+1

j ¢ ¢ ¢ x¡in
n : 1

Thus if we give our basis of Gp the lexicographic order corresponding to the order
of the coordinates x1; ¢ ¢ ¢ ; xn then since aj;k 0 if j < k recall that we have

chosen our coordinates so that A is lower triangular the matrix [dp
±;p] is lower

triangular
Let q · p Then d± Gq

½ Gq + Gq¡1 + ¢ ¢ ¢ + Gn Thus it follows from the

above that if we give F p the ordered basis consisting of the ordered bases for each
Gq; n · q · p that we have chosen and order these by descending value of q then
the matrix of d± jF p is also lower triangular

What are its diagonal elements In the right-hand side of equation 1 the

coe±cient of x¡i1
1 ¢ ¢ ¢ x¡inn is equal to

i1a1;1 + ¢ ¢ ¢ + inan;n;

this is the diagonal element in the matrix of d± jFp in the row and column cor-
responding to the basis element x¡i1

1 ¢ ¢ ¢ x¡inn Note that the diagonal elements

of A are its eigenvalues; thus the diagonal elements in the matrix of d± jFp with
respect to the chosen basis are all linear combinations i1¸1 + ¢ ¢ ¢ + in¸n of the

eigenvalues ¸1; ¢ ¢ ¢ ; ¸n of A with the ij positive integers and i1 + ¢ ¢ ¢ + in · p
As this matrix is lower triangular d± jF p is injective only if the product of these

diagonal elements is non-zero ¤

Remark 3 2 We have used in the proof of this lemma the fact that if d± is
injective then so is its restriction to each F p We do not know if the opposite

implication holds It seems likely that an argument involving faithful °atness

would prove it However we do not need it in what follows

Let D be a plane curve We suppose as above that 0 is the singular point of
D In this case the upper non-zero row in the E2 page of the spectral sequence 0 ~Ebegins

d1 : ·H1 C2
n f0g; OC2 ©2

1·H1 C2
n f0g; OC2 :
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Theorem 3 3 Let D be a plane curve singular at 0 If d1 is injective then there
is a local equation h for D around 0 and a germ of vector ¯eld Â at 0 such that
Â ¢ h h:

Proof Any reduced plane curve whose equation has non-zero quadratic part is
quasihomogeneous by the classi¯cation of singularities of functions of two vari-
ables: such a curve is equivalent to Ak x2 + yk+1 0 for some k For a quasi-
homogeneous curve the conclusion of the theorem of course holds Thus we may
assume that the equation h of D lies in m3

C2;0 As the determinant of the coe±-
cients of a free basis of Der log D is a local de¯ning equation for D [11] we may
therefore choose a free basis ±; ° for Der log D such that ° has zero linear part
In fact the supposition that d1 is injective implies that at least one member of the

basis has non-zero linear part as otherwise d1 [1 xy] [± ¢
1 xy]; [° ¢

1 xy] 0

We may thus take

± ±0 + ±1 + ±2 + ¢ ¢ ¢ Xk¸0 Xi+j k+1
³®ijxiyj @

@x
+ ¯ijxiyj @

@y´
where ±0 xA@x

t; with A 6 0 and in Jordan normal form i e

A µ ¸1 0
0 ¸2

¶ or A µ ¸1 0
1 ¸1

¶ :

Let h be the reduced equation of D:

h hn + hn+1 + hn+2 + ¢ ¢ ¢ Xk¸n
hk Xk¸n Xi+j k

aijxiyj ;

where the polynomials hi are homogeneous of degree i
Let us now suppose that ± is not an Euler vector ¯eld for h we will see that

up to multiplication by a non-zero constant the only possibility for h and ± is

h1 ¢ ¢ ¢ hn¡1 0; hn xayb and ±0 qx
@

@x ¡ py
@

@y
:

First case: hn Pi+j n aijxiyj and ±0 ¸1x @

@x + ¸2y @

@y Then

0 ±0 hn Xi+j n
i¸1 + j¸2 aijxiyj:

So aij 0 if i¸1+j¸2 6 0; thus since by assumption hn 6 0 we have q¸1 ¡p¸2
and p + q n p; q 2 N In this case

hn xpyq ; ±0 qx
@

@x ¡ py
@

@y
:

Second case: hn Pi+j n aijxiyj and ±0 ¸1x + y @

@x + ¸1y @

@y Then

0 ±0 hn n¸1an0xn + Xi+j n;j¸1

n¸1aij + iai+1;j¡1 xiyj :
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So if ¸1 6 0 then we must have an0 0 then an¡1;1 0; ¢ ¢ ¢ ; a1;n¡1 0; a0n 0
so that hn 0 This is absurd by hypothesis

If ¸1 0 then d1 is not injective because

d1 [1 xy] d± [1 xy] ; d° [1 xy] 0; 0 :

Then we have

h xpyq + hn+1 + hn+2 + ¢ ¢ ¢ ; ±0 qx
@

@x ¡ py
@

@y
:

We will prove that in this case after a coordinate change h can be reduced to
h xpyq with p + q n ¸ 3 This contradicts our supposition that h is reduced
Then our initial supposition about ± is false and ± is an Euler vector ¯eld for h

Inductively for all k ¸ 0 we construct coordinates x k ; y k and functions

h k such that
h x; y h k x k ; y k xp

k yq

k + Xs¸n+k
h k

s x k ; y k ´ xp
k yq

k mn+k
C2;0 ;

where h k
i is homogeneous of degree i Then by Artin approximation [1 Theorem

1 2] there exist coordinates z1; z2 solving the equation

h x; y ¡ zp
1 zq

2 0:

Let us construct the x k ; y k h k We suppose that we have x k ; y k and h k
2

Cfx k ; y k g such that

h x; y h k x k ; y k xp
k yq

k + Xs¸n+k
h k

s ;

± k
0 qx k

@

@x k ¡ py k
@

@y k
:

We de¯ne x k+1 ; y k+1 and h k+1
2 Cfx k+1 ; y k+1 g; such that

h x; y h k+1 x k+1 ; y k+1 xp
k+1 yq

k+1 + Xs¸n+k+1

h k+1
s ;

± k+1
0 qx k+1

@

@x k+1 ¡ py k+1
@

@y k+1
:

Let h k
n+k Pi+j n+k a k

i;j xi
k yjk ; then

± k
0 hn+k Xi+j n+k

iq ¡ jp a k
i;j xi

k yjk :

As the part of h k of degree less than n + k is xp
k yq

k it follows that the part of

degree n + k of ± k h k
2 mC2;0h k belongs to xp

k yq
k :

[± k h k ]n+k ± k
0 h k

n+k + ± k
k xp

k yq
k 2 xp

k yq

k ;
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but
± k
k xp

k yq
k 2 xp¡1

k yq
k ; xp

k yq¡1
k ;

then
± k

0 h k
n+k 2 xp¡1

k yq

k ; xp
k yq¡1

k ;

so

iq ¡ jp a k
i;j 0 i + j n + k if i < p ¡ 1 or j < q ¡ 1;

but if iq ¡ jp 0 then i; j n+k
n p; q and i > p j > q So h k

n+k 2
xp¡1

k yq
k ; xp

k yq¡1
k :

h k
n+k xp¡1

k yq
k fk+1 x k ; y k + xp

k yq¡1
k gk+1 x k ; y k :

Let

x k+1 x k +
1

pfk+1 x k ; y k y k+1 y k +
1

q
gk+1 x k ; y k :

We have

h x; y xp
k+1 yq

k+1 + Xr¸k+1 Xi+j n+r
a k+1
i;j xi

k+1 yjk+1 :

We de¯ne h k+1 by the equation h x; y h k+1 x k+1 ; y k+1 where

h k+1 xp
k+1 yq

k+1 + Xs¸n+k+1

h k+1
s ;

with h k+1
s Pi+j s a k+1

i;j xi
k+1 yjk+1 homegeneous polynomials of degree s ¸n + k + 1 Moreover as

x k+1 x k ; y k+1 y k mod m2
C2;0 ;

we have ±
Pq¸0 ± k+1

q ; where each ± k+1
q is homogeneous of degree q and

± k+1
0 qx k+1

@

@x k+1 ¡ py k+1
@

@y k+1
: ¤

Proposition 3 4 Let D a plane curve singular at 0 If there exists ± 2 Der log D
satisfying condition I then there exists a unit ® such that ®± ¢ h h; and so D
is Euler homogeneous

Proof The proof is similar to the proof of Theorem 3 3 There we consider the

case where hn xpyq and ±0 qx@ @x ¡ py@ @y with p; q 2 N Condition
I forces one of p and q to be 0 The proof now proceeds as before with this

additional hypothesis
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Theorem 3 5 Let D; 0 ½ C2; 0 be a plane curve The following conditions

are equivalent:
a There exists ± 2 Der log D 0

such that d± is injective

b There exists ± 2 Der log D 0
satisfying condition I

c d1 is injective

d D; 0 is Euler homogeneous

e D; 0 is quasi-homogeneous

f The logarithmic comparison theorem holds for D; 0 on a neighbourhood of 0

Proof By Theorem 3 3 if d1 is injective then D; 0 is Euler homogeneous By
Saito's theorem [10] for a function h with isolated singularity h 2 Jh is equivalent
to the quasihomogeneity of h to be Euler homogeneous or quasi-homogeneous is
the same Theorem 1 1 proves that if D; 0 is quasi-homogeneous the logarithmic
comparison theorem holds for D; 0 on a neighborough of 0 From the results of
section 2 we can easily deduce that logarithmic comparison theorem implies the

injectivity of d1 Then the last four conditions are equivalent If Â w1
@

@x +w2
@

@y
is the Euler vector ¯eld then dÂ is injective Proposition 3 1 shows that if d± is
injective then ± satis¯es I and ¯nally by proposition 3 4 ± 2 Der log D implies

that D is Euler homogeneous

4 Example

In this section we give an example of a free divisor D ½ C3 which is Euler homo-
geneous but not locally quasi-homogeneous and for which the logarithmic com-
parison theorem does hold This example is studied in [4] where the perversity
of ² log D is proved We remark that D is the total space of an equisingu-
lar one-parameter deformation of a plane curve singularity In [7] Damon shows

that under mild additional hypotheses all surfaces obtained in this way are free

divisors

D is de¯ned by the equation

h x; y; z xy x + y z ¡ ¸ x + y h1h2h3h4; ¸ 2 C n f0; 1g:

Der log D has free basis f±1; ±2; ±3g

±1 x @

@x + y @

@y
±2 + z ¡ ¸ x + y @

@z
±3 x2 @

@x ¡ y2 @

@y ¡ z ¡ ¸ x + y @

@z :

Note that ±1 ¢ h 4h so that h is Euler homogeneous Note also that it is easy to
check that each of these vector ¯elds is logarithmic and that the determinant of
their coe±cients is a reduced equation for D From this it follows by a theorem
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of K Saito [11] that they really do form a basis for Der log D ; as no linear
combination of them has non-singular linear part it follows that D cannot be

quasihomogeneous

This example of free divisor is interesting also as it provides a counterexample
to the \logarithmic Sard's theorem": every point of C z-axis is a logarithmic
critical value with respect to the projection x; y; z

7

z
The basis of 1 log D dual to f±1; ±2; ±3g is

1
y2 dx + x2 dy

xy x + y

2
y z ¡ ¸ dx¡ x z ¡ ¸ dy + xy dz

xy x z ¡ ¸ + y

3
y dx¡ x dy

xy x + y
:

We have to calculate homology groups of the stalk at 0 of the logarithmic de Rham
complex

0 0 log D d
0 1 log D d

1 2 log D d
2 3 log D d

3 0:

Although D is not weighted homogeneous in the strict sense it is homogeneous if
we assign weights 1; 1; 0 to the variables x; y; z The Lie derivative with respect to
the vector ¯eld ±1

L±1 ¶±1 d + d ¶±1 ;

then de¯nes a contracting homotopy from ² log D to its weight-zero part
²0 log D For if 2 k log D is a sum of homogenenous parts i and if d 0

then d i 0 for all i Since L±1 i i i each i for i 6 0 is then exact and
is cohomologous to ¡ ¶±1 Pi6 0

1 i i
Thus we consider only the weight 0 subcomplex

0 0
0

log D
d0

0 1
0

log D
d0

1 2
0

log D
d0

2 3
0

log D
d0

3 0:

² We have 0
0

log D Cfzg and d0 zk kzk¡1[ z ¡ ¸ x + y 2¡z ¡ ¸ x + y 3] k ¸ 0 so

Im d0
0

Cfzgdz Cfzg h z ¡ ¸ x + y 2 ¡ z ¡ ¸ x + y 3i :

² 1
0

log D Cfzg h 1; x 2; y 2; x 3; y 3i ; and we ¯nd

d1 1 d1 x 2 d1 x 3 d1 y 3 0

d1 zk
1 kzk¡1 x ¸¡ z ¡ y 1 ^ 2 + z ¡ ¸ x + y 1 ^ 3

d1 y 2 xy + y2
2 ^ 3

d1 zkx 2 kzk¡1 z ¡ ¸ x + y x 2 ^ 3

d1 zky 2 k + 1 zk ¡ k¸zk¡1 x + y y 2 ^ 3

d1 zkx 3 kzk¡1x x z ¡ ¸ + y 2 ^ 3

d1 zky 3 kzk¡1y x z ¡ ¸ + y 2 ^ 3:
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It follows that Ker d0
1

C h 1; x 2; x 3; y 3i © Im d0
0

so

h1 ² log D 0 C h 1; x 2; x 3; y 3i
is 4-dimensional Also we have

Im d0
1

Cfzg h ¸¡ z x¡ y 1 ^ 2 + z ¡ ¸ x + y 1 ^ 3 i©
Cfzg x

2; xy; y2
® 2 ^ 3:

² 2
0

log D is generated over Cfzg by

x 1 ^ 2; y 1 ^ 2; x 3 ^ 1; y 3 ^ 1; x2
2 ^ 3; xy 2 ^ 3; y2

2 ^ 3:

We ¯nd

d2 x 1 ^ 2 d2x 1 ^ 3 d2y 1 ^ 3 0

d2zkx22̂ 3 d2 zkxy 2 ^ 3 d2 zky2
2 ^ 3 0:

d2 zkx 1 ^ 2 kzk¡1 ¸¡ z x + y x 1 ^ 2 ^ 3

d2 y 1 ^ 2 xy + y2
1 ^ 2 ^ 3

d2 zky 1 ^ 2 zk¡1 x + y ky ¸¡ z ¡ zy 1 ^ 2 ^ 3

d2 zkx 1 ^ 3 ¡kzk¡1x z ¡ ¸ x + y 1 ^ 2 ^ 3

d2 zky 1 ^ 3 ¡kzk¡1y z ¡ ¸ x + y 1 ^ 2 ^ 3:

We deduce that Ker d0
2

C hx 1 ^ 2; x 1 ^ 3; y 1 ^ 3i© Im d0
1

and thus

that
h2 ² log D 0 C hx 1 ^ 2; x 1 ^ 3; y 1 ^ 3i

is 3-dimensional

² Finally
Im d0

2
Cfzg x

2; xy; y2
® 1 ^ 2 ^ 3 3

0
log D ;

and consequently
h3 ² log D 0 0:

Now consider the intersection D0 D \ fz 0g which has equation

h0 h0
1
h0

2
h0

3
h0

4
xy x + y ¡¸x + y :

It is a line arrangement and the cohomology of its complement is therefore given by
the Brieskorn complex the exterior algebra generated over C by the forms dh0

i
h0
iwith trivial di®erential [2] This is of course a subcomplex of ² log D0 Let

V ½ C3 be a neighbourhood of 0 Restriction from C3 to C2 fz 0g gives rise

to a commutative diagram

^
p

P1·i·4
C ¿

dhi
hi

À a¡ hp ² log D V
b

¡ Hp V n D; C

# # #»

^
p

P1·i·4
C ¿

dh0
ih0
i

À »¡ hp ² log D0 V0
»¡ Hp V0 n D0; C :
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in which the left-hand horizontal morphisms are induced by the inclusion of
the Brieskorn complex in the logarithmic complex and the right-hand horizon-
tal morphisms are de Rham maps The lower horizontal morphisms are iso-
morphisms by the theorem of Brieskorn and by 1 1 The right-hand vertical
morphism is an isomorphism because D is a topologically trivial deformation of
D0 so inclusion induces an isomorphism of the homology groups of the comple-
ments The left-hand vertical morphism is evidently surjective and thus the de

Rham map hp ² log D V Hp V n D; C is surjective As hp ² log D 0

limU30 hp ² log D V and limU30 Hp V n D; C Hp C3
n D; C then the de

Rham map hp ² log D Hp C3
n D; C is surjective To see that it is an iso-

morphism we compare dimensions A calculation for example using the Brieskorn
complex gives

dimC H1 C2
n D0; C 4

dimC H2 C2
n D0; C 3

dimC H3 C2
n D0; C 0:

As these are the same as the dimension of hp ² log D 0 this completes the proof
that the logarithmic comparison theorem holds for D ¤

Remark 4 1 The calculations whose results we summarise here are not so simple
as might be supposed We have presented each image d0

i i
0 log D as a module

over Cfzg with algebraic generators obscuring the fact that because D is not
quasihomogeneous the anti-derivatives of an algebraic exact logarithmic form are

in general transcendental For example

zk x2 + xy 1 ^ 2 ^ 3 dµ 1

Xs 1

zk+s ¸s k + s x 1 ^ 2¶

dµ¡ µ log³1 ¡
z

¸´ +
k

Xs 1

zs ¸ss ¶¸kx 1 2¶

and

zkxy 1 ^ 2 ^ 3 dµ 1

Xs 1

zk+s ¸ + 1 s k + s x 1 ^ 2 + 1 ^ 3 ¶

dµ¡ µ ¸ + 1 k log 1 ¡ z ¸ + 1

+
k

Xs 1

zs ¸ + 1 k¡ss ¶x 1 ^ 2 + 1 ^ 3 ¶:
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