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The macroscopic spectrum of nilmanifolds with an emphasis on
the Heisenberg groups

Constantin Vernicos*

Abstract. Take a Riemannian nilmanifold, lift its metric on its universal cover. In that way one
obtains a metric invariant under the action of some co-compact subgroup. We use it to define
metric balls and then study the spectrum of the Dirichlet Laplacian. Using homogenization
techniques we describe the asymptotic behavior of the spectrum when the radius of these balls

goes to infinity. This involves the spectrum, which we call macroscopic spectrum, of a so called
homogenized operator on a specific domain. Furthermore we show that the first macroscopic
eigenvalue is bounded from above, by a universal constant in the case of the three dimensional
Heisenberg group, and by a constant depending on the Albanese torus for the other nilmanifolds.
We also show that the Heisenberg groups belong to a family of nilmanifolds, where the equality
characterizes some pseudo-left-invariant metrics.

Mathematics Subject Classification (2000). Primary 53C24; Secondary 58C40, 74Q99.
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1. Introduction and statement of the results

This article deals with geometric properties of large balls in periodic Riemannian
manifolds. A Riemannian manifold (Nn, g) is periodic if it possesses a discrete

group F of isometries with a compact fundamental domain. Given xq g Nn, we are

interested in the asymptotic behavior of two geometric invariants of the metric ball,
Bg(xQ, p), with radius p and centered at xq, as p tends to oo:

• the Riemannian volume Volg(5g(xo, p));

• the spectrum of the Dirichlet Laplacian on Bg(xQ, p).

Our approach consists in rescaling the metric, i.e., replacing the original Riemannian

metric g on N with gp 1/'p2g, so that Bg(xo, p) becomes Bgp(xo, 1), and

applying homogenization techniques to the family of Riemannian manifolds with
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boundary Np (Bgp(xQ, \),gp). There are several notions of convergence of metric

spaces (see [Gro81b], [Gro93]). It turns out that the balls Np converge, in the

Gromov-Hausdorff sense, to a compact metric space if and only if the group F
contains a finite index subgroup V that is nilpotent, torsion-free, and finitely generated.
This follows from a celebrated result of M. Gromov [Gro81a], characterizing finitely
generated groups ofpolynomial growth, completed by P. Pansu [Pan83] and Van den

Dries-Wilkie [vdDW84]. Therefore, actions of nilpotent groups seem to provide the

proper setting for application of homogenization techniques in Riemannian geometry.

According to Malcev, such a group uniquely embeds into a simply connected

nilpotent Lie group G, and G/ F is called a nilmanifold. In the sequel, we assume
that N G is equipped with a F-invariant Riemannian metric. The manifold Nn

can be viewed as the Riemannian universal covering of Mn G/T equipped with
the quotient metric.

Although the results presented here are geometric in nature, we use homogenization

techniques. Hence this article can be read under two different lights.

1.1. From the geometric point of view: The Riemannian volume and the Dirichlet
spectrum of Bg(xo, p) are linked by Weyl's asymptotic formula, which states that if
A.jt(p) is the kth eigenvalue of the ball of radius p and Vol (p) is its volume, then as

k —>¦ oo, there exists a universal constant c{n) such that

k2/n
c{n)-

Vol2/n(p)

One could expect that the asymptotic behaviors of the volume and the Dirichlet
spectrum when the radius of the balls increases would be related. This is not the case;

we shall see that they are described by two different limit metrics.

Problem 1. Make the asymptotic behavior of the volume of a ball with respect to its

radius, precise, and extract geometric information from it.

In the case of nilmanifolds there is a precise equivalent to the volume of balls

given by P. Pansu [Pan83], which depends on the algebraic structure. Let G1 G,
and G'+1 [Gl, G]; then d% YlîZi dim G' is called the homogeneous dimension

of G, and

Vol(p) ~Asvol(g)p4.

The constant Asvol(g) is usually called the asymptotic volume. In the particular case

of tori, D. Burago and S. Ivanov [BI95] gave a lower bound on the asymptotic volume,
which is achieved if and only if the metric is flat (see also [VerO4] for an alternate

proof in dimension 2 using homogenization theory and [Bab91] for the first proof in
dimension 2).

To the nilpotent Lie group G, we can associate its limit group at infinity, Goo,

which is nilpotent and graded. Furthermore, thanks to a theorem of K. Nomizu
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[Nom54], H\(M, R) can be identified with a subspace of the Lie algebra of Gœ,
hence to a left invariant distribution K of vector fields over Goo- Thus to any norm
on H\ (M, R) we can associate a left-invariant sub-finslerian structure on Goo, hence,
thanks to Chow's theorem on accessibility, a left-invariant distance on Goo- For a

Euclidean norm we obtain a left-invariant sub-Riemannian structure. The metric g
induces two important norms on H\(M, R). The first one, called the stable norm,
comes from the sup norm on the 1-forms over M, which induces a norm (usually not
Euclidean) on Hl(M, R), and by duality on H\ (M, R). The second one, called the

Albanese metric, comes from the L2 normalized norm on 1-forms, which induces

a Euclidean norm on Hl(M,W), and by duality on H\(M,W). The two distances

induced by these two metrics on Goo are often said to be of Carnot-Carathéodory
type. We call them, respectively, the stable distance and the Albanese distance.

The following inequality, if not the best one, gives a hint of what we might expect
for all nilmanifolds.

Theorem 1. Let (Mn, g) be a nilmanifold. Let Gœ be the limit group at infinity
associated to the universal covering of Mn. Then the asymptotic volume of Mn

satisfies the following:

2. in case ofequality the stable norm coincides with the Albanese metric.

Here, [i is a Haar measure on Goo, #al(l) is the unit ball of the Albanese distance
centered at the unit element, and Dm is the image in Goo of a fundamental domain

on the universal covering ofMn, by the canonical projection.

Concerning the spectrum ofthe Laplacian on balls, atheorem ofR. Brooks [Bro85]
(see also Sunada [Sun89]) states that the bottom ofthe spectrum on the universal cover
is zero if and only if the fundamental group is amenable. The first eigenvalue goes
to the bottom of the spectrum as the radius of the ball goes to infinity. R. Brooks's
theorem implies, in our case, as the fundamental group is nilpotent hence amenable,
that the first eigenvalue goes to zero as the radius goes to infinity.

Problem 2. Make the speed of convergence to the bottom of the spectrum on the

universal cover with respect to the radius, precise, and extract more geometric
information from the spectrum of large balls.

To state our results to that problem, let us remark that to the Albanese metric we
can also associate a kind of Laplacian Am on Goo- Aoo is usually called the Kohn

Laplacian. It is a dilation invariant hypoelliptic second order differential operator,
which is symmetric and without a constant term.
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Theorem 2. Let (Mn, g) be a nilmanifold, with universal cover M, and let x G M.
Let Bg(x, p) be the corresponding Riemannian ball of radius p and center x G M,
andletX\(Bg (x, p)) be thefirst eigenvalue of the Laplacianfor the Dirichlet problem
on Bg(x, p). Then

1. \imp^+O0p2Xl(Bg(x,p)) Xf < A.i(g,Alb);

2. in case ofequality, the stable norm coincides with the Albanese metric, hence all
harmonic l-forms are of constant length.

Here, X\(g, Alb) is the first eigenvalue of the Kohn Laplacian arising from the

Albanese metric for the Dirichlet problem on Ba\(\), the unit ball of the Albanese
distance centered at the unit element. Furthermore, for tori this is a constant dependent

only on the dimension, and for the 3-dimensional Heisenberg group it is also

independent of the metric.

In the case of a 2-step nilmanifold with a 1-dimensional center, we can determine
for which metrics equality holds. We call these metrics pseudo-left-invariant (see

Section 6 for the definition). One of their main properties being that they arise as

fiber metrics over a flat torus (i.e. the nilmanifold submerges onto a flat torus).

Theorem 3. Ln the case ofa 2-step nilmanifold whose center is one dimensional, the

Albanese metric and the stable norm coincide ifand only if the metric is pseudo-left-
invariant.

Actually this behavior is shared by all the eigenvalues, and Theorem 2 is partially
a consequence of the following:

Theorem 4. Let (Mn, g) be a nilmanifold, with universal cover M, and let x G M.
Let Bg(x, p) be the corresponding Riemannian ball of radius p, and center x G M
and let k\ (Bg(x, p)) be the fth eigenvalue of the Laplacianfor the Dirichlet problem
on Bg(x, p).

Then there exists an hypoelliptic operator Aoo (the Kohn Laplacian of the
Albanese metric), whose fth eigenvalue for the Dirichlet problem on the unit ball of the

stable distance (centered at the unit element) is Xf, and such that

lim p2Xi(Bg(p))=Xfc.
p—rco

We call (Xf°);em the macroscopic spectrum.

1.2. From the point of view of analysis, let

L ——al3{x) —
axi axi
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be a uniformly elliptic differential operator on R", and assume that the coefficients

a\j are periodic, i.e., aij(x + k) aij(x) for any k e Z" and C00. After rescaling we
get a family of operators

9 (x\ d

0<e<l, Le=-—a9

We can associate, to this family of operators, a so-called homogenized operator,

L0 -qr— —dxi dxj

Now, if D is a domain of R", then we can consider the Dirichlet problem for this

family of operators, and hence we have eigenvalues and eigenfunctions, denoted

respectively by

A.Q <^ <A.| < ••• and

We now have the following problem.

Problem 1'. Study the convergence of A| and 4>l to A.9 and 0?, respectively, as

e -> 0.

In the case of R", this is the subject of Chapter III of [OSY92], and Chapter 11

of [JKO94], and of [CD99].
The operators Le define Riemannian distances de. So another related problem is

the following:

Problem 2'. Study the relationship between the distance de and the distance do.

The papers [Dav93], [Nor94] and [Nor97] are related to this problem in conjunction

with the existence ofbounds on the heat kernel (see also [KS00] for a probabilistic
approach).

The present paper is concerned with the problem above, when R" is replaced by
a nilpotent Lie group JV and Z" by a uniform lattice F of N. Homogenization in this

context, when N is stratified (graded), has been the subject of [BBJR95], [BMT96]
and [BMT97].

However our paper differs in three ways from the previous work. First of all,
we are not dealing with a stratified group, hence we must not only homogenize the

operator, but also the space, by using its associated graded Lie group. Secondly we
begin by studying a family of elliptic operators, which happens to have an hypoel-
liptic homogenized operator. And finally, our domain moves with the operator. The

relationship with the long time asymptotics of the heat kernel is shortly studied in
Section 8.
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2. Geometry of nilmanifolds

2.1. Nilpotent Lie algebras. Let u be a Lie algebra. One says that it is nilpotent if
the sequence defined by

1^=11, U' + 1

[U',U],

is such that for some k e N, u^+1 {0}. Let r be the smallest of such k; then we say
that u is an r-step nilpotent Lie algebra.

A distinguished family of nilpotent Lie algebras consists of the graded ones. A
nilpotent Lie Algebra u is graded if it admits a decomposition:

u vi e ¦ ¦ ¦ e vr, (i)

such that

1. Vi: is a complement of u'+1 in u' ;

2. [Vi,Vj]cVi+j.
It is quite important in our work that to such a graduation one can attach a one-

parameter group of automorphisms (t/O)/OeR+ called dilations such that:

xp(x) p'x for all x e Vf.

In fact, the existence of such a family of dilations is equivalent to the existence of a

graduation. These dilations play the same role as the dilations in Euclidean space.
Not all nilpotent Lie algebras are graded. But to each nilpotent Lie algebra, we

can associate a graded nilpotent one in the following way:

Uoo

the Lie bracket being induced. We will denote by it : u —>¦ Uoo the induced projection
and by rp the dilations in uœ.

The Homogeneous dimension ofu is the number

dh

There is another way to make that graded Lie algebra appear: start with a nilpotent
Lie algebrau, remark that for all i, u'+1 c u', and build a basis (X,), of u by taking
independent vectors X^j _| |_^ 1+i, Xdx-\ \-di-\+di such that the vector space V-,

that they span is a complement of u'+1 in u'. Hence the direct sum (1) holds. We

shall denote by prVj the projection induced on Vi by this direct sum. Now we define

a function rp : u —>¦ u by



Vol. 80 (2005) The macroscopic spectrum of nilmanifolds 299

with a(p) i if 4_i < P < 4, and do 0.

We obtain a new Lie algebra up by modifying the Lie bracket in the following
way: for any X and Y in up, [X, Y]p x\/p[xpX, rpY]. Thus xp becomes a Lie
algebra isomorphism from up (u, [ -, -]p) to (u, [ -, ¦]).

Now as p goes to infinity, up goes to Uoo, in the sense that for i, 7 1,...,«, we
have

Notice that all up have the same graded Lie algebra. We will denote by îrp the

projection from up to Uoo (in fact we could avoid the subscript in îrp, because we can

identify the Lie algebras as linear spaces).
Notice that if the Lie algebra is graded, then [X, Y]p [X, Y], and xp is a Lie

algebra automorphism. Otherwise, remark that for all X e up

n(xp(X))=ïp(np(X)).

2.2. Remarks on exponential coordinates. Let G be the simply connected Lie

group associated with the nilpotent Lie algebra u. For nilpotent Lie groups, the

exponential is a diffeomorphism between the Lie algebra and the Lie group, hence

thanks to the exponential coordinates, we can identify G, as a differential manifold,
with some R":

4> : R" —>¦ G, 4> : x (x\, xn) *--* expxiXi .expx„X„.

Let X* be the dual form of X\.
Moreover, we denote by 8P the following family of dilations:

Notice also that dSp xp. We define a family of group products *p by setting

x *P y Si/p[Sp(x)Sp(y)l

Finally
x *oo y lim x *p y.

Thus we get a family of nilpotent Lie groups Gp (G, *p), 0 < p < 00, whose
Lie algebras are isomorphic, respectively, to the algebras up, 0 < p < cxd. We

also denote by np: Gp —> G^ the function which sends x g Gp to x e G^, i.e.,

np <fiœ o cj)~l (and to simplify n\ n).
Observe that for 1 < j < d\, the xj live on G/[G, G].

If e € G is the unit element and X € u, then for p € R, Xp will be the *p left
invariant field in Gp such that Xp(e) X(e). Thus to the basis (X;) defined in 2.1,

we will associate the *p left invariant fields (Xf). Notice also that
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We also define V^ by

3. Asymptotic behavior of the distance

3.1. The stable norm

3.1.a. Recall that (Mn, g) is a manifold whose universal covering is a simply
connected nilpotent Lie group G. We shall denote by g the lifted metric on G. On the

graded nilpotent Lie group Goo associated to G, we obtain a natural distribution by
left multiplication of V\ U1/112 C Uoo- We shall call that distribution horizontal
and denote it by K.

Let us remark that since the Lie algebra uœ is generated by V\, a basis of V\

satisfies the so called Chow (or Hörmander) condition in the Lie group Goo- Let us

recall what the stable norm is:

Definition 5. Let || ¦ H^ be the quotient of the sup norm on 1-forms, arising from
the metric g, on the cohomology Hl(Mn, R). Then its dual norm on the homology
Hi (Mn, R), is called the stable norm and we denote it by || ¦ ||oo-

By a theorem of K. Nomizu [Nom54], H\(Mn, R) V\, thus we can transport
the stable norm on K. Now the Rashevsky-Chow theorem (see Theorem 2.4, p. 15, in

[BR96]) asserts that two points of Goo can be joined by a curve tangent to M (usually
called an admissible curve). For an admissible curve y : [a, b] --* Gœ, we consider

its stable length loo{y) fa lly(0lloo<^- Hence we can define adistance <ioo, which
we call the stable distance, between two points of Goo, by taking the infimum of the

stable lengths of admissible curves between these points. This kind of distance is

usually said to be of Carnot-Carathéodory type. We shall call the unit ball for the

stable distance centered at 0 the stable ball and denote it by Bœ(l).

3.1.b. For any x, y G Gp, let us introduce dp(x, y) ——p ' p—. Then the

work of P. Pansu [Pan83], implies that for any x, y G Gp

7Tp(x),7Tp(y)) doo(7T oSp(xj- f km —
dp(x,y) p^oo dg(öpx,öpy)

doo(7Tp(x),7Tp(y)) doo(7T oSp(x),7T oSp(y))
km j- f km — —-^ 1.d() d()

This implies the simple convergence of the functionals x \-> dp(0,np l(x)) toward

x h> dœ(0, x) on 5oo(l)\95oo(l).
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3.1.C Remark that the distance dp is also given by the metric gp on Gp, obtained

by rescaling the pull back of the metric g on G in the following way:

gp —^(Spfg.

3.2. Gromov-Hausdorff convergence of balls

3.2.a. Recall that a family of spaces Xn, endowed with metrics dn and measures

\.in, is said to converge in the Gromov-Hausdorff Measured sense toward {X, d, yu.) if
and only if there is a family (/„)neN, where for all n, fn is an \xn measurable function
from Xn to X, and there is a sequence (e„), decreasing to 0, such that

1. the en neighborhood of fn{Xn) in X is X;

2. for any x, y e Xn, \dn{x,y) -d{fn{x), fn{y))\ < en;

3. for any continuous function «:X-^Rwe have

/wo fndßn -> /
Jxn Jx

ud/j,.
x

3.2.b. Let [ip (resp. /xg) denote the Riemannian volume associated to gp (resp. g),
and let ßoo be defined as follows. Let Dp be a fundamental domain in G and \.i a

Haar measure on Gœ, then (recall that n is the canonical projection from G --* Gœ)

g
Moo M-

ß(lT(Dr))

Adding to this that for any compact domain A in G^, whose boundary is of Haar

measure 0, and any function / G L1 (A, iJ,œ), we have

lim / f(7Tp(x))dßp(x) / fdßoo. (2)

Theorem 6. The family ofmetric spaces (Bp(l), dp, \ip) converges in the Gromov

Hausdorffmeasure topology to (5oo(l), doo, jj-oo) as p goes to infinity.

To prove the convergence (2) let A be a domain in G^, then np
l (A) belongs to

Gp and Sp o n~l(A) belongs to G. We will denote by * the law group of G. Let

z\, ¦ ¦ ¦, Zk and f i, £/ be elements of V such that £/ * Dr H <5P o 7T"1 (A) 7^ 0 for
any 7, and

I

zi * Dr C Sp o 7T"1 (A) c (J 0 * or.
i
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Let us notice

Then we get

-; Sp0Jtp

that

/

inf

C. Vernicos

f(x)ßoo(ir(Dr)) < f f{ll/p 0 7T(x))dßg(x)

CMH

SUP f(x)nO0(n(Dr)).

Dividing both sides by pdh (see 2.1), we get:

inf f{x)ixl

SUP f(x)ßoo(Sl/p 0 7T(Dr)).
ejrpo8l/p(i;j*Dr)

Then the extremal terms are Riemann sums that converge toward fA fd/j,œ.

3.2.C. We are now able to define and identify the asymptotic volume by

Asvol(g)= lrm ^{Bffi)) Moo^ood)).

3.3. Convergence of the elements of the set £2

3.3.a. For p e R, L2p L2(BP(\), d[ip) will be the space of square integrable
functions over the ball Bp{\), which is a Hubert space with the scalar product

(w, v)p / uv d\xp.
Jbp(\)

Its norm will be denoted by | ¦ \p.

Let X2 be the set of nets (wp)peR+ such that for 1 < p < cxd, up g L^. Thanks

to the Gromov-Hausdorff measured convergence of balls, we can give a meaning to
the sentence "the net (w/O)/OeR+ converges" in the following way.

Definition 7. Let (wp)peR+ be an element of X2, we say that it strongly converges
to Moo if and only if there exists a net (va) in C°(5oo(l)) strongly converging to Woo

in L2^, and such that

lim lim sup \va o np — up \p 0.
a



Vol. 80 (2005) The macroscopic spectrum of nilmanifolds 303

This allows us to introduce the weak convergence as follows.

Definition 8. Let (w/O)/OeR+ be an element of X2. We say that it converges weakly
to Moo, if for every strongly convergent net (u/O)/OeR+ of X2, we have

Yaa.^{up, vp)p (u^, UooW

For the properties of these convergences see our previous work [VerO4] and

[VerOl]. It suffices to say that they satisfy the usual properties of weak and strong

convergence in L2.

3.3.b. We shall say that a function / is periodic with respect to F (the co-compact
subgroup) if for every y G F and x G G we have /(y * x) /(x). Thus the metric

g lifted from Mn to G is periodic with respect to F.
To finish this section remark, that it is not difficult to adapt the proof of the limit

(2) to obtain (see [BBJR95] page 431).

Lemma 9. Let h be a function that is periodic with respect to F on G. Let hp be

defined on Gp by hp(x) h(Spx). Then (hp)pef>+ weakly converges in X2 toward

1

L.e. for any up —> Woo strongly in X2, we have

f f
JBp{\)

P P
JScoC

4. Behavior of the eigenvalues: setting

4.1. The Albanese metric

4.1.a. Let Dr be a fundamental domain for the action of F on G. Let /' be the

unique solution (up to an additive constant) of

Ax1 Ax, on Dr, for 1 < i < r,
that is periodic with respect to F.

Let us define the operator Aoo by

i / /¦ " \Ar X ^ I I ij X ^ ik V 7 ,7 \ VOQ vOÛ r /o\
00 ~V (M\ / - [I g Z-~ig k ' X ^g i ' J

* ^'

qUx°°.X?f. (4)
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Remark that r/j (x) /; (x) — xj is a harmonic function on G, and by construction
so are the 1-forms dm on the nilmanifold. It is not difficult to show the following.

Proposition 10. Let (•, -)2 ie ?/?e scalar product induced on l-forms by the Rieman-
nian metric g. Then

qU -\—(dm,dr]})2=qri.
Vol(g)

7ÄM5 A oo fa ö« Hypoelliptic operator.

4.1.b. Recall that thanks to Nomizu's work [Nom54], H\ (Mn ,R) Vi, hence by
duality we get that the dimension of Hl(Mn, R) isd\. Remark that (q'}') is the matrix
of the L2 normalized scalar product on harmonic l-forms, written in the basis (dru),
hence on Hl(Mn, R) by Hodge's theorem (whose norm will be written || ¦ H2). By
duality it gives a scalar product on H\ (Mn, R) (whose norms will be written || ¦ Hj).

The norm || ¦ ||j induces another Carnot-Carathéodory metric, which we shall
call the Albanese metric and denote by <iai, as follows. Take on Me H\(M, R)
(the horizontal subspace of the tangent space at the unit element) an orthonormal
basis Yi(e), Ydx(e) for || ¦ Hj. It induces a left-invariant orthonormal frame
field on M, and for any admissible curve y : [a,b] —>¦ Goo, we have that y(f)
Ef=i«KO^(y(O). ThentheAlbaneselengthofyis/al(y) fa&=i«f(t))1/2dt,
and the Albanese distance between two points is the shortest Albanese length among
all admissible curves joining them. A comparison of the L2 norm and the L°° norm
gives the following

Proposition 11. For every l-form a and y G Hi (Mn, R) we have

Wah < \\a\\*œ and \\y\\œ < \\y\\*. (5)

In other words the unit ball 5ai(l) of the Albanese metric da\ is included in 5oo(l)-

Proof. For a a l-form we have

/I f \1/2
L. ...¦ / \a\2d,xg) < sup \a(x)\
\Volg(AZ) Jm J xeM

Hence our proposition follows, first by passing to the quotient and by duality, and

finally by integrating over admissible paths.

4.2. The eigenvalues, at last! All the balls considered here, will be centered at a

fixed point xo of the universal covering of M" (G/T,g). We study the eigenvalues

of the Dirichlet problem on Bg(p), the geodesic ball of radius p:

A0 on Bg(p);
0 on dBJp).
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It is well known that the eigenvalues are a discrete family accumulating at infinity.
We shall denote them by Xi(p) < X2(p) < ¦ ¦ ¦ < M{p) ¦ ¦ ¦ ¦

R. Brooks s theorem [Bro85] on the first eigenvalue of the whole group implies
that as p goes to infinity, X\ (p) --* 0. We are going to estimate how fast it converges
in our case.

4.2.a. On each Gp (see 3. l.c), we pulled back the lifted metric of M" on G, g, and

rescaled it in the following way

gP —^(Spfg.

This gives a net of Riemannian manifolds (Gp, gp)pew+- Let Bp(\) be the unit
geodesic ball for the metric gp, and consider the Dirichlet problem for Ap the Lapla-
cian associated to gp, i.e.,

Up(/> f on 5,(1);
[0 0 ondBpil).

To a function / from Bg(p) to R let us associate a function fp on Bp(\) by
fp(x) f(8p-x). Then it is an easy calculation to see that for any x G Bp(\),

p2(Af)(8p-x) (Apfp)(x).

This implies that the eigenvalues of Ap on Bp{\) are exactly the eigenvalues of
A on Bg(p) multiplied by p2.

Enlightened by what happens on tori we would like to show that the net of
resolvents of the Laplacians (Ap)peR+ compactly converges towards the resolvent of
A oo, which implies the convergence of the spectrum towards the spectrum of Aoo for
the Dirichlet problem on Boo (I) (see Theorem 15, 17 and 21 of [VerO4]).

4.3. Upper bound on the eigenvalues, lower bound on the asymptotic volume
and the equality cases. Recall that 5ai(l) is the unit ball for the Albanese metric

on Goo, centered at the unit element. Let D be a bounded domain of Goo, and

denote by X?°(D) the zth eigenvalue of Aœ on D for the Dirichlet problem. Then by
Proposition 11, we have 5oo(l) D i?ai( 1 Thus by the min-max property, for any i,
we obtain

X?°(5oo(l))<X?°(5ai(l)). (6)

Following the maximum principle (see J.-M. Bony [Bon69]), equality holds if and

only if the two balls coincide, and thus the norms in Proposition 11 also coincide.
The same argument also shows that we have equality in the following estimate if and

only if the stable norm and the Albanese metric coincide.
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Proposition 12. Let (Mn, g) be a nilmanifold. Let Gœ be the limit group at infinity
associated to the universal covering of Mn. Then the asymptotic volume of Mn

satisfies the following inequality:

Here, [i is a Haar measure on Gœ, 5ai(l) is the unit ball for the Albanese distance
and Dr a fundamental domain on the universal covering ofMn.

Proof. From 11, for any Haar measure [i, one gets the following inequality:

We can conclude by taking the Haar measure ßoo for \i (see Section 3.2), giving the

asymptotic volume.

5. Homogenization and proof of Theorem 4

The first step consists in showing the convergence of the metric geodesic balls with
respect to the Gromov-Hausdorff measure topology (completed in 3.2).

5.1. Asymptotic compactness

5.1.a. Let us now define the various functional spaces involved. Recall (see 3.3.a)

that for p g R L2 L2(BP(\), d[ip) is the Hubert space of square integrable
functions over the ball Bp{\) with the norm | ¦ \p.

5.1.b. Following the usual nomenclature, we will be interested in the following
spaces, for an r-step nilmanifold (see Section 2.1):

p {v\v,Xf ¦vGL2(Bp(l),diJ,p), l<a(i)<r] (7)

(resp. H^(Boo(l)) {v\v,Xf°-ve L2(BO0(\), dßoo), 1 < i < di}). (8)

These spaces become Hubert spaces when endowed with the quadratic forms

||p, defined by

(resp. ||ü||2co |w|2oo+ E \\xi°-v\\lo)- (10)

\<i<d\
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We will denote by Hp 0(Bp(l)) the closure in Hp(Bp(l)), with respect to the norm
|| ¦ ||p, of the space of C°°(BP(1)) functions with compact support in Bp(\).

5.1.C We can define a self adjoint operator on Lp, whose resolvent will be Rpk

forÀ g R, thanks to the Friedrichs extension of the Laplacian (sub-Laplacian for
Aoo) defined on Hp 0(Bp(l)), endowed with the following quadratic form

IMIp,o Mp + ("> Apu)p.

Now for a bounded net in (//J 0(5p(l))) eR+ with respect to these quadratic forms

we have the following Lemma.

Lemma 13. Let (up)pe^+ be a net with up g Hp 0(Bp(l)) for every p > 1, and
assume the existence ofa constant C such that for every p > 1, we have

ll"pllp,0 < C.

Then there is sub-net which is strongly convergent in X2.

Proof. Let 5 be a compact set such that |JpeR+ np(Bp(\)) c B c Goo- Wearegoing

to show that the strong convergence in L2{B, fj.œ) implies the strong convergence in
X2. Then the compact embedding of H^iB) in L2(B, ij,œ) will conclude the proof.

Let us first notice that the periodicity with respect to F, and the co-compactness
of F gives the existence of two constants a and ß such that (we suppose the norms
are defined on B, and identify B and n~lB)

oo < \v\p < ß

Let us start by taking a net (vp), strongly converging in L2(B, /iw) to «oo- We also

assume vp o np g Hp 0(Bp(l)) for every p and is zero outside Bp{\) (because it is

all we need).
First we will prove that Uoo £ L2^ (we mean that, outside 5^(1), Uoo can be

considered equal to zero), indeed, the strong L2 convergence implies the existence of a

subnet of (vp) which simply converges almost everywhere to Uoo • Hence the Gromov-
Hausdorff convergence implies that Uoo is zero almost everywhere on 5\5oo-

Thus, let us take cp g C^°(500(l)), p G N, such that (cp)pe^ is a sequence of
functions strongly converging to Uoo in L2^. We have

\Cp 0 7Tp - Vp 0 7Tp|p < ß\cp - Uooloo + Y I "oo ~ V

Now let e > 0. Then for p large enough, ß\cp — Uooloo < £• We fix p large enough,
and take p large enough for the second term to converge to 0, which gives us the

strong convergence we needed (see Definition 7).
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Now to conclude, observe that from the assumptions, the net (up o n~l (ifneed be

we extend this function by zero outside Bp (1)) is bounded in H^ (5), hence using the

compact embedding of H^iB) in L2(B, iJ,œ) (with the right regularity assumption
on the boundary of B), we can extract a strongly converging net in L2{B, fj.œ) and

by what we just did in X2.

5.2. Compact convergence of the resolvents. For À > Oandp > l,leta£(w, v)
(Apu, v)p + X(u, v)p and Gpx be the operator from L? to Hl 0 c L2p such that

4(G*f,4>) (f,4>)p for all ^eH^. (n)

For any u, v e //^ 0, let

qij Xf°u Xfv dixoo + k(u, v)œ.

Then we define Gk '¦ L2^ -^ H^ 0, by

a?(GkF, <D) (F, $)«, foraU <i> e ^>0. (12)

The aim of this part is the following theorem, after noticing that /?£ —Gp_k and

Theorem 14. For every À < 0, the net ofresolvents (Rk)pef>+of the net ofLaplacians
(Ap)peR+ converges compactly to R^°, the resolvent of A^ from the homogenized

problem, i.e, for any net (w/O)/OeR+ ofX2 weakly converging, the net (Rp ¦ w/O)/OeR+

ofX2 strongly converges to R^° ¦ Moo-

The proof is an adaptation of Tartar's method of oscillating test functions (see

Chapter 8 of [CD99] for the classical method).

Proof. First step: Let fp be a weakly convergent net to / in X2. Then up to subnets

Up Gpxfp -> üx strongly in X2; (13)

Pp (gpj)VGplfp -> Px weakly in X2. (14)

One obtains (13) because the net (fp)pew+ is uniformly bounded in X2, and for
all p G R, fp is also bounded in H~l, the dual space of Hp 0. Thus thanks to

equality (11) and Lemma 13, we can extract a strongly converging net in X2 from
the uniformly bounded net (Gpfp)pe^+ (with respect to the norms (|| ¦ ||p,o)peR+)-
To get (14), simply remark that (-f>/o)/OeR+ is also bounded in X2.
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Now for any $oo e L2^, by passing to the limit in equation (11), we obtain

Pk-VK<l>oo d^oo + Ku\, $00)00 (f,$oo)oo- (15)
JBc

Before passing to the next step, remark that Px is horizontal. Indeed denoting by
P'p and Plx the coordinates of Pp and Px, we have

P!p

So if a(i) > 2, then this net of coordinates strongly converges to 0 in X2, because

(gij(&Px))VGpfp is also bounded for any p G M+.

Second step: This step consists in showing Px {q^^x^x on Bœ(l), as it induces

We just give the ingredient needed to copy the classical proof (see also [VerO4],
section 4.3).

Consider x.k(y) (see 4.1.a) such that its mean value on a fundamental domain is

zero, and for every k 1, d\, define the oscillating function

wkp(x)=xk--xk(8Px). (16)

Then we have

wp -> xk strongly in I2. (17)p

Using the usual trick in Tartar's method, we obtain for every <p e
and for p large enough, for the support of cp to be in np(Bp(l)):

I gj [X ¦ Up(X- (<p o 7tp))wp — X ¦ Wp(X- ((p o 7tp))l
jBA1)

(18)

/ fp wp (P ° np d\.ip — À / <p o TtpUpWp dp,p.
Jbjï) Jbjï)

To pass to the limit in this identity, we use the following facts:

Fact 1. (Xp((p o jtp))wk strongly converges to {X^°(p)xk in X2 because, writing the

left multiplication by x in Gp as lp, we have

X?(<p o Ttp)\x dtpn o1p^ o ditpyp^ o dlp ¦ Xp(e).

Now by definition lp --* /^° and np --* idGœ, which explains why

pointwise (and weakly X2 from the claim in the proof of Section 3.2).
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Fact!. For 1 < i, j < d\, g'pJ Xfw^ is periodic with respect to &i/pr and weakly

converges in X2, by Lemma 9, towards its mean value

qJk -4r- f (gij(y)(8ik ~ XiXk{y)))d,xg.
ßg{L>r) Jdy

Fact 3. For a(i)+a(j) > 2,gp3X?wkp p2-"^-"^ giJ(8px)Xf u;£, thus this term

weakly converges in X2 towards 0.

Hence the identity (18) becomes

r r r
/ (PJxXk-qiküx)Xf(pdßoo= fxkcdßoo-X (püxXkdßoo.

(19)

Furthermore, if we put 4>oo çxk into equation (15) and subtract the result from
the equality (19), then we obtain the following identity in terms of distribution.

Pl Pk JT>k Xfüx. D

5.3. Conclusion. Theorem 14 gives the compact convergence of the resolvents.

Hence we can use Theorem 21 in [VerO4], which states that if the resolvents are

compact, and they converge compactly, then the net of kth eigenvalues converges to
the kth eigenvalue of the limit operator.

6. Emphasis on the Heisenberg Groups in the equality case

The aim of this part is to characterize metrics for which the inequality (6) is an

equality (see also Theorem 2) for a class ofnilmanifolds that contains the Heisenberg
nilmanifolds. The first thing to remark, which is always true, is that equality holds

if and only if the stable norm and the Albanese metric are equal. In that case, all
harmonic 1-forms are of constant pointwise norm (same proof as in [VerO4]). Now
let us introduce the pseudo-left-invariant metrics.

Definition 15. Let _/V"+1 F\G be a nilmanifold such that G is 2-step nilpotent
with one dimensional kernel. Let p be a submersion of Nn+1 onto a flat torus T". Let
(a i, an be the lift of an orthonormal basis of harmonic 1 -forms over the torus,
and choose a 1-form û of Nn+l such that dû p*b, where b is a closed 2-form
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over the torus (in other words we chose a connection). Let g& be the Riemannian
metric such that the dual basis of («i, an, ¦&) is orthonormal. Thus p becomes a

Riemannian submersion. We will call such a metric pseudo-left-invariant or bundle-
like.

The idea is that if the 2-form b has constant coefficients, then û can be chosen

so that the above construction gives a left invariant metric. Thus this pseudo-left-
invariant metric can be seen as a perturbation of a left invariant metric, obtained by
perturbing a left invariant basis of vector fields.

We are now able to give our precise claim.

Lemma 16. Let (E^n+i, g) be the In + \-dimensional Heisenberg group, equipped
with aperiodic metric. Then its stable norm coincides with its Albanese metric ifand

only ifg is pseudo-left-invariant.

Remark also that in the case of the 3-dimensional Heisenberg group, the function
X i (g, Alb) in Theorem 2 is actually a constant that does not depend on the metric. This
is due to the fact that, up to isometries, there is only one left-invariant sub-Riemannian
metric in that case (see chapter IV of [VerOl]). Hence in that case, the theorem has

a similar form as the theorem for tori (see [VerO4]), for which the function is also

constant because up to isometries there is only one Euclidean metric on R".
Actually, we have a result that is slightly more general than Lemma 16. We focus

on 2-step nilmanifolds, whose Lie algebras have a 1-dimensional center.

Lemma 17. Let (M"+1, g) be a 2-step niImanifold whose center is ofdimension 1.

Then its stable norm and its Albanese metric coincide if and only if the metric is

pseudo-left-invariant.

As the Albanese metric and the stable norm coincide if and only if all harmonic
1-forms are of constant norm, Lemma 17 is a consequence of the main theorem in

[NV04]:

Theorem 18 (P.-A. Nagy, C. Vernicos [NV04]). Let (Mn+1, g) be a Riemannian

manifold with first Betti number equal to n, all of whose harmonic l-forms are of
constant norm. Then (Mn+l, g) is a 2-step nilmanifoldwhose center is ofdimension 1,

and g is pseudo-left-invariant.

7. Graded nilmanifolds with totally geodesic fibers over a torus

There is one last particular case we would like to study, the case where the nilmanifold
is graded (i.e. its algebra is nilpotent and graded as defined in Section 2.1), and the
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metric on (Mn, g) is as follows. We suppose that the first Betti number b\ (Mn) k,
and we recall that K is the horizontal distribution coming from V\ (see Sections 3.1. a

and 2.1). Moreover we assume that we have the following Riemannian submersion,
with totally geodesies fibers and with a metric equivariant on the fibers:

where dpx is an isometry (we write g g\j{) from {,KX, gx) to (Tp(x)Tk, gp(x)).
Then, in the case of equality in Theorems 1 and 2, the Albanese map is a Riemannian

submersion, which implies that g is flat. Which in turn, using our assumptions

implies that the metric g is left invariant (indeed see Chapter 9 Section F in [Bes87]).
In other words:

Proposition 19. Let (M, g) satisfy the above assumptions. The Albanese metric and
the stable norm coincides ifand only if the metric is left invariant.

In other words, we could say heuristically that for sub-Riemannian metrics the

equality case in Theorem 2 (which holds in that context too, see [VerOl] for the

convergence ofthe spectrum) characterizes the left-invariant sub-Riemannian metrics.

8. On the long time asymptotic« of the heat kernel

Let (G/ F, g) be a nilmanifold and (G, g) its universal cover with the lifted metrics.
Recall that we associated to this Lie group the net (Gp, gp) of Riemannian manifolds.
Let us focus on the heat kernel:

[§7 + Am 0 m]0,+oo[xG;
(2Q)

|w(0,x) uo(x).

Let us introduce the rescaled functions on Gp,

up(t,x) pdhu(p2t,8px), p > 0.

Then an easy computation shows that m is a solution of (20) if and only if up is a

solution of
\^f- + Apup=0 in]0,+cx)[xGp;
\up(0,x)=pd»u0(Spx).

Thus the study of w(f, ¦) as f goes to infinity is related to the study of up{\, ¦) as

p --* cxd. We can imitate the proof of Theorem 14 to obtain:

Theorem 20. The net of resolvent (R^) weakly converges to the resolvent (R%°) of
Aoo on Goo-
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Imitating the proof of Theorems 4 and 6 in [ZKON79], as in [BBJR95], we get
the following theorem (let da\(e, x) \x\ be the Albanese distance between the unit
element and x).

Theorem 21. Thefundamental solution k(t, x, y) o/(20) has thefollowing asymptotic
expansion

k{t, x, y) koo(t, tt(x), Jt{y)) + t *0(t, x, y).

Here k^t, x, y) is the fundamental solution of

AqoMoo 0 in ]0, +oo[xG00,
dt

and6(t, x, y) --* 0 uniformly as t —* oc on \x\2 + \y\2 < at, for any fixed constant
a > 0.

The next theorem follows by integrating the previous one.

Theorem 22. Let u0 e Ll{G) n Lœ(G). Then u{t, x), the solution of'(20), has the

following asymptotic expansion:

ik. f
Jg

—ik. f —ik.
u(t,x) cot 2 / uo(y)dy + t ^0{t,x),

Jg

and6(t, x) converges uniformly to Ofor \x\ < R, where R is apositive constant, and

co depends on Aqq.

Acknowledgments. Many thanks to the referees for their careful reading and

improvements. Thanks to F. Newberger the cats seats, and the dog stands!
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