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1. A conjecture of Kodaira

A fundamental question in Kahler geometry asks whether any compact Kahler manifold

can be realised as a deformation of a projective manifold. This is made more
precise in the following

Definition 1. A compact Kahler manifold X is said to be algebraically approximable,
or almost algebraic, if there exists a complex manifold X and asurjectiveholomorphic
submersion n : X --* A to the unit disc A c C such that the fibers Xt n~l(t)
satisfy Xo — X and there is a sequence fa) converging to 0 such that all Xtk are

projective.

In [Kod63] Kodaira proved that every Kahler surface is almost algebraic, and it
was a standard conjecture, known as the Kodaira conjecture, that this should be also

true in higher dimensions. In particular, according to that conjecture, every rigid
compact Kahler manifold should have been algebraic.

However recently, a few months after this paper was completed, C. Voisin [Vo04a]
came up with a counterexample: she constructed a rigid non-algebraic Kahler threefold,

arising as a blow-up of a complex torus. Later Oguiso [Og04] constructed a

simply connected counterexample. During the final revision of this paper, C. Voisin

[Vo04b] even announced the construction of Kahler manifolds such that no smooth

bimeromorphic model can be deformed to a projective complex manifold, thereby
showing that a weakened "bimeromorphic version" of the Kodaira conjecture does

not hold either.

However, even with the original version of the Kodaira conjecture, we still believe
that there are important classes of compact Kahler manifolds for which algebraic
approximation is possible. Such a class might be the class ofminimal compact Kahler

manifolds, i.e. manifolds with Kx nef, since blow-up tricks used to manipulate tori are
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then forbidden. Another such class should be the class of compact Kahler manifolds
with hermitian seminegative canonical bundle (or, even more generally, with —Kx
nef). A structure theorem for compact Kahler manifolds of this type states that they
have a finite étale covering mapping surj ectively onto the Albanese torus, and the fibers

of the Albanese map are products of Calabi-Yau manifolds, hyperkähler manifolds or
manifolds X with -Kx semipositive and H°(X, Q®m) 0 for all m > 0 [DPS96].
The latter manifolds are projective algebraic, while tori and hyperkähler manifolds are

algebraically approximable, so there is indeed a very good hope to reach a proof for
this class; the very special case of numerically flat projective bundles over complex
tori follows in fact from Proposition 2 below.

The main idea is the following easy general argument for projective bundles over
tori, which asserts that the projective bundle structure survives by deformation.

Proposition 2. Let X be a compactKühler manifold which has a Pr -bundle structure
X --* A over some complex torus A. Then for every deformation X --* S with

Xo — X, the nearby fibers %t have a Wr-bundle structure %t —>¦ At where A is

a deformation of A in a neighborhood oft 0. Moreover, ifX W{V) for some
vector bundle V on A, then Xt ¥(Vt) for a suitable deformation Vt --* At of
V -> A.

Proof. We look at the relative Albanese map a : X --* A. Then A --* S is a

deformation of tori such that at : Xt —>¦ At is the Albanese map for each t g S.

Since ao is a submersion, at should be also a submersion t in a neighborhood U C S

of 0, and the fibers of at are deformations of Pr. Since Pr is undeformable, we
conclude that at: Xt -^ At is also a Pr-bundle for small t. Now, the fact that

Xt P(V() is equivalent to the fact that the relative anticanonical bundle Klx ,A
has an (r + l)-rootL( on X(, in which case Vt (at)*(Lt). However, the obstruction
for a line bundle to have an (r + l)-rootliesin//2(X(, Z/(r + l)Z). This is a discrete

locally constant coefficient system, so if the obstruction vanishes for t 0, it must
also vanish on the connected component of 0 in U C S.

Proposition 2 more generally holds for arbitrary projective bundles over compact
manifolds and even for bundles whose fibers are rigid manifolds without holomorphic
1-forms; the proof is slightly more involved and is given in the last section.

In view of this, it is natural to look at the following potential candidate for a

counter-example: Start with a 3-dimensional complex torus A with Picard number

p{A) > 3. Let L, g NS(A) be (numerical equivalence classes of) linearly
independent holomorphic line bundles over A. Let U c C9 be a neighborhood of [A]
in the universal deformation space of A. As explained in the next section, every
Indéterminés a3-codimensional subspace V, V(Li) in U such that ci(L,) is (1, 1),
i.e. L; is a holomorphic line bundle on A' if and only if [A'] e V;.
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Now we make the following Assumption:
The intersection of the V\ 's has the expected dimension 0, i.e.

(*) V\ n V2 n V3 contains {A} as an isolated point.

Then consider the 6-dimensional manifold

y ¥(oA © Li) xA p(0A e l2) xA p(0A e l3).

This is aPj-bundle over A with projection 7T : Y --* A. IneachsubspaceP(6>A©£f)
there is a section Z, at infinity given by the direct summ and Ga ¦ This gives a section Z
of 7T by selecting over every a e A the point {x\, X2, X3), where {x,} Z, n 7T"1 (a).

Proposition 3. 77ze blow up a : X ^ Y of Z (Z Y is rigid in the sense that there is

no positive-dimensional family ofdeformations ofX.

Proof. Notice that, denoting by Pj(x) the blow up of P\ in one point, X is a

Pj (x)-bundle over A. So let (Xt) be a deformation of X Xq over the 1-dimensional
unit disc A. The first step is to proof that, possibly after shrinking A, every Xt is

a Pj(x)-bundle over its (3-dimensional) Albanese torus At. In fact, q(Xt) 3 for
all t and the Albanese map at is smooth for small t. In order to prove that at is a

Pj(x)-bundle, it suffices to show that P^(x) is rigid, i.e. every small deformation of
P^(x) is again P\(x).

In fact, let Z F\ (x) for simplicity of notations. Let r : Z —>¦ Pj be the blow-up
map with exceptional divisor £ ~ P2. Then there is an exact sequence

0 -? Tz -+ t*rP3 -> rË(-l) -> 0.

Since dim //0(TP3) 9, dim H°(TZ) 6, H°(TE(-l)) 3 and Hl(x*T^ 0,

by taking cohomology of the above exact sequence it follows

Hl(Tz)=0,

in particular Z is rigid.
Let X be the total space of (Xt) and let n : X —>¦ «A be the relative Albanese

map for X —>¦ A. Then A --* A is a torus bundle; let A( be the fiber over t, so that
A Aq. Now the exceptional divisor D of ct moves in X. This is easy to see by
considering D n tt ^a) P2 for a e A. In fact, the normal bundle of this P2 is

&{—1) © Ö4, so that the P2 moves and forces D to move. Therefore one obtains a

fiberwise blow-down X —* y, inducing the birational map a : X --* Y. Of course
there is a factorisation X —>¦ ^ —>¦ «A and ^! -^- «A is a Pj-bundle. Again let F( be

the fiber over t. Next it is shown that it is possible to write
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with Pi-bundles Y-ht/At, and this can be done simultaneously, i.e. the (Y-ht) form
a family %i. The most economic way to do that is to note that the relative Picard
number p(y,/A) equals 3 since p(7oMo) 3 and since Kyt is relatively ample
over At (this is a product situation). By taking relative extremal contractions in the

sense of Mori theory one gets a tower of three Pi -bundles. Of course there are three
choices of the first one and then two choices for the second since the situation is

completely symmetric in i. (This situation could possibly lead to some monodromy
action n\(At) --* S3, but since such actions are discrete and depend continuously
on t, the fact that we have a non twisted product for t 0 implies that we have

no such twist for t arbitrary). The last contraction will provide the space %i for the

appropriate i. Now consider the canonical map

Yt -> YU xa, Y2,t xa, Y3tt.

Then this map is immediately seen to be an isomorphism.
Since Y-ht is a Pi-bundle over At and since it is has a section by construction, it

follows

Ylt ¥(Ettt)

with a rank 2-bundle E-ht (normalized such that £o,t &A0 © Li), and the E-ht form
a holomorphic rank 2-bundle 8( over A. Since the section at infinity in 7o deforms

by construction to sections in Yt, one obtains a global quotient ë\ —> %\ —>¦ 0 such

that ^;|Ao &A0- By changing 81 appropriately, one may assume that %i 0^-
Let Xi be the kernel of 8\ —> &a ¦ Then X; \ Aq L\. But this implies that there is a

deformation of A Aq such that all three line bundles L, remain holomorphic. But
the assumption

Vi n v2 n y3 {A}

implies that there is no such (nontrivial) deformation of A.

It is therefore a very natural question to ask whether these rigid 6-dimensional
Kahler manifolds are projective or not. If they were not projective, we would get
counter-examples to the Kodaira conjecture. Unfortunately (in view of getting easy
counter-examples!), Theorem 4 of the next section tells us that a complex torus A

verifying Assumption (*) for some triple of holomorphic line bundles L, is always
an abelian variety. In fact, Theorem 4 even shows that (Pi)3-bundles of the special

type

Y ¥(OA © Li) xA P(0a © L2) xA P(0a © L3)

satisfy the Kodaira conjecture, even without assumption (*) for L\, L2, L3 (see

Lemma 6).
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2. Holomorphic line bundles on complex tori

Let X be a complex torus of dimension g. As explained in [BL99], [LB92] X admits

a period matrix of the form (r, lg) with r G Mg(C), the g x g-matrices with entries
in C such that det(Im r) ^ 0. Conversely every such matrix is the period matrix of
a complex torus.

If A g C8 := V denotes the lattice generated by the columns of (r, lg) the

Néron-Severi group of X may be described as

and C alternating, andB

The equality ensures that the alternating form £ is a (1, l)-form, cf. [BL99, p. 10].

Theorem 4. Let X be a 3-dimensional complex torus with period matrix (r, I3) and
let E\ • Z © £2 • Z © £3 • Z C NS(X) be a rank 3 subgroup of the Néron-Severi group
NS(X) ofX generated by E\, E2, £3 G NS(X). Then there is a sequence (Xn) of
3-dimensional complex tori with period matrices (xn, I3) such that

(i) the xn converge to r for n --* 00,

(ii) £1 ¦ Z © £2 ¦ Z © £3 ¦ Z C NS(X„), and

(iii) Xn is a complex abelian variety.

As a first step towards a proof, £ I
t „ „I may be considered as an element

/ 0 ai a2\
of the free abelian group Z15: the matrices A —a\ 0 03 and C

\-a2 -a3 0

0 ci c2\ /i»i b2 b3\
—c\ 0 C3 are alternating, and B £»4 b=, bß is arbitrary. Since

— c2 — C3 0/ \i>7 è» èq/
k ¦ E £ NS(X) implies £ G NS(X), condition (ii) is equivalent to

£1 ¦ Q © £2 ¦ Q © £3 ¦ Q c NS(Xn) ®z Q,

and £1 ¦ Q © £2 ¦ Q © £3 ¦ Q may be interpreted as a Q-rational point in the Grass-

mannian G(3, 15).

For a given 3-dimensional subspace E\ ¦ Q © £2 ¦ Q © £3 ¦ Q C Q15 the equations
A; — Bjt + trtBj +trCjT 0, i 1, 2, 3 imply algebraic relations between the

entries of
A, „

r I r4 r5 r6

\r7 ^8
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Since the A; — Bjt + txtB-l +txCit are alternating matrices, the number of these

relations can be reduced to 9 (i 1, 2, 3):

0 an - bnr2 - bi2r5 - bi3rs + bî4ti + bi5r4 + bi6r7

+ c,-i(rir5 - r2r4) + ci2{xxn - r2r7) + cu(t4ts - r5r7)

0 an - bnr3 - bi2T6 - bi3T9 + bi7Ti + è;8t4 + bi9r7
(*)

+ (tt - r3r4) + Cj2(tit9 - r3r7) + Cj3(r4r9 - r6r7)

0 ÖJ3 - bj4T3 - bj5T6 - bj6T9 + bj7T2

- r3r5) + ci2(x2x9 - r3r8) + ci3(r5r9 - r6r8).

So there is an algebraic subset Ueue2,e3 of C9 such that

Ueue2,e3 n {r g C9 : det(Im r) ^ 0}

describes all r's with Ex ¦ Q 0 E2 ¦ Q 0 E3 ¦ Q c NS(XT) ®z Q where XT is the

complex torus corresponding to the period matrix (r, 13). In particular, the union of
all these C/ËljË2jË3 is an algebraic family C/ c G(3, 15)xC9. Lett/ c G(3, 15)xP9
denote the projective closure of [/.

The heart of the proof is now a careful analysis of this family U, especially of
the fibers over Q-rational points of G (3, 15). If they always contain an (analytically)
dense subset of r 's such that Xr is a complex abelian variety, the theorem will follow.

The first observation is that all coefficients in the equations of (*) are rational.

Hence, Q is the field of definition of U, i.e. there exists a Q-scheme Uq such that

U Uq xq Spec C. In particular, every fiber of U over a Q-rational point of
G(3, 15) has Q as field of definition, too.

Next, one computes a fiber Ue1,e2,e3 of U with sufficiently general entries in the

matrices Ex,E2,E3. This can be done with the computer algebra program Macaulay2
([GS], [EGSS02]). Setting

/0 0 0\
Ax 0 0 2 I Bx

\0 -2 0/

B2

0 0 r
B3 I 1 2 1 I C3 I 0 0 0

v-l 0 0,

(the matrix entries were chosen by a random number generator) and using the
following Macaulay2 script
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k QQ;
PT k[t_0..t_9];

Al matrix(PT, { {0,0,0} {0,0,2}, {0,-2,0}}) ;

Bl matrix(PT,{{1,1,0},{1,1,2},{1,1,2}});
Cl matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});

A2 matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B2 matrix(PT, { {0 0,0} {l,l,l}, {0,1,0}});
C2 matrix(PT, {{O-0-O}- {0,0,l}, {0,-l,0}}) ;

A3 matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B3 matrix(PT,{{1,1,1},{1,2,1},{1,2,1}});
C3 matrix(PT, { {0,0,1}, {0,0,0} {-1,0,0}});

gent genericMatrix(PT,t_l,3,3);

si matrix(PT,{{t_0,0,0},{0,t_0,0},{0,0,t_0}});
s2 sl*sl;
Ql Al*s2 - Bl*gent*sl + transpose (gent)*transpose

(Bl)*sl + transpose(gent)*Cl*gent;
Q2 A2*s2 - B2*gent*sl + transpose (gent)*transpose

(B2)*sl + transpose(gent)*C2*gent;
Q3 A3*s2 - B3*gent*sl + transpose(gent)*transpose

(B3)*sl + transpose(gent)*C3*gent;
Q Ql|Q2|Q3; Q contains the 9 relations between

the t_i's homogenized with respect to t_0

q saturate(ideal(flatten Q), ideal(t_0))
-- saturation with t_0 removes all components on
the hyperplane t_0 0

betti q

one gets 8 linear and 1 quadratic equation describing the projective closure of
Ueue2,e3-

t_7+3/5t_8+8/5t_9
t_6-3/2 0t_8+l/10t_9
t_5-3/5t_8+2/5t_9
t_4+l/2t_8+t_9
t_3-l/2 0t_8-3/10t_9
t_2+3/10t_8+9/5t_9
t_l-3/10t_8+l/5t_9
t_0-l/4t_8-3/2t_9
t_8~2-48t_8t_9-172/3t_9~2

Since the quadratic generator has discriminant 242 + 4^p > 0 which is not the square
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of a rational number, this is a Q-irreducible O-dimensional scheme of degree 2; over
C it consists of two points.

Unfortunately, these equations may cut out too much, since the projective closure
of a fiber may be less than the fiber of the projective closure of a family. To deal with
this problem one has to do a little detour: First one looks at the (inhomogeneous) ideal
of the whole family U pulled back to (A12)3 x P9 where each A12 parametrizes triples
A, B, C with C normalized. This pull back is necessary since otherwise one has to
embed G(3, 15) in some projective space which makes the computations impossible

k QQ;
P k[t_0..t_9];
PE k[e_0..e_ll,f_0..f_ll,g_O..g_ll];
PT P ** PE;

Al matrix(PT,{{0,e_0,e_l},{-e_0,0,e_2},{-e_l,-e_2,0}});
Bl matrix(PT,{{e_3,e_4,e_5},{e_6,e_7,e_8},{e_9,e_10,e_ll}});
Cl matrix(PT, {{0,1,0} {-1,0,0}, {0,0,0} }),-

A2 matrix(PT,{{0,f_0,f_l},{-f_0,0,f_2},{-f_l,-f_2,0}});
B2 matrix(PT,{{f_3,f_4,f_5},{f_6,f_7,f_8},{f_9,f_10,f_ll}});
C2 matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});

A3 matrix(PT,{{0,g_0,g_l},{-g_0,0,g_2},{-g_l,-g_2,0}});
B3 matrix(PT,{jg_3,g_4,g_5},{g_6,g_7,g_8},{g_9,g_10,g_ll}});
C3 matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});

gent genericMatrix(PT,t_l,3,3);

Ql Al - Bl*gent + transpose(gent)*transpose(Bl) +

transpose(gent)*Cl*gent;
Q2 A2 - B2*gent + transpose(gent)*transpose(B2) +

transpose(gent)*C2*gent;
Q3 A3 - B3*gent + transpose(gent)*transpose(B3) +

transpose(gent)*C3 *gent;

Q Ql|Q2|Q3;
q ideal flatten Q;

The projective closure of U may be determined by computing a Groebner basis of this
ideal with respect to a monomial order refining the order by degree in the t; 's and then
homogenizing the generators with respect to to ([Eis95, 15.31]). This computation is
too complicated for the whole Groebner basis, but it is already enough to look at the
first few elements which are added to the original generators:

gbasis gb(q,PairLimit=>31);

hgbasis homogenize(gens gbasis,t_0,{1,1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0});
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Evaluation at (E\, Ei, £3)

f map(PT,PT,matrix(PT,{{t_0,t_l,t_2,t_3,t_4,t_5,
t_6,t_7,t_8,t_9, 0,0,2,1,1,0,1,1,2,1,1,2,1,2,1,0,0,
0,1,1,1,0,1,0,1,2,1,1,1,1,1,2,1,1,2,1}}));

genfibre ideal f(hgbasis);

betti gb genfibre
shows that the fibre (U)eue2,e3 is contained in a scheme cut out by 8 linear and 1

quadratic equation, so

(U)e1,e2,e3 Ueue2,e3-

One can get further information about U from the homogenized equations
collected in hgbas is. Since the projective closure of a fiber is equal to the fiber of the

projective closure on an open subset they contain 9 equations describing the fibers of
U over an open subset around (E\, E2, £3). Furthermore the command

transpose leadTerm hgbasis
shows that all of these equations contain f-variables Hence each of these fibers is cut
out by 9 non-constant equations, so it is not empty. Consequently, no fiber is empty.

Turning to the fibers of U over C9 (resp. P9) one sees immediately that these are

nonempty linear subspaces. Hence U is connected. Finally, the regularity of U follows
directly by deriving the equations in (*) with respect to the a\j 's. Taken all these facts

together it follows that U and hence U is irreducible So every 0-dimensional fiber
must have degree 2.

Now it is easy to prove for these 0-dimensional fibers over Q-rational points that

they describe period matrices r belonging to complex abelian varieties: Since the

fibers are Q-rational, too, the entries of r are elements of a field extension of Q of
degree 2. The defining equations of the Néron-Severi group show that then NS(XT)
is a 15 — 2 x 3 9-dimensional Q-vector space. But a 3-dimensional complex torus
with maximal Picard number 9 is algebraic (cf. [BL99])

What about the higher dimensional fibers? We consider the Q-rational map
4>: G(3, 15) —-> Hilb2(P?j) whose existence is the essence of the arguments used

above. Let

G(3,15)

be the resolution of the singularities of 4> by blowing up centers smooth over Q. This
is possible by the Hironaka package, see [Hir64], [BM97] or [HLOQ97]. Now the

theorem is a consequence of the following result.
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Lemma 5. Let Z c Y be an embedding of regular Q-schemes, let z € Z be a
Q-rational point and let <fi: Y —* Y be the blow up of Y with center Z. Then the

'Q-rationalpoints are dense on the fiber 0-1(z).

Proof. This is almost trivial: Choose a regular sequence (f\, fs, fs+\, ft)
in the local ring Oy,z defined over Q such that xnz,z (fs+i, ¦ ¦ ¦, ft) C &z,z and

roy,z (/i, ¦ ¦ ¦, ft)- The blowing up of Spec6>yjZ with center Spec6>z,z is given by

Proj QY,zlfs+i> •••>/»] (Spec OY,Z x F^s-l)/V(T;fj - Tjfi),

and the fiber over z is ¥^s~!. D

Apply the lemma on <p: If [Ei ¦ Q 0 £2 • Q 0 ^3 • Q] [W] G G(3, 15) is

a Q-rational point then n l([W]) c G will contain an analytically dense subset of
Q-rational points, and the same will be true of the image 4>(n~l ([ W])) c Hilb2(P«).

But Q-rational points in Hilb2(P?j) describe pairs of points corresponding to abelian

varieties, and all pairs in 4>(n 1{[W])) map surjectively on the fiber over [W] in U.
Hence this fiber contains a dense open subset of period matrices r such that Xr is an

abelian variety.

Remark. Some words about the Macaulay2 computations: Since all the relevant

equations and varieties are defined over Q and also the operations applied to them
like taking the projective closure work over Q, these calculations give exact results.

3. Modifications and a general setting for counter-examples

Of course the construction in Section 1 possibly could be modified in several ways
and then might lead to a counter-example to the Kodaira conjecture.

First we show that even without Assumption (*) the variety X constructed as

before Proposition 3 is algebraically approximable. Indeed in that situation (using
the previous terminology), V\ n V2 fl V3 contains other complex tori than A. Then
theorem 4 assures the existence of a sequence {A„}neN c V\ n V2 n V3 of abelian
varieties converging to A. The following lemma shows that this implies X almost

algebraic:

Lemma 6. Let E =1 t
I e M2g(Z) be a skew symmetric matrix with integral

entries and let

V {t gM3(C) I A-Br + 'r'B + 'rCr 0; detlmr /0}cC9
be the set ofperiod matrices r such that Xr is a complex torus with E G NS(Xr).
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Let X V x Cg/AT be the family of these tori Xr where Ar (r, lg) is the

lattice belonging to Xt Cg/AT. Then every to G V has an open neighborhood
U c V such that there exists a holomorphic line bundle £u on Xu such that

ci(£r) E for all x G U.

Proof. Let n : X —>¦ V be the projection of X onto V. By taking direct images with
respect to n and deriving the long exact sequence from 0 ^ Z ^ Ox ^ 0^ 1

one obtains the sequence

R^O^ -> R2tt*Z -> R2tt*Ox.

The skew symmetric matrix E gives a section of R2n:¥Z which is mapped to 0 in
R2n*&x since £ G NS(XT) for all r g V. Hence E is the image of a section in
Rln:¥0y~. Take an open neighborhood U of to such that the section restricted to U
is a cohomology class in /^(X^-i^), ö^). This class gives the line bundle »Cy.

D

Next, consider the following more general setting: Take an n-dimensonal complex
torus A and k vector bundles E\, E^ over A of rank r\, r^ < n. Let Y be

the (n + r\ + ¦ ¦ ¦ + r^)-dimensional manifold

xA ¦ ¦ ¦ xA

This a (Pri x ¦ ¦ ¦ x Pr*)-bundle over A with projection 7r : Y —>¦ A. In each subspace

P(Öa © £f) there is a section Z, at infinity given by the direct summand Ga- This
gives a section Z of 7r by selecting over every a G A the point {x\,..., Xk), where
{Xi } Zf n n~l (a). Let a : X -* Y be the blow up of Z c Y.

Similar arguments as in Section 1 show

Proposition 7. If there is a positive-dimensional family of deformations ofX then

there will also exist a deformation family ofcomplex tori {A(}(eA such that A Aq
and all vector bundles E\, E^ remain holomorphic on At.

The condition on the vector bundles to remain holomorphic requires some further
explanations: Let £ be a vector bundle of rank r over an g-dimensional torus A.
Then the Chern classes cx(E) are (i, i)-classes in H2i(A, Z) A2' Hom(A, Z),
where A c Cg =: V is a (non-degenerate) lattice such that A V/A. Since

H1'1 (A, C) A' Homc(y, C) x A' Hornby, C), the (i, f)-classes in H2i(A, Z)

may be interpreted as a real valued alternating form F on /\l V such that

and
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As in the case of 1, 1 -classes these conditions induce relations between F (written

in terms of a base of A) and the period matrix r. In a family {At }te A of complex
tori these relations must be satisfied for xt, t ^ 0, if a holomorphic vector bundle E
on Ao still has a holomorphic structure on At.

But the existence problem for vector bundles ofhigher rank with prescribed Chern
classes is much more difficult than in the case of line bundles. On (non-algebraic)
complex tori this problem is completely solved only in dimension 2 and rank 2

[Tom99], [TT02]. Consequently, to construct a counter-example to Kodaira's
conjecture with vector bundles of higher rank it is not enough to give a set of Chern
classes and to prove that these classes can be Chern classes only for isolated period
matrix. On the other hand if there is a positive family of such period matrices there

may be still a counter-example depending on the existence of vector bundles with
these Chern classes only on isolated members of the families.

Finally the two simplest cases of this general setting are considered.

3.1. Line bundles in arbitrary dimensions. Let X be a complex torus of dimension

g given by the period matrix (r, lg). By the characterization of the Néron-Severi

group in the last section a skew symmetric matrix E e M2g(Z) is a (1, l)-form iff
the entries of r satisfy I ~ I equations. Consequently, 3 skew symmetric matrices

Ei, E2, £3 G M2g(Z) should determine at most a finite number of g x g period
matrices r such that Ei, E2, £3 are first Chern classes of line bundles on XT.

As in the last section, for given g one can choose random entries for Ei, £2 £3 and

compute the locus V(Ei) n ^(£2) H V(E^) of r 's as above. But already in dimension
4 this locus turns out to be empty for randomly chosen entries. This means that only
special triples of matrices belong to the Néron-Severi group of a complex torus, and

it seems difficult to find one such that furthermore the above locus consists of isolated

points. And then one has still to prove that the period matrices in this locus determine

a non-algebraic complex torus.

3.2. Rank 2 vector bundles in dimension 3. This is the simplest case with vector
bundles of rank > 1. Unfortunately, by Poincaré duality

H2'2(X, Z) Hh\X, Z), H3'l(X, Z) H°'2(X, Z), Hl'3(X, Z) H2'°(X, Z)

and the equations for a skew symmetric matrix in M2g(Z) to be a (2, 2)-form do

not differ from those for (1, l)-forms. Hence in this case a counter-example may be

found only by closer considering the question for which complex tori exist rank 2

vector bundles with given Chern classes.

Of course more difficult settings starting with rank 2 vector bundles on 4-dimen-
sional complex tori may give positive results. On the other hand the examples above
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give enough evidence to turn around one's point of view, into an attempt to prove
Kodaira's conjecture in these special cases.

4. Deformations of Projective Bundles

In this final section we generalize Proposition 2.

Theorem 8. Let X be a compact manifold which has a Pr -bundle structure X —>¦ Y

over some compact manifold Y. Then for every deformation X --* S with Xo — X,
the nearbyfibers Xt have a Pr -bundle structure Xt —>¦ %t where y, is a deformation
of Y in a neighborhood of t 0. Moreover, ifX P(V) for some vector bundle V
on Y, then Xt ¥(Vt) for a suitable deformation Vt-r%tofV-r Y.

Proof. Let q : G —>¦ T be the irreducible component of the cycle space relative to

n : X --* S containing the fibers of X --* Y. So T parametrizes deformations of
the Pr to nearby fibers Xy. Since the normal bundle in G to these projective spaces
is trivial, it follows immediately that (possibly after shrinking S) T is smooth. Let

p: G —> X denote the projection and notice that there is another canonical projection
r:T—*S realizing T as a family (Ts). We will also consider Gs q~l(Ts) with
projection qs to Ts. Now qo is a Pr-bundle. Therefore for small s also the maps qs

are first submersions and second projective bundles (since projective space is locally
rigid). Having in mind that po : Co —>¦ ^o is an isomorphism, we see that p is an

isomorphism so that all Xt are projective bundles for small t.
The vector bundle statement finally is proved just as in Proposition 2.
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