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V(ra, a, b) {(A, B) e Mn(K) x Mn(K) \ AB BA Aa Bh 0}.

Mathematics Subject Classification (2000). 14M99, 16G10.

Keywords. Nilpotent matrix, irreducible component, Gelfand—Ponomarev algebra, string module,

band module.

1. Introduction and main results

Let Mn(K) be the set of n x n-matnces with entries in an algebraically closed

field K. The study of affine varieties given by matrices or pairs of matrices,
which satisfy certain relations, is a classical subject. One fundamental question
is the decomposition of these varieties into irreducible components. Consider the
varieties

N(n, 1) {M e Mn(K) | Ml 0}

and

Z(n) {(A, B) e Mn(K) x Mn(K) \AB BA 0}.

The variety N(n, /) is irreducible by [Ge] and [H], and the irreducible components
of Z(n) are

{(A, B) e Z(n) | ik(A) <n-i, rk(B) < 1}

for 0 < i < n. For n, a, b > 2 define

V(n, a, 6) {(A, B) e Mn(K) x Mn(K) \ AB BA Aa Bb 0}

(N(n,a) xN(n,6))nZ(n).

Our main result is the classification of irreducible components of V(n, a, 6). This
question appears for a b n as an open problem in [K, Problem 3, p. 208]. In
this special case, we get the following surprising result:
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Theorem 1.1. The irreducible components of \{n,n,n) are

{(A, B) G V(n, n, n) | rk(A) <n-i, rk(B) < %}

for 1 < i < n — 1. Each component has dimension n2 — n -\- 1.

Thus each irreducible component of V(n, n, n) is the intersection of an
irreducible component of Z(n) with N(n, n) x N(n, n). The case a 6 2 and n
arbitrary was studied in [M].

A partition of n is a sequence p (pi, • • • ,Pt) °f positive integers such that
Sî=i-Pî n an(i ft ^ -Pî+i f°r aU *'• Let /(p) t be the length of p. The set of
partitions p of n with Pi < a for all « is denoted by V(n, a).

By < we denote the usual dominance order on V(n,a), see Section 5 for a

définition.
The conjugacy classes of matrices in N(n, a) are parametrized by V{n,a).

Namely, for a matrix M G N(n, a), let J(M) be its Jordan normal form, and
set p(M) (pi, • • • ,pt) where the pj are the sizes of the Jordan blocks of J(M),
ordered decreasingly. Clearly, we have p(M) G V(n, a). For p G V(n, a) let

{MGN(n,a)|p(M)=p}
be the corresponding conjugacy class in N(n, a).

There are two projection maps

V(n, a, b)

N(n,a) N(n,6)

where tti(A, ß) A and tt2(A, B) B. For a G P(n, a) let

A(a)=7r1-1(C(a)).

In general, A(a) is not irreducible. Only if a b n, these sets have nice

properties:

Theorem 1.2. For each a G V{n,n) the set A(a) C V(n,n,n) is locally closed

and irreducible. We have

A(l,--- ,1) c A(2,1,--- ,1),

and tf a ^ (1, • • ¦ 1), then
A(a) c A(b)

if and only if a < b and /(a) /(b).

For the study of the general case, define the standard stratification of V(n, a, b)

as follows: Let
P(n, a, 6) P(n, a) x P(n, 6).
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For (a, b) G V(n, a, b) let

be the corresponding stratum of the standard stratification. Unfortunately, these

strata are in general not very well-behaved:

• A stratum might be empty;
• Strata are not necessarily irreducible;
• The closure of a stratum is in general not a union of strata.

However, the socalled 'regular strata' have nice properties. Observe that for
(A,B) G V(n, a, b) the inequality

rk(A) + rk(B) < n

holds. This follows already from the condition AB 0. We call [A, B) regular if
rk(A)+rk(B) n. An irreducible component of V(n, a, b) is regular if it contains a

regular element, and we call (a, b) G V(n, a, b) and also its corresponding stratum
A(a, b) regular if A(a, b) contains a regular element.

For a partition p (pi, • • • ,pt) ^ (1, • • • ,1) define

p- 1 (pi -I,--- ,pr -1)
where r max{l < i < t \ pi > 2}. For example,

(3,2,2,1) - 1 (2,1,1).

The following result determines which strata are regular.

Proposition 1.3. For (a, b) G P(n, a, 6) the following are equivalent:

(1) (a, b) is regular;
(2) /(a) + l(b) n and /(a - 1) l(b - 1).

In this case, all elements in A(a, b) are regular.

If p is a partition, then let

«Gp|

be the number of entries of p which are equal to {. The next theorem yields a

classification of all regular irreducible components.

Theorem 1.4. //(a, b) G V(n,a,b) is regular, then A(a, b) is locally closed and
irreducible. In this case, the closure of A(a, b) is an irreducible component of
V(n, a, 6) if and only if the following hold:

(1) a has at most one entry different from 1,2 and a;
(2) b has at most one entry different from 1, 2 and b;
(3) /(a-1) < |aea| + |6eb| + l.

Next, we determine when all irreducible components of V(n, a, 6) are regular.
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Proposition 1.5. The set of regular elements is dense in V(n, a, b) if and only if
n < a -\- b — 2 or n a -\-b.

The classification of the non-regular irreducible components of V(n, a, b) is more
complicated and needs more notation. We state and prove the result in Section 8.

The paper is organized as follows: In Section 2 we repeat some basics on
varieties of modules. In particular, we recall Richmond's construction of a
stratification of these varieties, which we will use throughout. We regard V(n, a, b) as a

variety of modules over a Gelfand-Ponomarev algebra, and we use module theory
to classify the irreducible components of V(n, a, b). Section 3 is a collection of
mostly known results on Gelfand-Ponomarev algebras. Richmond's stratification
turns out to be finite for V(n, a, b). This is studied in Section 4. In Section 5 we

prove that all regular strata are irreducible. This is used in Section 6 to prove
Theorem 1.1. The classification of all regular components of V(n, a, 6) can be found
in Section 7. Theorem 1.2 is proved at the end of Section 7. The main result of
Section 8 is the classification of all non-regular components of V(n, a, 6). Finally,
some examples are given in Section 9.

Acknowledgements. The author received a Postdoctoral Fellowship from the
DAAD, Germany, for a stay at the UNAM in Mexico City, where most of this
work was done. He thanks Christof Geiß and Lutz Hille for helpful and interesting
discussions.

2. Varieties of modules

Let A be a finitely generated if-algebra. Fix a set a\, •• • ajy of generators of A.
By mod(A,n) we denote the affine variety of A-module structures on Kn. Each
such A-module structure corresponds to a if-algebra homomorphism A —> Mn(K),
or equivalently to a tuple (Mi, ¦ ¦ ¦ Mpj) of n x n-matrices such that the Mi satisfy
the same relations as the at. The group GLn(K) acts by simultaneous conjugation
on mod(A,n), and the orbits of this action are in 1-1 correspondence with the
isomorphism classes of n-dimensional A-modules. An orbit O(X) of a module
X has dimension n2 — dim End^^Q- If O(X) is contained in the closure of an
orbit O(Y), then we write Y <deg X. It is well known that Y <deg X implies
dim ~Homa{Y,M) < dim }\ovha{X,M) for all modules M, see for example [Bo].
If

0 —>X —>Y —> Z —>0

is a short exact sequence, then Y <deg X © Z. If there exists a module Z and a

short exact sequence

0 —>X —>Y ®Z —> Z —> 0,
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then it is proved in [Rie] that Y <deg X. The converse is also true by [Z]. Short
exact sequences of this form are called Riedtmann sequences. We call a module X
a minimal degeneration if there exists no module Y with Y <deg X.

Now, let A be a finite-dimensional if-algebra, and let TA{n) be a set of
representatives of isomorphism classes of submodules of An which have dimension
n(d — 1) where d dim (A). The modules in TA{n) are called the index modules

of A. For each L G Ia("-) let S(L) be the set of points X G mod(A, n) such that
there exists a short exact sequence

0 —>L —> An —>X —> 0

of A-modules. Such a set S(L) is called a stratum. Note that mod(A,n) is the
disjoint union of the S(L) where L runs through XA(n). The following theorem
can be found in [R].

Theorem 2.1 (Richmond). Lei A be a finite-dimensional K-algebra. Then the

following hold:

(1) For each L G IA{n) i/ie stratum S(L) is smooth, locally closed, irreducible
and has dimension

dim HomA(L, A") - dim EndA(L);

(2) Let L,Me 1A{ri). If S{L) is contained in the closure of S(M), then
M <deg L;

(3) Let L,Me TA{v). If M <deg L and

dimHomj4(L, A) dim RomA(M,A),

then S(L) is contained in the closure of S(M).

Unfortunately, the converse of the second part of this theorem is usually wrong.
So it remains a difficult problem to decide when a stratum is contained in the
closure of another stratum. Another problem is, that the set Ia("0 is often infinité.
Following [R] an algebra A is called subfinite if Ia("0 is finite for all n.

3. Gelfand—Ponomarev algebras

We identify V(n, a, b) with the variety of n-dimensional modules over the algebra

We call A a Gelfand—Ponomarev algebra.
The group GLn(K) acts on V(n, a, 6) mod(A,n) by simultaneous conjugation,

i.e.

g-(A,B) (gAg-1,gBg-1).
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The orbits of this action are in 1-1 correspondence with the isomorphism classes

of n-dimensional A-modules. By O(M) we denote the orbit of an element M G

V(n,a,b).
In the following we repeat Gelfand and Ponomarev's classification of

indecomposable A-modules (by a 'module' we always mean a finite-dimensional right
module). As a main reference we use [GP], but see also [BR].

A string of length n > 1 is a word c\ ¦ ¦ ¦ cn with letters q g {x, y} such that
no subword is of the form xa or yb. Additionally, we define a string 1 of length 0.

Set x° y° 1.

The length of an arbitrary string C is denoted by \C\. Let C c\ ¦ ¦ ¦ cn and
D d\ ¦ ¦ ¦ dm be strings of length at least one. If CD c\ ¦ ¦ ¦ cnd\ ¦ ¦ ¦ dm is a

string, then we say that the concatenation of C and D is defined. For an arbitrary
string C let IC Cl C.

For each string C we construct a string module M(C) over A as follows: First,
assume that n \C\ > 1. Fix a basis {z\, • • • zn+i} of M(C). Given an arrow
a G {x, y} let

{zl+i
if a ct y and 1 < i < n,

Zi-i if a Cj_i x and 2 < i < n + 1,

0 otherwise.

For C 1 let S M(C) be the one-dimensional module with basis {z\\ such

that z\ ¦ x z\ ¦ y 0. This is the unique simple A-module. The z-% are called the
canonical basis vectors of M(C).

For example, let C xxyxy. Then the string module M(C) looks as in Figure
1, where z\, ¦ ¦ ¦ ,zq are the canonical basis vectors of M(C), and the arrows indicate
how the generators x and y of A operate on these basis vectors. Set (A, B)

Z4 Zß

FlG. 1. The string module M (xxyxy)

M(xxyxy). We have

(A, B) G ^\C(3, 2,1)) n ^\C(2, 2,1,1)) A((3, 2,1), (2,2,1,1)).

A string C c\ ¦ ¦ ¦ cn of length at least one is called a band if all powers Cm are
defined. Next, we associate to a given band B b\ ¦ ¦ ¦ bm and some n > 1 a family

i,--- ,An) | \t£K*,l<i<n}
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of band modules. Fix a basis \_z\j, • • • zmj | 1 < j < n} of M(B, Ai, • • • An). For

a G {x, y} define

z2j if a 61 y,

AjZmj + zmj-i if a bm x and 2 < j < n,

\\zm\ if a. bm x and j 1,

0 otherwise,

• a <

and let

0

if « &m-l X,

x3-\ if a bm=y and 2 < j < n,

if a 6m y and j 1,

otherwise.

For 2 < « < m — 1 and 1 < j < n we define

{Zj+ij
if « h V,

Zj_ij if a 6j_i x,
0 otherwise.

The Zjj are called the canonical basis vectors of M(B, Ai, • • • An).
For example, let ß xxyxy. Then the band module M{B, Ai, A2) looks as in

Figure 2. The arrows in Figure 2 indicate how the generators x and y of A operate

FIG. 2. The band module M(xxyxy, Ai, A2)

on the canonical basis vectors of M(ß,Ai,A2). For example, Z51 • y Ai^n,
Z52 ¦ y Mz\2 + zu, Z32 ¦ y Z42 etc.

The next lemma is proved by straightforward base change calculations.

Lemma 3.1. Let M(B, Ai, • • • An) be a band module. If A; =^ A;_|_i /or some I,
then M(B, Ai, • • • An) «s isomorphic to

-- ,An).
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If Aj Xj for all i and j, then define M{B, A, n) M{B, X\, • • • An), compare
[BR].

A band B is called periodic if there exists some string C such that B Cm
for some m > 2. A band is called •primitive if it is not periodic. For primitive
bands B\ and Bi define B\ ~ Bi if B\ BB' and Bi B'B for some strings
B and B'. Let S be the set of strings, and let B be a set of representatives of
equivalence classes of primitive bands with respect to the equivalence relation ~.
The following theorem is proved in [GP].

Theorem 3.2 (Gelfand-Ponomarev). TTie modules M(C) and M{B,X,n) with
C G «S, B G B, A G K* and n > 1 is a complete set of representatives of isomorphism

classes of indecomposable A-modules.

The next lemma follows from the construction of string and band modules and
from Theorem 3.2.

Lemma 3.3. // (A, B) G V(n, a, b), then

where s is the number of string modules in a decomposition of (A, B) into a direct
sum of indecomposable modules.

Corollary 3.4. An element in V(n, a, b) is regular if and only if it is isomorphic
to a direct sum of band modules.

Let B\1 ¦ ¦ ¦ Bm be bands. For positive integers p\, ¦ ¦ ¦ ,pm set

FP {(A!, • • • Ap) G KP I A, ^ A,-^ 0 for all i ± j}.
Define a morphism of varieties

GLn(K) x Fp —>V(n,a,b)

{g, (An,--- ,APli,--- ,Aim, ••• ,\pmm)) ^ g j, Ay, • • • ,\P3j)

The image of this morphism is denoted by

T F((Bupi), • • • (Bm,pm)).
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We say that T is a p-parametric family. In case pi 1 for some {, we write also

just Bi instead of (Bl,pl). It follows from [Kr] that dimO(y) is constant for all y
in a given family T. The following lemma is straightforward.

Lemma 3.5. Any p-parametric family T is constructible, irreducible and has

dimension p + dim O(y) where y is any point in T.

Lemma 3.6. Each direct sum of band modules is contained in the closure of some

family J-.

Proof. A band module M(B, A, n) is obviously contained in the closure of the set

of all band modules M(B, Ai, • • • An) where the Aj are pairwise different. D

For a string C define

V(C) {(D, E,F)\D,E,F eS and DEF C}.

We call (D, E, F) G V(C) a factor string of C if the following hold:

(1) Either D 1 or D d\ ¦ ¦ ¦ dn where dn x;
(2) Either F 1 or F /i • • • fm where /i y.

Dually, we call (D, E, F) a substring of C if the following hold:

(1) Either D 1 or D d\ ¦ ¦ ¦ dn where dn y;
(2) Either F 1 or F fx ¦ ¦ ¦ fm where fx x.

Let fac(C) be the set of factor strings of C, and by sub(C) we denote the set of
substrings of C. For strings C\ and Ci let

A(CUC2) {((Di, EuFi), (D2, E2, F2)) G fac(C1) x sub(C2) | Ex E2}.

For example, if C\ xxy and Ci xyxx, then

A(CUC2) {((xx, 1, y), (1, 1, xyxx)), {{xx, 1, y), {xy, 1, xx)),
((1, xx, y), (xy, xx, 1)), ((x, x, y), (xy, x, x)), ((x, xy, 1), (1, xy, xx))}.

For each a ((D\, E\,F\), (D2, E2,F2)) G A(C\, C2) we define a homomorphism

fa : M(C\) -^ M(C2)

as follows: Define

fa(z\D1\+i) z\D2\+i

for 1 < i < \E\\ + 1, and all other canonical basis vectors of M(C\) are mapped
to 0. Such homomorphisms are called graph maps. The following theorem is a

special case of the main result in [CB].

Theorem 3.7 (Crawley-Boevey). The graph maps {fa \ a G A(Ci,C2)} form a

K-basis of the homomorphism space HoniA(M(CÎ), M(C2)).
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There is the following multiplicative behaviour of graph maps: Let fa : M{C\)
—> M(C*2) and /& : M(C*2) —> M(Cs) be graph maps. Then the composition
fah ¦ M(G\) —> M(C3) is either 0 or a graph map.

4. Index modules of Gelfand—Ponomarev algebras

A module M is called biserial if it is isomorphic to

m

M(xV)

where 0 < i < a — 1 and 0 < j < b — 1. For example, A regarded as a module
over itself is isomorphic to the biserial module M(xa~1yb~1). Note also that any
projective A-module is isomorphic to A™ for some n > 1.

Lemma 4.1. Gelfand-Ponomarev algebras are subfinite, and all their index modules

are biserial.

Proof. Any Gelfand-Ponomarev algebra A is a monomial algebra. Thus by [ZH,
Lemma 3], if U is a submodule of a projective A-module, then

(U-x)D(U-y) 0.

It follows from the description of indecomposable A-modules that the biserial modules

are the only A-modules which have this property. D

A case by case analysis shows the following:

Lemma 4.2. A biserial A-module

isomorphic to a submodule of A™ «/ and ora/y «/ i/ie following hold:

mxi 7^ 0 ^=> « < a — 2,

myj- ^ 0 ==> j <b-2,
m-ib-i 7^ 0 ^=> « a — 1,

TOa-lj 7^ 0 ==> i b ~ 1,
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T/ie dimension of L is

^ ^ y(i + j + 1).

Lemma 4.3. Let L G Ia("-) «^ assume that L is the direct sum of m indecomposable

modules. Let p be the number of indecomposable protective modules among
these direct summands. Then we have

dim Hom(L, A) n(d — 1) + m — p

where d dim(A).

Proof. We have dim Hom(A, A) dim(A) d and so dim Hom(P, A) dim (P)
for any projective module P. Each indecomposable non-projective direct summand
of L is of the form M{xly3) with 0 < i < a — 2 and 0 < j < b - 2. We have

dimM(xV) * +j + 1,

dim Hom(M(xV), A) i + j + 2.

This can be checked directly or by applying [CB]. Since dim(L) n(d — 1), the
result follows. D

Lemma 4.4. IfO<p<t<a— 1 and 0<q<j<b— 1, then

M{xlyq) 0 M(xpyi) <deg M(xly3) ® M(xpyq).

Proof. One can easily construct a short exact sequence

0 —> M{xly:>) —? M{xlyq) 0 M(xpy]) —> M(xpyq) —> 0. D

A degeneration of the same form as in the previous lemma is called a flip
degeneration. (We 'flip' q and j.) An index module L is called flip minimal if it is

isomorphic to a direct sum of the form



Vol. 79 (2004) Pairs of nilpotent matrices annihilating each other 407

such that Ci > cî+i, dt > dt+\, 0 < ct < a — 2 and 0 < ck < b — 2 for all i. It
follows from the previous two lemmas that for any index module L there exists a

chain

L\ <deg L>2 <deg • • • <deg Lt L

of flip degenerations of index modules with L\ being flip minimal and

dim Hom(Li, A) dim Hom(Li, A)

for all {.

Lemma 4.5. // 1 <p <i< a — 2 and 0 < q, j < b — 1, then

M(x*+1yi) 0 M(x*>-y) <deg M(xV) © M(^y").

Proof. One can construct a short exact sequence

0 —> M(xpyq) —> M(xt+1yi) 0 M(xp-1y9) —> M{xlyj) —> 0. D

A degeneration of the same form as in the above lemma is called a box move
degeneration. The modules over K[x]/(xn) correspond to partitions, or equiva-
lently to Young diagrams, and the degenerations of these modules are given by
moving boxes of the Young diagrams. We are in a similar situation here. Note
that Lemma 4.5 has an obvious dual version, exchanging the roles of x and y.

5. Regular strata are irreducible

For a partition p (pi,- ¦ ¦ ,pt) let Y(p) be its corresponding Young diagram,
which has pi boxes in the «th column. For example, the Young diagram Y(3, 2, 2,1)
looks as in Figure 3. For a partition p (pi, • • • ,pt) the dual partition is defined

FIG. 3. The Young diagram Y(3, 2, 2, 1)

as p* (ri, • • • ,rPl), where the Vj are the number of boxes in the rows of the
Young diagram Y(p), ordered decreasingly. For example,

(3,2,2,1)* (4,3,1).

Now let A G N(n, a) with p p(A). Then the boxes of the Young diagram
Y(p) can be considered as a certain basis of Kn, and A can be considered as

an endomorphism of Kn. If 6 is a box such that there is a box b' below 6, then
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A maps b to 5', and b is mapped to 0, otherwise. Figure 4 illustrates this for
p(A) (3,2,2,1), where the arrows indicate how A acts on the boxes. Now let

0 0 0 0

Fig. 4

p* (ri, • • • rm) be the dual partition of p. Then r\ dim Ker(A), r\ + ri
dim Ker(A2) etc.

If p and q are arbitrary partitions, then define p < q if
I

for all /, where we set Pi 0 and qj 0 for all i > /(p) and j > /(q). This partial
order is usually called the dominance order. The proof of the following proposition
can be found in [Ge], see also [H].

Proposition 5.1. For p G V(n,l) we have

dimC(p) =n2-

where p*

and

rt),

C(p) <M GN(n,/) |rk(Afc) =n- Vr3,l < k < t

C(p)= A;

i=1

/ra particular, if p, q G P(n, /), i/iera C(p) Ç C(q) «/ and on/y «/ p < q.

Recall that we defined two maps

V(n,a,b)

N(n, a) N(n,6)
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with tvi(A, B) A and 7T2(A, B) B, and for (a, b) G V(n, a, b) we set

Thus, as a consequence of Proposition 5.1 we get

f k

A(a) I {A, B) G V(n, a, b) | rk(Afc) n -^ m5,1 < A; < r

and

r
fc

A(a, b) j (A, B) G V(n, a, 6) | rk(Afc) n - ^ mi; 1 < k < r,

rk(ß') =n-\^nh\ <l < s

where a* (m-i, • • • mr) and b* (n-i, • • • ns). In particular, A(a) and A(a, b)
are locally closed in V(n, a, 6).

The following lemma is an easy exercise.

Lemma 5.2. If M e N(n, 1), then rk(M) n - l(p(M)).

Proof of Proposition 1.3. Let (A, B) G V(n, a, 6), and set

Assume that (A, ß) is regular, i.e. rk(A) + rk(ß) n. By Lemma 5.2 this is

equivalent to n Z(a) + Z(b). Thus, if A(a, b) contains a regular element, then all
elements in A(a, b) are regular. We know that (A, B) is isomorphic to a direct sum
of band modules. But any band is (up to equivalence) of the form xClydl ¦ ¦ ¦ xCtydt

with Ci, di > 1 for 1 < i < t. This implies that the number of entries which are at
least 2 in a is equal to the number of entries which are at least 2 in b. In other
words, Z(a - 1) Z(b - 1). Conversely, if (a, b) G P(n, a, 6) with Z(a) + Z(b) n,
Z(a — 1) Z(b — 1), a — 1 [c\, ¦ ¦ ¦ ,ct) and b — 1 (d\, • • • dt), then set

(A,B) M(xClydl ¦¦¦xCtyd\X).

Clearly, we have p(A) a, p(B) b, and (A, B) (and therefore also (a, b)) is

regular. This finishes the proof. D

Altogether, we get that for a regular [A, B) G V(n, a, b) the following are
equivalent:

• dim top(A, B) p;

• dim soc(A, B) p;

• dim (Ker(A) D Ker(B)) p;
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• dim(Im(A) nlm(ß)) p;

l(p(A) - 1) p;

Example. Let (A, B) M(xxyxy,X). Then p(A) (3,2) and p(B) (2,2,1).
Thus, l(p(A) - 1) 1(2,1) 2 and l(p(B) - 1) 1(1,1) 2. It is also clear that
M(xxyxy, A) has a 2-dimensional socle and a 2-dimensional top. As an illustration,
see Figure 5.

x y
Z21 -" Z'i\ ?" 2:41

FIG. 5. The band module M(xxyxy, A)

The next lemma follows directly from the construction of projective covers of
indecomposable A-modules. These covers are easy to construct.

Lemma 5.3. Assume that S(L) C ~V(n,a,b) contains a regular element (A,B).
Then L is a direct sum of n indecomposable modules, and exactly n—dim top(A, B)
of these are projective.

A A-module is called a diamond module if it is isomorphic to M(xly3, A) for
some 1 < i < a — 1 and 1 < j < b — 1. Thus the diamond modules are the band
modules with simple top (and therefore also with simple socle). We now associate
to any regular element (a, b) a diamond family T(a., b) which consists of direct
sums of diamond modules.

Let (a, b) G V(n, a, b) be regular. Thus, /(a — 1) /(b — 1) by Proposition 1.3.

Assume that a — 1 (c\, ¦ ¦ ¦ ct) and b — 1 (d\, ¦ ¦ ¦ ,dt). Let

J"(a,b) =T(xClydt,xC2ydt-1,--- ,xCtydl).

Thus every module in T(a., b) is isomorphic to
t

i=\
for some pair wise different Aj. For example, a module in

T((A, 3,2,1),(3, 2, 2,1,1,1))
looks as in Figure 6, where the points are just the basis vectors of the module.
Note that F (a, b) C A(a,b).
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FIG. 6. An element in :F((4, 3, 2, 1), (3, 2, 2, 1, 1,1))

Proposition 5.4. // (a, b) G V(n, a, b) is regular, then T{sl, b) is dense in A(a, b)
and has dimension

r s

2+/(a-I)2

where (a — 1)* (mi, • • • mr) and (b — 1)* (n-i, • • • ns). In particular, A(a, b)
is irreducible.

Proof. Let [A, B) G A(a, b) be regular. Thus [A, B) is in some stratum S{L) with
L a direct sum of n indecomposable modules, and exactly n — /(a — 1) of them are

projective, see Lemma 5.3. By Lemma 4.3 we get

dim Hom(L, A) n(d - 1) + /(a - 1)

where d dim(A). Assume a — 1 [c\, ¦ ¦ ¦ ,ct) and b — 1 [d\, • • • dt). By
Proposition 1.3 each module in A(a, b) is isomorphic to a direct sum of band
modules, and one checks easily that L (E, F) with

p(E) (ei, • • • et) (a - ct - 1, a - ct_i - 1, • • • a - c\ - 1)

and

P(F) (fi, ¦ ¦ ¦ ft) (b - dt - 1, b - dt-! - 1, • • • b - di - 1).

Define
t

L(a, b) An~*

We apply a sequence of flip degenerations to L and get

L(a, b) <deg L

with
dim Hom(L(a,b), A) dim Hom(L, A).

Then Theorem 2.1, (3) yields that the stratum <S(L(a, b)) is dense in A(a, b). By
2.1, (1) we get that A(a, b) is irreducible. Observe that

f(a,b)c5(L(a,b)).
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We have
r s

dimJr(a,b) n2 -^m,2 -^n2+/(a-l)2

where (a — 1)* (mi, • • • mr) and (b — 1)* (n-i, • • • ,ns). This follows from
Lemma 3.5, the dimension formula for orbits and [Kr]. Using the dimension
formula in Theorem 2.1, (1) and applying [CB] we get

dim<S(L(a, b)) dim J-"(a, b).

This implies that T{sl,b) is dense in A(a,b). D

Thus, from the above proposition we get the remarkable result that the diamond
families form a dense subset in the set of all regular elements in V(n, a, b).

6. The nilpotent case

The following is easy to prove.

Lemma 6.1. For u G {x, y} and strings C and D the following hold:

(1) // CuD is a string, then

M{C) 0 M(D) G O{M{CuD))\

(2) If Cu is a hand, then

M{C) eT{Cu) =T{uC).

Lemma 6.2. // 1 < { < a - I, 1 < j < b - 1, and I > 0 such that j +1 + 1 < b - 1,

then

M(xly\ A) 0 M{yl) £ J7(x*yi+l+1).

Proof. There exists a short exact sequence

0 —> M(xly\ A) —? M(y3+lxl) —? M{yl) —> 0.

Thus

M{yi+lxl) <deg M(xV, A) 0 M(yl).

Then we use Lemma 6.1, (2). D

Lemma 6.3. Let (C, D) G V(n, n, n) with rk(C) + rk(£>) < n and rk(£>) < n - 1.

Then (C, D) is contained in the closure of

{(A, B) G V(n, n, n) | rk(A) rk(C), rk(B) rk(D) + 1}.
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Proof. Set

C {(A, B) G V(n, n, n) | rk(A) rk(C), rk(B) rk(£>) + 1},

and let s n — rk(C) — rk(_D). Thus (C, _D) is isomorphic to a module

where M 0 or M is a direct sum of band modules. There are three cases to
consider: First, if s > 2, then

(c, £>) g o(M e mxc^) e M(c3) e • • • e m(cs)) ç c.

Second, if s 1 and C\ ^ yl for some / > 0, then

(C, D) e M 0 F(Ciy) Ç C.

Finally, assume that s 1 and C\ yl for some / > 0. Since rk(_D) < n — 1, this
implies / < n — 1 and thus M^O. Using Proposition 5.4 we can assume without
loss of generality that M is a direct sum of diamond modules. Let M(x*yJ, A) be

one of these direct summands, thus M M1 © M(xlyJ, A) for some M'. Then we

use Lemma 6.2 and get

(C, D)eM>(& J7(x*yi+l+1) Ç C.

Note that we used several times our assumption a b n by assuming that certain
words in x and y are actually strings, i.e. that they do not contain subwords of
the form xa or yb. This finishes the proof. D

Corollary 6.4. Let (A, B) G V(n, n, n) with ik(A) <n-i and rk(B) < «. T/iera

(A, S) «s contained in the closure of

{(A, B) G V(n, n, n) \ rk(A) n - i, rk(ß) «}•

Lemma 6.5. //" «i, «2, ^i, «2 > 1, wi + «2 < « — 1 aw-d v\ -\- V2 < 6 — 1, i/iera

M(a.«1+«2^1+^; _AiA2) <deg M(x«i^i? Al) e M(x«2^2, A2).

Proof. It is straightforward to construct a short exact sequence

0 —>M(x"1y';i,Ai) —> M(xUl+U2yVl+V2,-\1\2) —> M{xU2yv\ A2) —> 0. D

Proof of Theorem 1.1. Let (a, b) G V(n,n,n) be regular with

a- 1 (c1;--- ,ct)

and
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The diamond family T{a., b) is dense in A(a, b) by Proposition 5.4, and each
module in T{a., b) is of the form

for some Xj. Since a b n, we know that xn~lyl is a string for all 1 < « < n— 1.

Now we use Lemma 6.5 and get that

J-(a,b) C A(a, b) C T{xn

where

and

This implies

{{A, B) G V(n, n, n) | rk(A) n - i, rk(B) «} C ^(x™

Then Corollary 6.4 implies

T{xn-lyl) {(A, B) e V(n, n, n) | rk(A) < n - i, rk(B) < «}•

By Proposition 5.4 we get

dimT(xn~lyl) dimT(xn-lyl) n2 - n + 1.

This finishes the proof. D

7. Classification of regular irreducible components

If (a, b), (c, d) G P(n, a, 6) with a < c and b < d, then we write (a, b) < (c, d).
This defines a partial order on V(n, a, b).

Lemma 7.1. // (a, b),(c, d) G V(n,a,b) are regular with (a, b) < (c,d), i/iera

/(a) /(c) andl(b)

Proof. For all regular pairs (e, f we have /(e) + /(f n. Since a < c, we have

Ka) > Kc)y an(i from b < d we get /(b) > /(d). This implies /(a) /(c) and

/(b) /(d). D

The next lemma is a consequence of Proposition 5.1.
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Lemma 7.2. Let (a, b), (c, d) G V(n, a, b). If
A(a,b)nA(c,d)^0,

then (a,b) < (c,d).

Let

^reg n%g(^ «, &) {(», b) e P(n, a, 6) | /(a) i, Z(b) n - i,

/(a-l)=
and

Vf,reg Vfjreg(n,a,6)= (J A(a,b).
(a,b)eprieg

This implies

Vf,reg {(A ß) € V(n, a, b) I rk(A) n - i, rk(B) «, dim top(A, ß)

In particular, V? (n, a, 6) is locally closed.

Proposition 7.3. Let (a,b),(c, d) G Vf (n,a,b). Then

A(a,b)cA(c,d)
if and only if (a, b) < (c, d).

Proof. If (a, b) < (c,d) does not hold, then we apply Lemma 7.2 and get

A(a,b)nA(c,d) =0.

Next, assume that (a, b) < (c, d) holds. By Lemma 5.3 each element in Vfreg
belongs to some stratum of the form S(L) with L a direct sum of n indécomposables,

and exactly n — p of these are projective. Since (a, b) < (c,d) and

(a, b), (c, d) G Vf (n, a, 6), there exists a chain

L(c, d) L\ <deg L-2 <deg • • • <deg Lt L(a, c)

of box move degenerations between index modules such that dim Hom(Lj, A) is

constant for all Li in this chain. Now we use the same arguments as in the proof
of Proposition 5.4, and finally we apply Theorem 2.1, (3). This finishes the proof.

D

An element (a,b) G Vf' (n,a,b) is called (i,p)-maximal if it is maximal
in Vf' (n,a,b) with respect to the partial order <. Clearly, each non-empty
Vf' (n,a,b) contains a unique («,p)-maximal element.

It follows easily that an element (a, b) G VfTeg(n,a,b) is («,p)-maximal if and

only if the following hold:

• a has at most one entry different from 1, 2 and a;
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• b has at most one entry different from f, 2 and b.

As a consequence of Propositions 5.4 and 7.3 we get the following:

Corollary 7.4. The set Vf (n, a, b) is locally closed and irreducible, and if it is
non-empty, then it contains J-(sl, b) as a dense subset, where (a, b) is the unique
(i,p)-maximal element in VfTeg(n, a, b).

Proof of Theorem 1.4- We characterize the («,p)-maximal elements (a, b) such that
the closure of A (a, b) is an irreducible component. By the preceding results, these

are then all regular irreducible components. Assume that (a, b) is ({, p)-maximal.
Thus

a - 1 ((a - l)p-r-\a - v - 1, lr)
and

b-l ((b-l)p-s-\b-w-l,ls)
where 0 < v < a — 2, 0 < w < 5 — 2, 0 < r, s < p — 1, v 0=>r 0 and

w 0 => s 0. By Corollary 7.4 we have

We claim that the closure of T{a., b) is an irreducible component if and only if
r + s -\- 1 < p.

First, let r + s + 1 > p. This implies that there exist «i, «2, ^1, ^2 > 1 such that
each module in J-"(a, b) has a direct summand isomorphic to

M(xUlyVl,X1)®M(xU2yV2,X2)

where u\ +«2 < a — 1 and «1+^2 < 6—1. Now we apply Lemma 6.5 and see that
J-"(a, b) is contained in the closure of some other family T{c, d). In particular, the
closure of J-"(a, b) cannot be an irreducible component. This proves one direction
of the statement.

Second, assume that r + s + 1 < p. Since the function rk(—) is lower semicon-
tinuous, V^ cannot be contained in the closure of some V? with i ^ j. It is

also clear that V^ cannot be in the closure of V| if p < q. Because in that
case, we have

dim Hom(M, S) p < q dim B.om(N, S)

for all M G V^ and all N G V| This is a contradiction to the upper
semicontinuity of the function dim Hom( —, S).

Thus, assume that 1 j, p > q and r + s + 1 <p. Then the dimension formula
in Proposition 5.4 yields

dimVfreg >dimV}%g.

Again this implies that Vf reg cannot be in the closure of V|reg. Thus the closure
of Vf reg

must be an irreducible component. Finally, note that /(a — 1) < \a G

a| + 16 G b| + 1 if and only if r + s + 1 < p. This finishes the proof. D
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Proof of Theorem 1.2. Let a G V(n, n) be a partition of n. If a (1, •• • 1), then
A(a) is the union of the orbits of n-dimensional modules of the form

and O{M{yn^1)) is dense in A(a). Thus A(a) is irreducible and

Next, assume that a^ (1, ••• ,1). Thus /(a) i for some 1 < i < n — 1. Then
there exists a unique maximal (with respect to <) partition a° such that (a, a°)
is regular. Namely, we have a° (ri, • • • rn_i) where

if 2 < j < /(a - 1),

1 otherwise.

Here we use our assumption a b n. By Proposition 7.3, we know that for any
regular element (a, d) we have

A(a, d) C A(a,a°).

Now, assume that (a, c) is non-regular with A(a, c) non-empty. It follows from
Lemma 6.3 that

A(a,c) c A(a,d)

for some regular (a, d).
This proves that A(a) has A(a, a°) as a dense subset. Thus A(a) is irreducible.
Recall that for regular elements, (a, b) < (c, d) implies /(a) /(c), see Lemma

7.1. Using Lemma 7.2, we get that

A(a) c A(c)

implies a < c and /(a) /(c). Conversely, assume a < c and /(a) /(c). This
implies a° < c° and /(a - 1) > /(c - 1). We get

A(a) c A(c)

by applying Lemma 6.5 in case /(a — 1) > /(c — 1), or Proposition 7.3 in case

/(a — 1) /(c — 1). This finishes the proof. D

8. Classification of non-regular irreducible components

The classification of irreducible components of V(n, a, b) with a < n and b < n is
less straightforward than for the case a b n. The main reason is that Corollary
6.4 does not hold in the general case.
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A module M is semi-projective (respectively semi-injective) if it is isomorphic
to

t

M(C\)

where Cj xa~1C'iyb~1 for some string C- and all i (respectively Cj yb~lC[xa~l
for some string C- and all {). The next two statements are clear.

Lemma 8.1. If M{C) is semi-projective and M(D) semi-injective, then CxDy
is a band. Thus,

M(C) 0 M(D) G T{CxDy).

Lemma 8.2. // M(C) is not semi-projective and not semi-injective, then there
exists some u G {x, y} such that Cu is a band. Thus,

M{C) G T{Cu).

The next lemma is again a consequence of the construction of projective covers
of string modules.

Lemma 8.3. Let M G V(n, a, b) be a direct sum of t string modules. If M is

semi-projective (respectively semi-injective), then M is in some stratum S(L) with
dim Hom(L, S) n — t (respectively dim Hom(L, S) n + t).

Lemma 8.4. If M is a semi-projective module in V(n, a, b), then M is not
contained m the closure of the set of regular elements m V(n, a, 6).

Proof. Let

be semi-projective. We have M G S(L) for some index module L. By Lemma 8.3

we have

dim Hom(L, S) n —t.

Now assume that S(L) is contained in the closure of some stratum <S(L(a, b)) with
(a, b) regular. So L(a, b) <deg L. Since (a, b) is regular, we get

dim Hom(<S(L(a, b), S) n.

This is a contradiction because the function dim Hom(—, S) is upper semicontin-
uous. D

Lemma 8.4 enables us to determine when all irreducible components of V(n, a, b)

are regular, i.e we can prove Proposition 1.5.
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Proof of Proposition 1.5. If n < a + b — 2 or n a + 5, then there are no semi-

projective or semi-injective modules. So Lemma 8.2 implies the result. For the
other direction, it is sufficient to construct for each n > a+b+1 and for n a+b—1
an n-dimensional semi-projective module. We leave this as an easy exercise to the
reader. Then Lemma 8.4 yields the result. D

Lemma 8.5. Let M(C) be semi-projective, and let B be a band of the form xcyd.
Then there exists a semi-projective string module M(E) such that

M{E) <degM(C)eM(ß,A).

Proof. Let B xcyd for some 1 < c < a — 1 and 1 < d < b — 1, and let

C xClydl ¦¦¦xCtydt

where 1 < Cj < a — 1 and 1 < di < b — 1 for all {, c\ a — 1 and dt 6—1.
Note that M(C) is semi-projective. Let m be the maximal i such that one of the
following hold:

(1) Q > c;

(2) Ci c and d%-\ < d;

(3) » 1.

First, we assume that there exists some i > m such that di < d. Note that this
implies i < t. Then it follows from the définition of m that cj+i < c. Define

E xClydl ¦¦¦yd*xcydxc*+1 ¦¦¦xCtydt.

Now it is easy to construct a short exact sequence

0 —> M(C) —> M(E) —> M(B, A) —> 0.

This implies M{E) <deg M{C) 0 M{B, A).
Second, we consider the case di > d for all { > m. Let / be maximal such that

C xClydl • • • yd™-^xc™-c{xcyd)lD

for some string D. Define

E xClydl ¦ ¦¦ydm-1xc™-c(xcyd)l+1D.

Again, one can construct a short exact sequence

0 —> M(C) —> M(E) —> M(B, A) —> 0

which implies M(E) <deg M(C) 0 M{B, A). This finishes the proof. D

Let Vn (respectively Tn) be the set of all semi-projective (respectively semi-

injective) modules in V(n, a, b). Observe that Vn and Tn contain only finitely many
isomorphism classes of modules. The next corollary follows from Proposition 5.4,
Lemmas 8.1, 8.2 and 8.5.
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Corollary 8.6. Each non-regular irreducible component of V(n, a, b) contains a

dense orbit O with O CVnUln.

Note that the duality D Horrid—, K) induces an isomorphism

9:V(n,a,b) —>V(n,a,b)

where M* denotes the transpose of a matrix M. For example, if (A, B) is iso-

morphic to M(xxy), then 9(A,B) is isomorphic to DM{xxy) M{yxx). The
restriction of 9 to Vn yields an isomorphism Vn ^Tn-

Lemma 8.7. Let S(L) be a stratum containing a semi-projective module, and let
S(M) be a stratum containing a semi-injective module. Then

S{L) % S(M) and S(M) % S(L).

Proof. By Lemma 8.3 we get

dim Hom(L, S) n — s

and

dim Hom(M, S) =n + t

for some s,t > 1. This implies M J^deg L. Thus by Theorem 2.1, (2) the stratum
S(L) cannot be contained in the closure of S(M). Next, assume that S{M)
is contained in the closure of S{L). This implies that 9{S{M)) is contained in
the closure of 9{S{L)) with 9{S{M)) containing a semi-projective and 9{S{L))
containing a semi-injective module. But this is a contradiction to the first part of
the proof. D

Up to now, we established the following: To classify all non-regular irreducible
components of V(n, a, 6), it is sufficient to decide which orbits in Vn are open.

Let X be indecomposable and semi-projective, and assume that X is contained
in a stratum S(L). We want to determine when O(X) is open. We can assume
that L is flip minimal, otherwise we could use flip degenerations and Theorem 2.1

to show that S(L) and in particular X is contained in the closure of some other
stratum S{M) with M being flip minimal.

Let (a, b) G V(n, a, 6) such that the following hold:

• \ae a|,|6e b| > 1;

• Z(a) + Z(b)=n+1;
• Z(a-l) Z(b-l).

Let a — 1 (ci, • • • ct), b — 1 {d\, • • • dt), and define

P(a, b) M^V^V*-1 • • • yd2xCtydl)
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and
t

L(a, b) A™"* 0 0 M(xa-°'-1yb-dt-'+2-1).

Note that L(a, b) is an index module in X\(n), and P(a, b) is semi-projective and
contained in the stratum <S(L(a, b)). Observe also that P(a, b) G A(a, b). The
index module L(a, b) is flip minimal. Furthermore, each flip minimal index module
L with S(L) containing an indecomposable semi-projective module is obtained in
this way.

Lemma 8.8. Under the above assumptions, the orbit O(P(a, b)) is dense in
<S(L(a,b)).

Proof. Using the dimension formula in Theorem 2.1, (1) and Theorem 3.7, a

straightforward calculation shows that

dimO(P(a,b)) dim<S(L(a,b)).

Thus O(L(a, b)) must be dense in the stratum <S(L(a, b)). D

As a consequence of the above results we get the following:

Lemma 8.9. The orbitö(P(a, b)) is open if and only if there is no module P(c, d)
with P(c, d) <deg P(a, b).

Lemma 8.10. Let (a, b), (c, d) G V(n, a, b) such that

• \a G a|, \b G b|, \a G c|, \b G d| > 1;

• /(a) + /(b) Z(c) + /(d) n + 1;

• /(a - 1) /(b - 1) and /(c - 1) /(d - 1).

T/iera i/ie following hold:

(1) // P(c, d) <deg P(a,b), i/ien (a,b) < (c,d);
(2) // (a, b) < (c, d) and /(a - 1) /(c - 1), i/ien P(c, d) <deg P(a, b).

Proof. The first part of the lemma is a direct consequence of Lemma 7.2. Next,
one easily checks that the conditions (a, b) < (c, d) and /(a — 1) /(c — 1) allow
a sequence of box move degenerations

L(c, d) L\ <deg L2 <deg • • • <deg Lt L(a, b)

such that dim Horn (Li, A) dim Hom(Li, A) for all {. As before we use Theorem
2.1, (3) and get

S(L(a,b))C5(L(c,d)).
Since P(a, b) and P(c, d) are dense in S(L(a, b)) and S(L(c, d)), respectively, this
implies P(c, d) <deg P(a, b). This finishes the proof. D
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Theorem 8.11 (Classification of open orbits). Let X be an indecomposable A-
module. Then O(X) is open in V(n, a, b) if and only if X is isomorphic to M{C)
or DM(C) where C is of one of the following forms:

(1)
C (xa-1ynxa-1yb-1y(xyb-1)t

where r, s, t > 0, r + s > 1 and s + t > 1;

(2)
C (xa-1y)r(xa-1yî)a(xa-1/-1)s(x^6-1)'3(x/-1)t

w/iere r, s, t > 0, 2 < i < b - 2, 2 < j < a - 2, 0 < a, ß < I, a + ß > I,
r + a + s > 1 and s + ß + t>l;

(3)

C=(xa-1yyx*yi(xyb-1y

where r,t > I, \<i < a - 2 and 1 < j < b - 2.

The open orbits in V(n, a, 6) are exactly the orbits of the form

Vie/ /
wrf/i O(M(Q)) open and Ext1(M(Q), M(C0)) 0 /or all i + j in I.

If a string C belongs to one of the sets (1), (2) or (3) as defined in the theorem,
then we say that C is of type (1), (2) or (3), respectively.

Proof. We classify the open orbits O(X) with X indecomposable. By Lemma 8.2

we know that X has to be semi-projective or semi-injective. By duality, we can
assume without loss of generality that X is semi-projective. As a consequence of
Lemma 8.10, we can assume that X M(C) P(a, b) such that the following
hold:

• a has at most one entry different from 1, 2 and a;

• b has at most one entry different from 1, 2 and b.

Now we proceed similar to the proof of Theorem 1.4. We can assume that /(a) +
Z(b) =n+l,

a - 1 ((a - l)p-r-\ a - v - 1, V)

and

b-l ((6- l)p-s-\b-w- 1,1s)

where 0 < v < a - 2, 0 < w < b - 2, 0 < r, s < p - 1, v 0 ^ r 0 and

w 0 => s 0. Then by using Theorem 3.7, we get

dimO(P(a,b)) n2 -p2 -p- 1 - (a - v - 2)(p - rf
— (b — w — 2)(p — s) — v(p — r — 1) — w(p — s — 1)
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By Lemma 8.9 the orbit of P(a, b) is open if and only if there is no P(c, d) with
P(c,d) <degP(a,b).

If r + s + 1 < p, then

dimO(P(a,b)) > dimO(P(c, d))

for all P(c, d) with (a, b) < (c, d). This follows from the above dimension formula.
So by Lemma 8.10 the orbit 0(P(a, b)) must be open. Observe that C is of type
(1), (2) or (3) if and only if r + s + 1 < p.

Next, assume that r + s + 1 > p. By the définition of r and s, it follows that
a, b > 3 in this case. Then C is of the form

where Ä;, m > 1, / > 0, 1 < i < a - 2 and 1 < j < b - 2. If / 0, then define

E=(xa-1y)kxi+1y3+1(xyb-1)m.

Otherwise, let

E (xo-1y)fc(xî'+1yy)(xy)'-1(x/)(x/-1)m.

In both cases, we get M(E) <deg M(C). This is proved by constructing a Riedt-
mann sequence

0 —> M(C) —> M(E) 0 M(xy, 1) —> M(xy, 1) —> 0.

Thus, O(P(a, b)) cannot be open. This finishes the classification of indecomposable

A-modules whose orbit is open. The rest of the theorem follows from [Z,
Theorem 3]. D

For modules X and Y let Hom(X, Y) be the space Hom(X, Y) modulo the
homomorphisms factoring through a projective module. By t we denote the
Auslander-Reiten translation. For indecomposable modules X and Y we have

the Auslander-Reiten formula

Ext^y) ^ DHomd'V.I).
For the basics of Auslander-Reiten theory we refer to [ARS] or [Ri]. If M(C) is a

semi-projective string module, then define

Note that M(t~1C) is also semi-projective. It is proved in [BR] that

T^MiC) M(t-1C).
The next proposition is an application of the Auslander-Reiten formula and
Theorem 3.7.

Proposition 8.12. // M(C) and M(D) are semi-projective string modules, then
the following are equivalent:
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(1) Ext1(M(C),M(JD)) =0;
(2) Each map fa with a G A(t~1D, C) factors through M(xa^1yb^1).

For deciding whether a graph map factors through another string module, one
uses the multiplicative behaviour of graph maps. Using this proposition and the
previous theorem, it is now easy to compute the semi-projective modules whose
orbit is open. Using duality, we get all open orbits. This completes the classification
of irreducible components of the variety V(n, a, b).

Corollary 8.13. For an indecomposable A-module X the following statements are
equivalent:

(1) Ext^X) =0;
(2) X is isomorphic to a string module M(C) or DM(C) with

C {xa-1yy{xa-1yh-1)s{xyh-1)t

where r, s, t > 0, r -\- s > 1 and s -\- t > 1.

9. Remarks and examples

We list all irreducible components of V(n, 3, 3) for n < 12. First, let us give the
list of all regular irreducible components and their dimensions.

For each regular (a, b) we constructed a family J-"(a, b) of modules which is
dense in A (a, b), see Proposition 5.4. Recall that these families are of the form

F((Bupi),--- ,{Bm,pm)).
In Figure 7 we display the data {B\,p\), • • • (Bm,pm) in case the closure of

the corresponding family is an irreducible component. If pi 1, then we just write
Bt instead of (Bl,pl).

In Figure 8 we give a list of all open orbits and their dimensions. Recall that
the closures of the open orbits are exactly the non-regular irreducible components.
Remember also that the open orbits are orbits of certain semi-projective or semi-

injective modules. For the sake of brevity we list only the strings Ct occurring in
their direct sum decomposition. For example xxyy © xxyy encodes the module
M(xxyy) © M (xxyy). We only list the semi-projective modules whose orbits are

open. Thus one has to add the same number of semi-injective modules to get
all open orbits. Recall that there are no open orbits forn<a + 6 — 2 4 and

n a -\- b 6.

Remark 1. If Extx(M, M) 0 for some A-module M, then by Voigt's Lemma
one gets that O(M) is open. The converse does not hold. The smallest example of
this kind occurs for n 9: Let M M(xxyxyxyy) be in V(9, 3, 3). Then O(M)
is open but Ext^M, M) ^ 0.
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(xy
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xyy
xxy

63
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67
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2)
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,xxyy
y,xyy
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(xxyy, 2), xyy
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(xyy, 2), xxy
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99
99
100
100
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(xxy, 4)
(xyy, 4)

(xxyy, 3)
(xxy, 3), xyy
(xyy, 3), xxy

(xxy, 2), (xyy, 2)

112
112
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118
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FIG. 7. The regular components of V(ra, 3, 3) for n < 12

xxyy 20 xxyxyy 40 xxyyxyy 52 (xxyy)2 66

xxyxxyy 52 xxyxyxyy 66

10

xxyy© xxyy
(xxy)2 xyy
xxy(xyy)2

80

82
82

11

(xxy)2xxyy
xxyy(xyy)2

xxyxxyyxyy

98

98
100

12

xxyy© xxyxyy
(xxyy)2 xyy
xxy(xxyy)2

(xxy)2xyxyy
xxyxy(xyy)2

117
118
118
118
118

FlG. 8. The non-regular components of V(ra, 3, 3) for ra < 12

Remark 2. Let a 6 2 and n 3. Then O(M(xy)) and O(M(yx)) are
both open orbits, since M(xy) is projective and M(yx) is injective. In particular,
A(2,1) and A((2,1), (2,1)) are both not irreducible.

Remark 3. The Gelfand-Ponomarev algebra A is a string algebra in the sense of
[BR]. Similarly to Lemma 4.1 one can show that all string algebras are subfînite,
and their index modules can be classified as in Lemma 4.2.

One should be able to classify the irreducible components of varieties of modules
over many other string algebras in the same fashion as in this paper.
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