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Poincaré series of curves on rational surface singularities

A. Campillo*, F. Delgado*and S. M. Gusein-Zade**

Abstract. For a reducible curve singularity embedded in a rational surface singularity the

Poincaré series is computed. Here the Poincaré series is defined by the multi-index filtration

on the local ring defined by orders of a function on the branches of the curve. The method of
the computations is based on the notion of the integral with respect to the Euler characteristic

over the projectivization of the ring of functions (notion similar to, and inspired by, the notion

of motivic integration). For the case of the Es surface singularity it appears that the Poincaré

series coincides with the Alexander polynomial of the corresponding link.
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In [3] and [4] there was computed the Poincaré series (in several variables) ofthe multi-
index filtration on the ring of germs of functions of two variables defined by orders

of a function on the branches of a reducible plane curve singularity (C, 0) C (C2, 0).

It was shown that this Poincaré series coincides with the Alexander polynomial (in
several variables) of the link of the singularity (C, 0). In [5] there was computed
the Poincaré series of the multi-index filtration on the ring of germs of functions on
a rational surface singularity {$, 0) defined by the multiplicities of a function along

components of the exceptional divisor of a resolution of the singularity (-8,0). The
method of the computations is based on the notion of the integral with respect to the

Euler characteristic over the projectivization of the ring of functions. This notion is

similar to (and inspired by) the notion of motivic integration.
The Poincaré series of a plane curve singularity is computed in terms of an embedded

resolution of the curve. The answer is tightly connected with the Poincaré series

of the set of divisorial valuations corresponding to the resolution. A generalization
of this approach for a twisted (i.e., non plane) curve would be to consider the curve
being embedded into a surface singularity and to use its embedded resolution. The
Poincaré series of the set of divisorial valuations of a resolution of a surface singularity

is well understood only for rational ones. Therefore it is natural to consider curves
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on them. Here we apply the mentioned method of computing the Poincaré series to
a (reducible) curve on a rational surface singularity.

It appears that curves on the Es surface singularity have special properties. The
link of the surface singularity Es is a homology sphere. Therefore, for a curve on the

Eg surface singularity, there is defined the Alexander polynomial (in several variables)
of the corresponding link. We show that it also coincides with the Poincaré series of
the curve singularity.

1. Poincaré series of a curve on a rational surface singularity

Let (C, 0) be a (in general, reducible) germ of a curve and let C U/=i Cj
be its decomposition into irreducible components (with a fixed numbering). Let
<Pj : (C, 0) —>¦ (C, 0) be an uniformization of the branch Cj, j 1, r. For a

germ g g &c,o, let wj wj (g) be the power of the leading term in the power series

decomposition of the germ g ° <Pj\ (C, 0) —>¦ C: go (pj{x) a ¦ rwJ+ terms of
higher degree (a ^ 0). If g o <pj(r) Owe assume wj(g) to be equal to +oo.
Let w(g) := (wi(g),..., wr(g)) (we call w(g) the value of the function g on the

curve C). For w; (w\, ,wr) g 7U, let J(w) {g G &c,o '¦ wj(g) > wj,
j 1, r} (J(w) is an ideal in &c,o), and let c(w) := dim J{w_)/J{w_ + j_),

wherel (1, 1), Lc{h, ...,tr) E^eZr c(w) -^(heref^ f^1 .fr"\pay
attention that the sum is over all w_ in 7U, not only over positive ones).

The Poincaré series of the multi-index filtration defined by &>.(•) (for short the

Poincaré series of the curve (C, 0)) is the power series (in fact a polynomial for
r >2):

f1 tr - 1

Remark. If the curve (C, 0) is embedded into an ambient space (X, 0), in the

definition of the Poincaré series Pc(h, • • •, tr), one can use the ring &x,o of germs
of functions on (X, 0) instead of 0c,o above.

From now on let the curve singularity (C, 0) be embedded into a rational surface

singularity (-8,0). In [5] there was defined the notion of the integral with respect to
the Euler characteristic over the projectivization PO^o of the ring of germs of the

functions on the surface (%, 0) (see also [2], [4]). Just as in [4], [5] one can show that

,...,tr)= IPc(h,...,tr)= L^'dx,

where £—^ is a function on P6>^o with the values in the abelian group (with respect
to the addition) Z[[fi,..., tr]], tf° is assumed to be equal to 0.
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Let n : (X, <©) —>¦ (%, 0) be an embedded resolution of the curve C <z S, i.e.,
a resolution of the surface singularity (%, 0) such that n l(C) is a normal crossing
divisor. Let C; be the strict transform of the component Cj of the curve C (j
1, r). Let £;, f 1, s, be the irreducible components of the exceptional
divisor <© n 1(0). All the components £, are isomorphic to the projective line
CP1. Let — ki be the self intersection number E\ o E\ of the component Ej. Let
M —(EioEi)hs minus the intersection matrix ofthe components of the exceptional
divisor <©. The matrix M has numbers k; on the diagonal, other entries of M are

equal to —1 or 0.

For a function g G &s,o, g ^0, let v-, (g) (i 1, s) be the multiplicity of the

lifting g on of the function g along the component E\ (v; (•) is the divisorial valuation
corresponding to the component E{). Let v_(g) (ui(g), u^(g)). The set S1^ of
points of the lattice Z>0 of the form v_(g) is a subsemigroup of Zs>0 (the semigroup of
divisorial valuations of the resolution n). The semigroup S,$ consists of all v_ G Zs>0

such that ijM > 0 (i.e., such that

for f 1, ...,^; see e.g [8]). Let m det(M), A M~l (a;j), and let
a. (a,i, ajs) (note that the determinant m does not depend on the resolution

n of {$, 0) and that ma\-} are integers). The set v_M > 0 in M* is the simplicial
cone generated by the vectors a;,i I, s. One can show (see [8]) that a; > 0,

Remark. Let n\ m{v_) be the left hand sides of the inequalities (1), i.e.,
n («i,..., ns) v_M (in particular «f(a •) %). One can easily see that,
for v_ £(g) G 5^, «f(£) is equal to the intersection number of the strict transform

of the curve {g 0} with the component E\ of the exceptional divisor. Let

Let E\ (respectively E\ be the "smooth part" of the component E\ in the total
transform of the curve C (respectively in the exceptional divisor <©), i.e., E\ minus
intersection points with all other components of the total transform n l(C) of the

curve C (respectively of the exceptional divisor <©). The divisorial valuations v;
define a multi-index filtration on the ring O^,o of functions on the surface singularity
(-8,0). Let Ps,7t(T\, ¦ ¦ ¦, Ts) be the Poincaré series of this filtration defined in the

same way as above (it depends on the surface singularity S and on its resolution n).
For a fractional power series Q{T\,... ,TS) g Z[[Tj Ts ]], let

Int Q(T\, ,TS) be its "integer part", i.e., the sum of all the monomials from
Q{T\, ,TS) with integer exponents. The main result of [5] (formulated in somewhat

different terms) is the following.
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Theorem 1. For a rational surface singularity (S,0) and a resolution n : (X, <©) —>¦

(%, 0), one has

(=1

Now we give a formula for the Poincaré series ofthe curve (C, 0) c (S,0).

Theorem 2. One has

'=1 rt^ n tj
CjnE;=pt

(in the substitution above Yljett tj ^s supposed to be equal to 1).

Proof. For a topological space X, let SnX Xn/Sn be the nth symmetric power of
the space X. Let

neZs>0 f=l f=l n=0

and

f
neZs>o:i)(n)eZs f=l

Elements of F and of Fo are represented by collections of points (finite sets of
o o

points with multiplicities) of the smooth part <©= Uf=i El ofthe exceptional divisor
<© (for elements of Yq with an additional condition). For a function g G O^,o such

that the strict transform of its zero level curve {g 0} intersects the exceptional
o

divisor <© only at smooth points (i.e., at points of <©), the collection of intersection
points counted with multiplicities (intersection numbers) belongs to Yq. Moreover, a

divisor on X which intersects the exceptional divisor <© only at smooth points is the

strict transform ofthe zero level curve of a function if and only if the collection ofthe
intersection points of this divisor with <© (counted with multiplicities) belongs to Yo-

Let v_ be a function on Y with values in Qs>0 which is equal to 5Zf=i ni®-i on tne

component of Y with the number n_. The values ofthe function v_ on the space Fo C Y

belong to Z>0 and, moreover, t> 1{U!>Q) Yq. One has

J L-dx=
1
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(see, e.g., [4]; this follows from the formula l+x(X)t+x(S2X)t2+x(S3X)t3+- ¦ ¦

(1 — t)~x^x\ where / (X) is the Euler characteristic of the space X),

(=1
J u

LetamapZ>0 —>¦ Z,r>0(Qs>0 --* Q>0) be defined by (v\, vs) *--* (w\, wr)
vi (j), where i i(j) is the number of the component E\ of the exceptional

divisor <© which intersects the strict transform Cj of the component Cj of the curve
C. One has

Ind

(and the same for the integrals over Y).
For a function g G O^,o such that the strict transform of its zero level curve

{g 0} intersects the exceptional divisor <© only at smooth points (and thus the

collection of them belongs to the space Yo) the value w_(g) of the function g on the

curve C is equal to w_(v_(g)).

Let V_ G Z>0. Making as many additional blow-ups of intersection points of
components of The total transform of the curve C as it is necessary, we can suppose
that, for any g G O^,o with w_{g) < V_, the strict transform of the curve {g 0}
intersects the exceptional divisor <© only at smooth points. Let Po^oŒ.) be the set

{g G W&x,o : w(g) < V}. Theset¥&s,o(V_) iscylindric(see,e.g., [5],Proposition 1).

Let / be the map from V&s,o(Y) to the space Yq which sends a class g G Po^oŒ.)
with w_(g) < V_ to the collection of intersection points of the strict transform of the

curve {g 0} with the exceptional divisor <© (counted with multiplicities). One can
easily see that w_(I(g)) w_(g) (in fact also v_(I(g)) v_(g)). Moreover, the image

Im / of the map / coincides with the union Y(— of all the components of the space
y

Yo with w_ < V_. Preimages of points of the space Y^~ under the map / are complex
affine spaces (see, e.g., [5] Proposition 2). Since the Euler characteristic of a complex
affine space is equal to 1, the Fubini formula (applied to the map / :

implies that

Since this equation holds for any V_ G Z>0, one has
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2. Curves on the surface singularity Eg

Let (¦%, 0) be the rational double point of the type E8 ({x2 + y3 + z5 0} c (C3, 0)).
In this case the determinant m of the intersection matrix M is equal to 1. This implies
that all the vectors a{ are integer and therefore any curve on ($, 0) is the zero level

curve of a function (i.e., each Weil divisor is a Cartier one). Therefore, for a curve
C ULi Q c (S, 0), one has

s o

1=1 ti^ _n t]
J CjnE;=pt

The link L S n S^ (where S^ is the sphere of small radius e centered at the

origin of C3) is ahomology 3-sphere (see, e.g., [7]). For the curve C, let K S^ n C
be the corresponding link. The manifold K is the union of r circles in the homology
sphere L. Therefore there is defined the Alexander polynomial of (L, K) which is a

polynomial in r variables (see, e.g., [6]). Let A4c(fi, ,tr) denote the Alexander

polynomial of the pair (L,K).
Let n : (X, <©) —>¦ (%, 0) be an embedded resolution of the curve C <z S. For

a component E\ of the exceptional divisor <© n~l(0), let L be a germ of a

smooth curve transversal to the component Ei at a smooth point. Let the curve
L n(L) c (S,0) be defined by an equation {g 0}. From the remark on page 3

the following statement follows.

Lemma 1. One has v_(g) a{.

From [6] it follows that

s o~ "
(3)

; CjnE;=pt

when r > 1 and, for r 1,

; CjnE;=pt

Note that the substitution in the last formula means that T\ *--* 1 if Ci n £; 0 and

7} i-^ fi otherwise.

Remark. According to the general definition (see, e.g., [6]), the Alexander polynomial

A^'c(fi,..., tr) of a link is well defined only up to multiplication by monomials

±f- if™1 frmr with m (mi, mr) G 1/. For the link (L, K)
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(%, C) n Sl, the formulae (3) and (4) fixes the choice of the Alexander polynomial
in such a way that it is really a polynomial (i.e., does not contain monomials with
negative exponents) and its value at the origin (t_ 0) is equal to 1.

Comparing (3) and (4) with (2) we have the following statement.

Theorem 3. Let C Uf=i Q be a curve on the Es surface singularity (%, 0). Then,

ifr > 1, one has

Pc(ti,...,tr)=A*<C(ti,...,tr),
andfor the case r 1,

Corollary. On the Eg surface singularity, there are only curves the Poincaré series

ofwhich are products/ratios ofcyclotomic polynomials.

As an example, the curve given by t \-> (t3, t4, t5) does not lie on an Eg surface

singularity.

Remark. Let S be an arbitrary rational surface singularity and let Ps,c {T\, ¦ ¦ ¦, Ts)

]~[f=i(l ~~ T_-i)~x(Ei) be the fractional power series corresponding to an embedded

resolution n : (X, <©) —>¦ {$, 0) of the curve C c {$, 0). Suppose that the curve
C is a Cartier divisor, i.e., it is the zero level curve of a function / e &s,o- Let

f/(0 be the zeta-function of the classical monodromy transformation of the germ

/ : (S, 0) -? (C, 0) (see, e.g., [1]). Then one can see that

where m\ is the intersection number of the strict transform of the curve C with the

component E; of the exceptional divisor <©, in other words m, is the number of
components of the strict transform of the curve C which intersects the component E\.
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