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Topological symmetry groups ofgraphs embedded in the 3-sphere

Erica Flapan, Ramin Naimi, James Pommersheim and Harry Tamvakis*

Abstract. The topological symmetry group of a graph embedded in the 3-sphere is the group
consisting of those automorphisms of the graph which are induced by some homeomorphism
of the ambient space. We prove strong restrictions on the groups that can occur as the
topological symmetry group of some embedded graph. In addition, we characterize the orientation
preserving topological symmetry groups of embedded 3-connected graphs in the 3-sphere.
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1. Introduction

In this paper, we begin a systematic study of topological symmetry groups of graphs
embedded in the 3-sphere. The notion of a topological symmetry group was
introduced by Simon [Si], who was motivated by the Longuet-Higgins symmetry groups
ofnon-rigid molecules [L]. The significance of symmetry groups in chemistry stems

from the fact that the chemical properties of a molecule depend on the symmetries
of its molecular graph (where the vertices represent atoms and the edges represent
bonds).

The study of graphs as geometric objects necessarily involves an investigation
of their symmetries. The symmetries of an abstract graph y are described by the

group Aut(y) of automorphisms of y. The automorphism group of a graph has been

the subject of much study, with roots in the nineteenth century (see [B3] and [B4]
for surveys). In contrast, the group of those symmetries of an embedded graph in
S3 which are induced by homeomorphisms of the ambient space has received little
attention.

By a graph we shall mean a finite, connected graph, such that each edge has

two distinct vertices and there is at most one edge with a given pair of vertices. An

*The fourth author was supported in part by NSF Grant DMS-0296023.
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embedded graph F is a pair (V, E) of sets of vertices V and edges E such that V is

a set of points in S3, every edge is a smoothly embedded arc in S3 between two
vertices, and the interior of each edge contains no vertex and no point of any other edge.
When we write h : (S3, F) -> (S3, F) or h(V) F, we shall mean that h(V) V
and h{E) E. The restriction of h to V induces an automorphism of the abstract

graph y underlying F. The topological symmetry group TSG(F) is defined to be the

subgroup of Aut(y) consisting of those automorphisms which are induced by some

homeomorphism of (S3, F). Allowing only orientation preserving homeomorphisms
of S3 defines the orientation preserving topological symmetry group TSG+(F). For

any embedded graph F, either TSG+(F) TSG(F) or TSG+(F) is a normal
subgroup of TSG(F) with index 2. Starting with a particular embedded graph F, we
can re-embed it by tying the same invertible chiral knot in every edge of F to get an

embedded graph F'such that TSG(F0 TSG+(F0 TSG+(F). Thus every group
which is the orientation preserving topological symmetry group of some embedded

graph is also the topological symmetry group of some (possibly different) embedded

graph.

Frucht [Fr] showed that any finite group is the automorphism group of some
connected graph; moreover, restricting to ^-connected graphs for a fixed k > 2 does

not affect the conclusion [Sa] (a graph is k-connected if at least k vertices together
with their incident edges must be removed in order to disconnect the graph or reduce

it to a single vertex). Since every graph admits an embedding in S3, it is natural to
ask whether every finite group can be realized as TSG(F) (or TSG+(F)) for some
embedded graph F. Using the terminology of [B3 ], the question becomes whether the
class ofembedded graphs and their topological symmetry groups is universal for finite

groups. We show that the answer to this question is negative, and we characterize
the class of all orientation preserving topological symmetry groups for 3-connected

graphs.

In general, TSG+(F) will depend on the particular embedding of the graph in S3.

For example, consider 6n consisting of two vertices which are joined together by n

edges. Since 6n is not a graph, we add a vertex of valence 2 to each edge to obtain
a graph yn (see Figure 1). Starting with a planar embedding of yn, we add identical

Figure 1. yn
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non-invertible knots to each of the arcs to obtain an embedded graph F„ such that

TSG+(Fn) is the symmetric group Sn. On the other hand, if T'n is an embedded graph
obtained from a planar embedding of yn by tying distinct non-invertible knots in each

edge, then TSG+(F^) is trivial.
Given any finite abelian group H, we can construct an embedded graph F such

that TSG+(F) H. For example, the embedded graph F which is illustrated in

Figure 2 has TSG+(F) Z2 x Z3 x Z4. If H contains more than one factor of a

given Z„, we can add knots to the spokes of each "wheel" so that no homeomorphism
takes one "wheel" to another "wheel."

Figure 2. TSG+(T) Z2 x Z3 x Z4

Another source of topological symmetry groups comes from planar embeddings.
For a planar graph y realized as a planar embedded graph F via the natural inclusion
of S2 in S3, it can be shown using results of [Ma] and [D, Theorem 4.3.1] that

TSG(F) TSG+(F) Aut(y). The automorphism groups of planar graphs have
been characterized by Mani [M] and Babai [Bl], [B2]. In particular, these groups do

not exhaust all finite groups, and for 3-connected planar graphs the automorphism

groups are precisely the finite subgroups of 0(3). In contrast to the case of planar
embeddings, in general for an arbitrary embedded graph, TSG+ (F) 7^ Aut(y In fact,
it was shown in [F1 ] that for n > 6, no matter how the complete graph Kn is embedded

in S3, the cycle automorphism (1234) of Kn cannot be induced by a homeomorphism
of S3. Thus for any embedded graph F which has underlying abstract graph Kn with
n > 6, TSG(F) is a proper subgroup ofAut(Ä"„).

In general, it is not possible for each element of TSG+(F) to be induced by a

finite order homeomorphism of S3. For example, consider the graph Fn with n ^ 4

described above whose underlying abstract graph is illustrated in Figure 1. Then as

seen above, TSG+(Fn) Sn; however, many of the homeomorphisms of S3 which
induce the elements of TSG+ (F) cannot be of finite order. Indeed, it follows from the

proof of the Smith Conjecture [MB] that no finite order homeomorphism of (S3, Fn)
can interchange two vertices of valence two and fix the remaining vertices, since the

fixed point set of such a homeomorphism would include a non-trivial knot.
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In fact, there exist 3-connected embedded graphs F such that not every element

of TSG(F) can be induced by a finite order homeomorphism of S3. An example of
such a graph is illustrated in Figure 3. There is no order 3 homeomorphism of S3

which takes a figure eight knot to itself ([Ha] and [Tr]); and by Smith Theory [Sm],
no finite order homeomorphism of S3 can pointwise fix F. Hence the automorphism
(123) (456) is induced by a homeomorphism of S3 (by sliding the graph along itself),
but cannot be induced by a finite order homeomorphism of S3.

Figure 3. (123) (456) cannot be induced by a finite order homeomorphism of S3

The above examples indicate that a priori, the classification of all possible topolog-
ical symmetry groups could be rather complicated. The three main theorems which
follow help to clarify the situation.

Theorem 1. Let F be an embedded graph.

a) If TSG_|_(F) is a simple group, then it is either the alternating group A 5 or a

cyclic group ofprime order.

b) In general, the sequence ofquotient groups in any composition seriesforT'SG+ (F)
contains only alternating groups An with n > 5 and cyclic groups.

We note that the same conclusion holds for the automorphism groups of planar
graphs ; in fact Theorem 1 implies the corresponding results in [B2], since T SG+ F
Aut y if F is planar embedding of y. However, there exist embedded graphs F such

that TSG_|_(F) is not isomorphic to the automorphism group of any planar graph (see
Section 2).

It follows from Theorem 1 that the class of orientation preserving topological
symmetry groups of embedded graphs is not universal for finite groups. Furthermore,

if TSG(F) is a simple group then TSG+(F) TSG(F), and hence the class of
topological symmetry groups is also not universal.

Theorem 2. Let F be an embedded3-connectedgraph. Then TSG+ (F) is isomorphic
to a unite subgroup of the group Diff+ (S3 oforientation preserving diffeomorphisms
ofS3.
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In contrast to Theorem 2, the orientation preserving topological symmetry group
of an arbitrary graph is not necessarily isomorphic to a subgroup of Diff+(5'3). For
example, we have seen that every finite abelian group is the orientation preserving
topological symmetry group of some embedded graph. However, not all finite abelian

groups are subgroups of Diff+(5'3).
In the last section of the paper, we study when a graph y may be embedded in

S3 in such a way that a given subgroup of Aut(y is induced on the embedded graph
by an isomorphic subgroup of Diff+(5'3). We also prove the following converse to
Theorem 2.

Theorem 3. For every unite subgroup G of Diff+(5'3), there is an embedded 3-

connected graph F such that G TSG+(F). Moreover, F can be chosen to be a

complete bipartite graph Kn%nfor some n.

We deduce from Theorems 2 and 3 that the set oforientation preserving topological
symmetry groups of 3-connected embedded graphs in S3 is exactly the set of finite
subgroups of Diff_|_(5'3). The finite subgroups of Diff+(5'3) consist of the finite
subgroups of SO(4), possibly together with the Milnor groups Q(%k, m,n) in the

case where the subgroup acts freely on S3 (see [DV] for the finite subgroups of SO(4),
and [Mi] and [Z] for groups that could act freely on S3). We note that Thurston's
geometrization program [Th] would imply that the groups ß(8£, m, n) do not occur.

We prove Theorems 1 and 2 in Section 2, assuming two propositions which are

proved in Sections 3 and 4. The heart of the argument lies in the proofofProposition 1

in Section 3, which uses the Characteristic Submanifold Theorem ofJaco-Shalen [JS]
and Johannson [Jo] and Thurston's Hyperbolization Theorem [Th], in the context of
pared manifolds. These results were applied in a similar fashion in [F2]. In the case

of a 3-connected embedded graph F, the strategy is to re-embed F in a "nicer" way
as A such that TSG+(F) < TSG+(A) and TSG+(A) is induced by a finite subgroup
of Diff_|_(5'3). Finally, in Section 5, Theorem 3 is proved by a direct construction.

The first and fourth named authors first met and began collaborating on this project
in the fall of 2000 during a visit to the Institut des Hautes Études Scientifiques. It is

a pleasure to thank the Institut for its hospitality. The second author wishes to thank
the California Institute of Technology for its hospitality during his sabbatical in the

spring of 2002.

2. Proofs of Theorems 1 and 2

Let F be a graph embedded in S3 with underlying abstract graph y. Recall that

we defined TSG(F) as the subgroup of Aut(y) induced by homeomorphisms of the

pair (S3, F). However, for technical reasons we prefer to restrict our study to those

homeomorphisms of (S3, F) which are diffeomorphisms except possibly on the set
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of vertices of F. By an abuse of terminology we shall call such a homeomorphism
a diffeomorphism of(S3,T). Note that by standard smoothing theory (see [Moi]), if
there is a homeomorphism of (S3, F) inducing an automorphism a of F, then there
is also a diffeomorphism of (S3, F) inducing the automorphism a. Thus we can

equivalently define TSG(F) as the subgroup of Aut(y) induced by diffeomorphisms
of(5"3,F).

Let G be a group of orientation preserving diffeomorphisms of (S3, F). Let H
be the image of G under the natural homomorphism from G to TSG+(F). Then H
is said to be induced on F by G.

A group H is said to be realizable if there is an embedded graph F with TSG+ F

H. In this case, we say that H is realized by F.
We introduce some notation that we will use throughout the rest of the paper. Let

V denote the set of embedded vertices of an embedded graph F, and let E denote

the set of embedded edges of F. We shall construct a neighborhood N(T) as the

union of two sets, N(V) and N(E), which have disjoint interiors. For each vertex
v G V, let N(v) denote a small ball around v, and let N(V) denote the union of
all of these balls. For each embedded edge e e E, let N{s) denote a tube D2 x /
whose core is e — N(V), such that N(e) contains no other part of F, and N(e) meets

N(V) in a pair of disks. Let N(E) denote the union of all the tubes N(e). Let
jV(r) N(V) U N(E). Throughout the paper we shall use d'N(e) to denote the

annulus 9_/V(F) n N(e) in order to distinguish it from the sphere 9 JV(e).

We will use cl to denote the closure of a set and int to denote the interior of a set.

Finally, by a chain of length n we shall mean an arc in F containing n vertices of
valence two and no vertices of higher valence in its interior such that neither endpoint
of the arc has valence two. A single edge such that neither endpoint has valence two
is said to be a chain of length zero.

We shall use spheres and pinched spheres to decompose F into smaller pieces as

follows.

Definition 1. Let S be a 2-sphere embedded in S3. If S intersects F in a single
vertex v of valence more than two and each component of S3 — S contains part of
F, then we say that S is a type I sphere and v is a type I vertex of F. (See Figure 4.)

Observe that removing a type I vertex from F separates F, but not every vertex
which separates F is a type I vertex.

Definition 2. Let S be a 2-sphere embedded in S3. If S intersects F in vertices v

and w, the closure of neither component of (S3 — S) n F is a single arc, and the

annulus S — int(N(v) U N(w)) is incompressible in cl(53 — N(T)), then we say that
S is a type IIsphere of F. (See Figure 5.)
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Figure 4. An embedded graph with a type I sphere

Figure 5. An embedded graph with a type II sphere

Definition 3. Let S be a 2-sphere with two points identified to a single point p. We

say that S is a pinched sphere and p is the pinch point. Let S be a pinched sphere
in S3, with pinch point p. Suppose that p is a vertex of F such that SnF {p},
each component of S3 — S contains part of F, and the annulus S — mt(N(p)) is

incompressible in cl^3 — N(T)). Then we say that S is a type III sphere of F. (See

Figure 6.)

Figure 6. An embedded graph with a type III sphere

We remark that our definition of a type I sphere is close to that of Suzuki [Su],
however, our definition of a type II sphere is different from his.
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We will use the following two propositions to prove Theorems 1 and 2. The proofs
of these propositions will be given in the next two sections.

Proposition 1. Let F be an embedded graph with no type I spheres and let H
TSG+(F). Then either H is isomorphic to a unite subgroup of Diff+(5'3), H Sr

for some r, or H has a non-trivial normal subgroup N such that both N and H/N
are realizable. Furthermore, if F has no type II or type III spheres, then F can be re-
embedded as A such that H < TSG+(A), and H is induced on A by an isomorphic
unite subgroup of Diff+(5'3).

If H Sr and H is simple, then H 7Li- Thus it follows from Proposition 1

that if F has no type I spheres and TSG+(F) is a simple group then TSG+(F) is

isomorphic to a finite subgroup of Diff+(5'3).

Proposition 2. Let F be an embedded graph and let H TSG_|_(F). Then either
H is realized by a graph with no type I spheres, H Sr for some r, or H has a

non-trivial normal subgroup N such that both N and H/N are realizable.

If H Z2, then H is realized by the graph consisting of a single edge. Hence

it follows from Proposition 2 that any realizable simple group can be realized by an

embedded graph with no type I spheres.
We now prove Theorems 1 and 2 from these propositions.

Theorem 1. Let F be an embedded graph.

a) If TSG_|_(F) is a simple group, then it is either the alternating group A5 or a

cyclic group ofprime order.

b) In general, the sequence ofquotient groups in any composition seriesfor TSG+ (F)
contains only alternating groups An with n > 5 and cyclic groups.

Proof. To prove part (a), we observe that by Proposition 2, there is an embedded graph
A with no type I spheres such that TSG+(F) TSG+(A). Then by Proposition 1,

TSG+(A) is isomorphic to a finite subgroup of Diff+(5'3). However, it is shown in

[Z, Theorem 1] that the alternating group A5 is the only non-abelian finite simple

group which acts faithfully by diffeomorphisms on a homology 3-sphere. The result
follows.

To prove part (b), we use induction on the number of elements in H TSG+(F).
Let IHI k and assume the result is true for all realizable groups with fewer than
k elements. If H is simple, then we are done by part (a). Otherwise Propositions 1

and 2 imply that either H is a finite subgroup of Diff+(5'3), H Sr for some r, or
H has a non-trivial normal subgroup ./V such that both ,/V and H/N are realizable. In
the first case, the result follows from [Z, Theorem 2], while the second case is clear.
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In the third case, we know by induction that both JV and H/N have composition
series all of whose simple quotients are either alternating or cyclic. Putting these two
series together gives a composition series for H with the same property. Finally, the

Jordan-Holder theorem implies that this also holds for any other composition series

for H. D

By a similar argument, we can prove that for any realizable group H, the number
of quotients in a composition series for H which are isomorphic to Z2 is at least as

large as the number of quotients which are isomorphic to any Ar with r > 6. To see

this, observe that if H is a finite subgroup of Diff+(5'3) or H Sr, then the result

follows; otherwise, the proof uses induction on the order of H, as above. A complete
characterization of all realizable groups may be possible, working along the lines

of [B2].
According to [B2, Corollary 9.15], the group G A 5 XZ3 is not the automorphism

group of any planar graph. However, we see as follows that G is realizable. It follows
from [M] that A5 is the automorphism group of a 3-connected planar graph which can
be realized as the 1-skeleton X of a convex polytope P in IR3, such that all abstract

automorphisms of X are induced by isometries of P. Let Fi be obtained from X by
connecting each vertex of X to a point v\ in the interior of P. Now let F2 be the

1-skeleton of a tetrahedron disjoint from P. Tie the same non-invertible knot in each

of the three edges of F2 which do not contain a particular vertex V2, all oriented in the

same way. Finally, form F from Fi and F2 by connecting v\ to «2 by an arc which
does not meet the rest of Fi or F2. Then TSG+(F) A5 x Z3. Thus there exist
realizable groups which are not the automorphism group of any planar graph.

Theorem 2. Let F be an embedded 3-connectedgraph. Then TSG+ (F) is isomorphic
to a unite subgroup of Diff+(5'3).

Proof. If F has a type I or III sphere then F can be disconnected be removing a single
vertex and the edges incident to it. IfF has a type II sphere then F can be disconnected

by removing two vertices and the edges incident to them. Thus if F is 3-connected,
then F has no type I, II, or III spheres. So the result follows by Proposition 1.

We also use Proposition 1 to prove the following strengthening of Theorem 2.

Proposition 3. Let H TSG+ (F) for some embedded 3-connected graph F. Then

F can be re-embedded as A such that H is a subgroup of TSG+(A) and TSG+(A)
is induced by an isomorphic unite subgroup of Diff+(5'3).

Proof. Let H\ TSG+(F). Then, as in the proof of Theorem 2, F has no type
I, II or III spheres. Hence by Proposition 1 we can re-embed F as Fi such that

Hi < TSG+ (Fi and Hi is induced by an isomorphic subgroup Ki of Diff+ (S3). If
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TSG_|_(ri) Hi, then we are done by letting A Fi. If Hi is aproper subgroup of
TSG+(Fi), we let H2 TSG+(Fi) and again apply Proposition 1 to the 3-connected
embedded graph F1. Continue this process. Then for each i, TSG+ (F, is a subgroup
ofAut(y where y is the underlying abstract graph of F. Since Aut(y is finite, this

process cannot go on indefinitely.

3. Proof of Proposition 1

We assume the reader is familiar with standard 3-manifold topology. However, we
will need to use some terminology and results about pared manifolds which we give
below.

Definition 4. A pared 3-manifold (M, P) is an orientable 3-manifold M together
with a family P of disjoint incompressible annuli and tori in dM.

A pared manifold is a special case of a manifold with boundary patterns in the

sense of Johannson [Jo] or a 3-manifold pair in the sense of Jaco-Shalen [JS]. The

following definitions agree with those of [Jo] and [JS].

Definition 5. A pared manifold (M, P) is said to be simple if it satisfies the following
three conditions:

1) M is irreducible and dM — P is incompressible.

2) Every incompressible torus in M is parallel to a torus component of P.

3) Any annulus A in M with dA contained in dM — P is either compressible or
parallel to an annulus A' in dM with dA' dA and such that A' n P consists of
zero or one annular component of P.

Definition 6. A pared manifold (M, P) is said to be Seifert obered if there is a Seifert
fibration of M for which P is a union of fibers. A pared manifold (M, P) is said

to be I-nbered if there is an /-bundle map of M over a surface B such that P is the

preimage of dB.

We will use the following results about pared manifolds.

Characteristic Submanifold Theorem for Pared Manifolds ([JS] and [Jo]). Let
(X, P) be a pared manifold with X irreducible and dX — P incompressible. Then,

up to an isotopy of(X, P), there is a unique family Q ofdisjoint incompressible tori
and annuli with d Ç2 contained indX — P such that the following two conditions hold:

1) IfWis the closure of a component ofX — Q,, then the pared manifold W, W n
(P U Q)) is either simple, Seifert obered, or I-obered.



Vol. 80 (2005) Topological symmetry groups of graphs embedded in the 3-sphere 327

2) There is no family Q' with fewer elements than Q which satisoes the above.

Thurston's Theorem for Pared Manifolds ([Th]). If (M, P) is simple, M is
connected, and dM is non-empty, then either M — P admits a unite volume complete
hyperbolic metric with totally geodesic boundary, or (M, P) is Seifert obered or
I-nbered.

Now we are ready to prove Proposition 1. Since the proof of Proposition 1 is long,
we begin with an outline. In Step 1, we will follow the proof of [F2, Theorem 1], and

use the Characteristic Submanifold Theorem ([JS] and [Jo]) to split the complement
of N(T) along a minimal family 0 of incompressible tori which is unique up to
ambient isotopy and such that each component is either simple or Seifert fibered. We

let X denote the component which contains dN(T). Since F has no type I spheres,

we can then use the Characteristic Submanifold Theorem for Pared Manifolds to

split X along a minimal family £2 of incompressible annuli which is unique up to
ambient isotopy and such that as a pared manifold each component is either simple,
Seifert fibered, or I-fibered. We then define a group G of orientation preserving
diffeomorphisms of (S3, F) such that for every g G G, g(&) 0 and g(Œ) Q,
and every a G TSG+(F) is induced by some ga G G.

In Step 2, we choose a particular component W ofX — Q which is setwise invariant
under G, such that G permutes some of the elements of £2 that are contained in 9 W

or some of the components of 9iV( V) n W. In Step 3, we show that the proof can be

reduced to analyzing the action that G induces on W. In Steps 4, 5, and 6 we obtain

our result in the cases where W is Seifert fibered, I-fibered, and simple, respectively.

Proof ofProposition 1. Let F be an embedded graph with no type I spheres, and let

y denote the underlying abstract graph of F. The result is clear if TSG+ (F) is trivial.
So we assume it is non-trivial. We begin by considering the special cases where y
is homeomorphic to an arc or a circle. In these cases, the full automorphism group
Aut(y) is either a finite cyclic group or a dihedral group, and hence TSG+(F) is a

finite subgroup of Diff+(5'3). We embed A as an embedding of y which is a planar
round circle or a line segment. Then TSG+(A) Aut(y), and there is a subgroup
G of Diff+(5"3) such that G H and G induces H on A.

From now on, we assume that y is not a simple closed curve or an arc. Hence

F has some vertex with valence at least three. Also since F has no type I spheres, F

cannot have any vertices of valence one. Let m be a number larger than the total
number of vertices in F. We will use m at several places in the proof.

Step 1. We split the complement of F along characteristic tori and annuli.

Let M cl(S3 — N(T)). Since F is a connected graph, M is irreducible. So we
can apply the Characteristic Submanifold Theorem to M to get a minimal family of
incompressible tori, 0, in M such that the closure of every component of M — 0 is
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either simple or Seifert fibered, and 0 is unique up to an isotopy of M fixing d M
pointwise. It follows from the uniqueness of 0 and N(T) up to isotopy that for every
automorphism a G TSG+(F), there is an orientation preserving diffeomorphism

g: (S3, F) -> (S3, F) which induces a, such that g(&) 0, g(N(V)) N(V),
and g(N(E)) N(E). Since dM is connected, there is a unique component of
M — 0 which contains dM. Let X denote the closure of this component. Then for
each diffeomorphism g : (S3, F) -> (S3, F) such that g(M) M and g(&) 0,
we have g(X) X. If X is Seifert fibered, then dX is a collection of tori, and hence

F is a simple closed curve, contrary to our assumption above. Thus X must be simple.
So every incompressible torus in X is boundary parallel. Also note that since each

torus boundary component of X is incompressible in M and M is irreducible, X must
be irreducible.

Now dX consists of dN(F) together with a collection of tori in 0. Let P denote

the union of the annuli in d'N(E) and the torus boundary components of X. Observe

that cl(9X — P) dN(V) n dX consists of a collection of spheres with holes.

We show as follows that dX — P is incompressible in X. Suppose that there is a

non-trivial loop L in some component of dX — P which compresses in X. Then L
is contained in some dN(v) n dX and L bounds a disk Di in X. Also L bounds a

disk D2 in N(v) such that D2 intersects F only in v. Now S D\ U D2 is a sphere,
whose intersection with F is the vertex u. Since L is non-trivial in dN(v) n 9X, each

component of S3 — S contains part of F. Recall that F has no vertices of valence

one. If the valence of v is two, we can slide S along an arc in F until S intersects F

at a vertex with valence at least three. But this gives us a type I sphere for F, contrary
to hypothesis. Hence dX — P must be incompressible in X.

Since X is irreducible and dX — P is incompressible in X, we can now apply
the Characteristic Submanifold Theorem for Pared Manifolds to the pair (X, P).
This gives us a minimal family Q of incompressible tori and annuli in X with the

boundary of each component of £2 contained in dX — P, such that if W is the closure

of any component of X — Q, then the pared manifold W, W n (P U Q)) is either
simple, Seifert fibered, or /-fibered, and £2 is unique up to an isotopy of {X, P). Since

every incompressible torus in X is boundary parallel, and the family Q is minimal,
Ç2 cannot contain any tori. Thus £2 is a (possibly empty) family of incompressible
annuli in X. Furthermore, for any W, d W - (W n (P U Q)) c dX - P and W C X.
Thus since dX — P is incompressible in X, dW — (W fl(PU Ç2)) is incompressible
inW.

We denote by G the group of all those orientation preserving diffeomorphisms

g: (S3,T) -> (S3,r) for which g(N(V)) N(V), g(N(E)) N(E),g(&) 0
and g(Œ) Œ. Then P and X are each setwise invariant under G. Also by the

uniqueness of each of the sets N(V), N(E), and 0, up to an isotopy of (S3, F) and

the uniqueness of £2 up to an isotopy of {X, P), it follows that every a G TSG+(F)
is induced by some ga G G.
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For each annulus A in Q, the boundary of A is contained in dX — P. So each

component of dA is contained in some dN(v). Thus each component of dA bounds

a disk D in some N(v) such that D n F {v}. Furthermore, we can choose the

collection of these disks to be pairwise disjoint except possibly on the set of vertices
V. ThusforeachA g Ç2, there is a pair of disks Di and D2 such that S AUD1UD2
is either a sphere meeting F in two vertices or a pinched sphere with its pinch point
at a vertex. Let A denote the collection of these spheres and pinched spheres. Then
the elements of A are pairwise disjoint except possibly on V. Since the collection
of these disks is unique up to an isotopy of N(V) fixing both F and dN(V), we can

assume that we chose G such that for every g g G, g (A) A.
Since every A G Q is incompressible in X, and every torus component of dX

is incompressible in M, every A G £2 is incompressible in M. Thus if S € A is a

sphere and the closure of neither component of (S3 — S) n F is a single arc, then
S is a type II sphere; and if S G A is a pinched sphere and the closure of neither

component of (S3 — S) n F is a single vertex, then S is a type III sphere.

Step 2. We choose a setwise invariant component W ofX — Ç2 such that G permutes
some of the elements ofQ in dW or some of the components ofdN(V) n W.

If Ç2 is empty, let W X. Then every component of dN(V) meets W, and

hence G permutes some of the components of 9iV( V) n W. So we suppose that Q is

non-empty.
The proof of [F2, Theorem 1] shows that if F is a 3-connected graph then there

is a unique component of X — Q whose closure W has the properties that: every
element of ÇI is contained in d W and for every X, G A the closure of the component
of S3 — S; which is disjoint from W meets F in an arc if S; is a sphere and in a

single vertex if S, is a pinched sphere. The proof that there is such a W is analogous

if we replace the hypothesis that F is 3-connected by the hypothesis that F has no
type I, II, or III spheres. Thus if F has no type I, II or III spheres, then we choose this
W. By the uniqueness of W we know that W is setwise invariant under G. Also if v

is any vertex with valence at least three, then dN(v) n W contains a sphere with at

least three holes. Hence for every non-trivial a e TSG+(F), ga induces a non-trivial
permutation of either the elements of Q or the components of 9iV( V) n W. Thus we
are done with Step 2 in the case where F has no type II or III spheres.

In order to choose W when F does have a type II or type III sphere, we will first
associate an abstract graph À with the set A of spheres and pinched spheres. For each

component Y of S3 — A, let y be a vertex in X; and for every pair of components
Y and Z of S3 — A, let there be an edge in À between the vertices y and z if and

only if there is some S G A which is contained in the boundary of both Y and Z.
Observe that because every element of A separates S3, the graph À is a tree. Since G

takes A to itself, every g & G defines an automorphism g' of k. Let G' be the group
of automorphisms of k induced by G. Since À is a tree, it follows from elementary
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graph theory that there is either a vertex or an edge of À that is invariant under G'. If
no vertex of À is fixed by G', then there is an invariant edge e of À whose vertices are

interchanged by some element of G'. In this case, there is a sphere EeA which is

invariant under G, and some element g G G which interchanges the two components
of S3 — S. We handle this case as follows.

Claim 1. Suppose that there is a sphere S G A which is invariant under G, and

some g & G which interchanges the components ofS3 — S. Then either H Z2 or
H has a non-trivial normal subgroup N such that both N and H/N are realizable.

Proof of Claim 1. The closures of the components of S3 — S intersect F in
subgraphs ai and «2- Since S is invariant under G, we can define a homomorphism
$: TSG+(r) -> Z2 as follows. Foreacha g TSG+(F),let$(a) 0 ifa takes each

a\ to itself, and let $>(a) 1 if a interchanges a\ and 02- Since some a G TSG+(F)
interchanges «i and a^, $ must be onto.

If ker(4>) is trivial then TSG+(F) Z2. So we assume JV ker(4>) is non-
trivial. We create a new embedded graph by adding a vertex in the interior of every
edge in ct\ which meets S, and adding an edge incident to each of these new vertices.
Let FI denote F with these new vertices and edges. Then every a' g TSG+(FI) takes

this set of new edges to itself and hence induces some a g TSG+(F) which does not
interchange a\ and 02- Also every a G ker(4>) naturally defines ana' & TSG+(FI).
It is thus easy to see that TSG+(FI) ker(4>). Finally, let FF denote the graph
consisting of a single edge, then TSG+(FI/) Z2 H/N. Now JV and H/N are

both realizable. This proves Claim 1.

Because of Claim 1, we assume no such sphere S exists. Hence there is some
vertex of X which is invariant under G'. First suppose that G' does not act trivially
on X. Then there is some vertex x of X which is fixed by G' and which is adjacent to
a vertex of À which is not fixed by G'. In this case, we choose W to be the closure

of the component of X — Q which corresponds to the vertex x of X. Then W will be

setwise invariant under G, however some element of Q which is contained in 9 W is

not setwise invariant under G. Finally, suppose that G' acts trivially on X. Then every
component of X — Q is setwise invariant under G. Since TSG+(F) is not trivial,
there is some vertex v of F which is not fixed by G. Let W be the closure of some

component of X — Q which meets dN(v). Thus we are done with Step 2.

Before we begin Step 3, we introduce some notation. Let A\, An denote

those annuli in Q which are contained in 9 W, and let Si, S„ denote the spheres

or pinched spheres of A containing A\, An respectively. If S, is a sphere, let
S? n F {vi, Wi}, and if S, is a pinched sphere, let S, n F {m,}. For each

i, let c; and d; denote the boundary components of A\, such that if S, is a sphere

c\ C dN(vi) anddi c dN(w;), and if S; is a pinched sphere c, VJ d\ C dN(u;). For
each S?, we let 5, denote the closure of the component of S3 — S, whose interior
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is disjoint from W and let Ft 5; n F. The sets {Fu Fn} and {Bu Bn}
are each setwise invariant under G, since W is setwise invariant under G. It follows
that F" cl(F — (Pi U ¦ ¦ ¦ U Fn)) is setwise invariant under G. (Note that F' is not
necessarily connected.)

Step 3. We reduce the proof to analyzing the action that G induces on W.

In particular, we prove the following.

Claim 2. Suppose that there is some g G G and A; g Q such that g(Aj) A\,
g{c\) et, g{di) d\, and g induces a non-trivial automorphism on F,-. Then F

has a type II or type III sphere and H has a non-trivial normal subgroup N such that
both N and H/N are realizable.

Proof of Claim 2. Observe that F, is neither an arc nor a single vertex, since otherwise

g cannot induce a non-trivial automorphism on F,. Since G permutes some elements

of £2 in 9 W or some components of dN(V) n W, cl(F — F,) is neither an arc nor a

single vertex. Thus F has a type II or type III sphere.

Before we define N, we use g to create another orientation preserving diffeomor-
phism h of (S3, F) as follows. First we let h\B-, g\Bt. Then h(Bi) Bt, h\B-, is

orientation preserving, h (c, c,, and h {d\ d\. It follows that h \ S; is isotopic to
the identity on S, by an isotopy fixing v, and w-, if S, is a sphere or fixing u\ if S, is

a pinched sphere. Let C, be a ball or a pinched ball (according to which 5, is) such

that Q n F F, and respectively 5, - {v;, w;} c int(Q) or 5, - {u;} c int(Q).
Extend h to a diffeomorphism of C\ — 5, such that h is the identity on 9C,. Then
extend h to the rest of S3 by the identity. Now let a e TSG+(F) be induced by
h. Then a\ cl(F — F,) is the identity and g induces a on F,. By hypothesis a\F; is

non-trivial.
Let A^ be the set of all a g TSG+(F) such that a|r" is the identity, and for

each j < n, a(Tj) Fj and ga(cj) cj and ga(dj) dj. Then Af is a normal

subgroup of H containing the non-trivial element a. Observe that for each a G N,
ga does not permute any of the A/'s or any of the components of dN{V) n W. Thus

by our choice of W, N £ TSG+(F). We shall prove that N and H/N are both
realizable by constructing embedded graphs FI and FI' with TSG_|_(FI) N and

TSG+(n') H/N.
First we construct FI. We may assume that there is some q > 1 such that Sy- is a

type II or type III sphere if and only if j < q. For each j such that Sy- is a type III
sphere, let s j be an edge of V j which meets V. Now for each edge s in the orbit of
sounder N, we add a vertex to int(e) and an edge incident to this new vertex. For each

such j, we let V. denote Fj with this collection of vertices and edges added. For each

j such that S y is a type II sphere, if Fj is not connected, let F'. denote Fj together

with a new edge ej c S y with vertices Vj and wj. For all other Fj, we let F'. Fj.
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We obtain FI by stringing together F[, T'n with arcs ß\, ßn+\ as follows. For
each j such that 1 < j < n + 1, let ßj denote an arc containing jm vertices in its

interior. We add ß\, ßn+i to F[ U ¦ ¦ ¦ U T'r on the outside of B\, Bn, such

that one endpoint of ß\ is attached to F[ at the vertex w\ or mi; for each j such that
1 < j < n + 1, ßj has one endpoint at Vj or Uj and the other endpoint at Wj+\ or

m/+i; and one endpoint of ßn+\ is attached to T'n at vn or un. For each j < q, ßj is

the only chain in FI of length jm, and hence each ßj is invariant under TSG+(FI).
This implies that each F'. is also setwise invariant under TSG+(F1). It can be shown

thatTSG+(FI) is induced by agroupofdiffeomorphismsof (S3, FI) which leave each

Aj setwise invariant. Furthermore, because of the additional edges that we added to
those F^ where S^ is a pinched sphere, no diffeomorphism of (S3, FI) interchanges
the boundary components of any Aj. Thus it is not hard to show that JV TSG+(FI),
and hence JV is realizable.

Next we construct an embedded graph FF such that TSG+ (FF) H/N. Without
loss of generality there are natural numbers r and s with s < r < n such that

{Fi, Fr} consists of one representative from each orbit of the F, underTSG+(F),
and there is some g & G which interchanges the boundary components of Aj if and

only if j < s. For each j < s, let ßj denote an arc with jm + 2 vertices in its

interior, and let Xj and yj denote the valence 2 vertices of ßj which are adjacent to
the endpoints. Thus there are jm vertices of valence 2 on ßj between xj and yj. For
each j < s, let ß'. denote ßj with single edges attached at xj and at yj. For each j
such that s < j <r, let ßj denote an arc with jm + 1 vertices in its interior, and let

xj be a valence 2 vertex which is adjacent to one endpoint of ßj. Thus there are jm
vertices on ßj between xj and the other endpoint ofßj. For each j > s, let ß'. denote

ßj with a single edge attached at xj. Observe that there is an automorphism of ß'.

which interchanges the endpoints of the arc ßj if and only if j < s. Also no ß'. has

a non-trivial automorphism which fixes both endpoints of the arc ßj. Now for each

k < n, there is a j < r such that F^ is in the orbit of V j under TSG+(F). For each

such k, let ß'k be a copy ofß',, and let x^ and yu be those vertices of ß'k corresponding

to the vertices xj and yj of ß'..

We obtain FI' from F' by adding ß[, ß'n as follows. For each k < n, we
embed ß'k in Bk so that the endpoints of ßk are at Vk and Wk or both at uk, and ß'k

can be isotoped into S^ fixing the endpoints of ßk. Now the only chains of length at

least m in FF are contained in ß[, ß'n; and for each j < r, ßk contains a chain of
length y'm if and only if F^ was in the orbit of Fj underTSG+(F). NowTSG+(FI/) is

induced by a group of diffeomorphisms of (S3, FF) which leave {A\, An} setwise

invariant. Furthermore, there is a diffeomorphism of (S3, FF) which takes Ak to
itself interchanging its boundary components if and only if there is a diffeomorphism
of {S3, F) which takes Ak to itself interchanging its boundary components. Also
if g is a diffeomorphism of (S3, FF) which takes some Ak to itself preserving its
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boundary components then g induces a trivial automorphism on ß'k. Now for each

a g TSG+(F), there exists ga G G such that ga(lT) IT. If another element
g'a G G also induces a on F and g«(lT) FI', then ga and g'a induce the same

automorphism of IT. Define $: TSG+(r) -> TSG+(IT) by letting $(a) denote

the automorphism that ga induces on IT. Then JV ker(4>). Now it is not hard to
check that $ is onto and hence TSG+(n) H/N.

Thus both N and H/N are realizable, and Claim 2 is proven.

Because of Claim 2, we can assume that if g G G such that g (Ai) Ai, g (ci)
Cf, and g(di) d\, then g induces a trivial automorphism on F,. Thus we have

completed Step 3.

Recall from Step 1 that the pared manifold (W, W n (P U Q)) is either Seifert

fibered, /-fibered, or simple. We shall consider each of these cases in a separate step,

making use of the above assumption.

Step 4. We prove the proposition when (W,Wn(PUQ))is Seifert obered.

First we prove the following claim which does not assume that (W, W n (P U Ç2))

is Seifert fibered.

Claim 3. Let T be the component ofdW which meets dN(T). IfT is a torus, then

TSG+ (F) is a subgroup of a dihedral group, and F has a type II or type III sphere.

Proof of Claim 3. Let {xi, xr} denote those vertices of F such that 9 ./V(x,) meets
W. Let the components of 9JV(V) n W be J\, Jq. (Note that for a given vertex

x;, the set dN(xj) n W may have more than one component, so we may have q > r.)
Now each /,- is a sphere with holes, and each boundary component of /, is either a

boundary component of d'N(e) for some edge e, or a boundary component of some

Aj. We saw in Step 1, that dW - (W n (P U Q.)) is incompressible in W. Thus

for each i, J\ is incompressible in W, and hence each boundary component of /; is

essential in T. Since T is a torus, this means that every /, has exactly two boundary
components.

Recall from Step 2 that G permutes some of the A/'s or some components of
dN(V) n W. Thus W must contain at least two A/'s or at least two /,'s. In either

case, q > 1 and T is made up of alternating annuli R\, Rq (which are each

either Aj's or components of d'N(E)) and spheres with two holes, J\, Jq. Also,
G takes T to itself, leaving each of the sets {J\, Jq} and {R\, Rq} setwise

invariant. It follows that the group of automorphisms that G induces on the set

{J\, Jq, R\, Rq} is a subgroup of the dihedral group Dq.
Define 4>: TSG+(F) —>¦ Dq by letting $>(a) denote the automorphism that ga

induces on the set {J\, Jq, R\,..., Rq}. We see that 4> is well-defined as follows.
Suppose that ga and g'a are both elements of G which induce a on F. Then ga and

g'a induce the same permutation on the set of the components of 3iV( V). Since F



334 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

has at most one edge between two vertices and every edge has two distinct vertices,

ga and g'a also induce the same permutation on the set of annuli {A\, An), the

set of circles {c\,d\, cn, dn}, and the set of components of d'N(E). Thus ga
and g'a both induce the same permutation on the components of dN(V) n W and on
{J\, Jq, R\, Rq}. Therefore, <£> is a well-defined homomorphism.

We show as follows that 4> is one-to-one. Suppose that ^(a) is the identity. Then
for each i 1,..., q, we have ga{Ji) J\ and ga(Rî) Ri- Hence a(x\) x;
for each vertex x, such that dN(x{) meets W. Let v be a vertex of F such that

v £ {x\, ,xr). Then for some j, the vertex v is in Fj. Also since T contains

more than one /; and ga does not permute the J\, the boundaries of Aj cannot be

interchanged by ga. Thus by our assumption at the end of Step 3, a \ F;is the identity.
In particular, a(v) v. So 4> is one-to-one. Hence TSG+(F) is a subgroup of Dq.

Finally, recall from Step 2 that if F has no type II or III spheres, then 9 JV( V) n W

contains a sphere with at least three holes. However, as we saw above, each /, is a

sphere with two holes. Thus F must have a type II or type III sphere. This completes
the proof of Claim 3.

By Claim 3, if the component of 9 W which meets 9A^(F) is a torus then we are

done. In particular, i£(W, (W n (P U Q))) is Seifert fibered, then we are done. Thus
from now on, we assume that the component of dW which meets 9A^(F) is not a

torus. Since dW — (W H (P U Q)) is incompressible in W, this component is also

not a sphere. Hence this component has genus at least two. It follows that there is

some vertex v of F such that dN(v) n W contains a sphere with at least three holes.

Step 5. We prove the proposition when (W, W n (P U Q)) is I-obered.

Since W is an / -fibered subspace of S3, W Y x / where F is a surface with holes
and the /-fibers come from the /-factor in the product. Now, since (W, W n(PUQ))
is /-fibered as a pared manifold, W n (P U Q) dY x I. Thus Yo Y x {0} and

Y\ Y x {1} are components of dN(V) n W. In particular there are vertices vq and

vi in F such that either v0 ^ vu and Yo dN(v0) n W and 7i dN(vi) n W, or
vo v\ and both Yq and Y\ are components of dN(vo) n W. In either case, Fo and

Y\ are spheres with r holes, for some r. By our assumption at the end of Step 4, 9 W
has genus at least two. Thus r > 3. Let b\,... ,br denote the boundary components
of Y, and for each i, let Q b\ x /. Since W n(PUQ) dY x I, each Q is either

an element of £2 or a component of d'N(E). For each f, let .F, denote the sphere or
pinched sphere obtained from C, by adding disks within ./V(uo) an(i N(vi) which are

disjoint from F and from each other except at vq and v\. Let E\ denote the closure

of the component of S3 — E\ which is disjoint from W, and let y\ F n E\. Now
F y\ U ¦ ¦ ¦ U yr. If Ci G Q then y, F; for some j, and if C, is a component
of d'N(E) then y, is a single edge. Since dX — P is incompressible in X, 7o is

incompressible in X. Thus no b\ x {0} bounds a disk in X. Since W has only one
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boundary component, X cl(S3 — N(T)). It follows that no b\ x {0} bounds a disk
in E; disjoint from F, and hence at most one y, is a single vertex. So if vo v\, then
F has a type III sphere.

Suppose that F has no type II or III spheres. Thus vq ^ v\ and by Step 2

every y, is an arc. For the sake of contradiction suppose that 9 Y has at least four
components. Let c be a simple closed curve on Y x {0} which separates two of the

boundary components of Y from the other boundary components of Y. Let A denote

the annulus c x / in Y x /. Now c x {0} bounds a disk Do in N(vq) such that

DonF {uo}andc x {1} bounds a disk D\ va.N(v{) such that D\ nF {v\}. Let
S A U Do U D\. Then S is a type II sphere, contrary to our hypothesis. Since

we already know that r > 3, it follows that r 3. Hence the underlying abstract

graph of F is a graph, Ö3, containing two vertices of valence three and some positive
number vertices of valence 2. Now Aut(Ö3) is a subgroup of S3 x Z. ThusTSG+(F)
is a subgroup of the dihedral group Do S3 x Z2 and hence is isomorphic to a

finite subgroup of Diff+(5'3). Furthermore, we can embed Ö3 in S2 as À such that
the vertices of valence three are at the poles of the sphere, and the components of
S2 - A are three identical wedges. Thus H TSG+(F) < Aut(<93) TSG+(A),
and TSG_|_(A) is induced by an isomorphic finite subgroup of SO(4). Thus if F has

no type II or III spheres, then we are done.

Now we return to the general case. Recall that every g & G restricts to a map
of the pair (W, W n (P U Q)). So for every g g G, g({Y0, Yi}) {Yo, Yrf and

g{{C\, Cr}) {C\, Cr}. Suppose that there is some g & G which
interchanges Yq and Y\. Let 4>: TSG+(F) --* Z2 be defined as follows. For each

a g TSG+(F), let $>(a) be the permutation that ga induces on the set {Yo, Y\}. Then

$ is onto. If ker(<£>) is trivial then TSG+(F) Z2. Hence in this case we are done.

If N ker(4>) is non-trivial, then we let FI be the embedded graph obtained from F

by adding a single edge incident to vq. Then TSG+(FI) ker(4>). Hence both ,/V

and H/N Z2 are realizable. Thus from now on we assume that for every g G G

we have g(Y0) Yo and g(Yi) Y\.

Now suppose that there is some a G TSG+(F) such that a(yj) Yj for some j.
If Cj g Q, then Cj A,, for some A\. Hence yj F,, ga(Ai) A\, and since

ga(Yo) Yoandga(Yi) Y\,ga{ci) =c;andga(d;) =d\. Thus by our assumption
at the end of Step 3, a induces the trivial automorphism on yj. If Cj £ Q, then yj
is a single edge. Thus again, since ga(Yo) Yq and ga{Y\) Y\, a induces the

trivial automorphism on yj. Thus for every non-trivial a G TSG+(F), there is some

Yj such that a(yj) ^ yj. Because TSG+(F) is non-trivial, without loss of generality
we can assume that y\ is not setwise invariant under TSG+(F). Let {y\, yq} be

the orbit of yi under TSG+(F). Now define $: TSG+(F) -> Sq by letting $(a) be

the permutation that a induces on the set {y\, yq}. Then 4> is a homomorphism.
We prove that 4> is onto as follows. Let (ij) be a transposition in Sq. Since

{/!»•••» Yq) is the orbit of y\, there is some a G TSG+(F), such that a(y{) yj.



336 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

We will define an element g G G as follows. Let g\Ej ga\Ej and g\Ej g~l\Ej.
Then g interchanges E; and Ej. Let b denote a simple closed curve in Y which
separates b\ and b-} from all the other boundary components of Y. Let F denote

the disk with two holes in Y bounded by the three curves £>;, bj, and b. Extend g
to a diffeomorphism of F x / such that g\(b x /) is the identity. Next extend g to
S3 - ((F x /) U N(v0) U N(vi)) by the identity. Finally, extend g within N(v0) and

N(vi) such that g(F) F. Now g : (S3, F) -> (S3, F) and g|F - (y; U y;) is the

identity. Let a' denote the automorphism of F induced by g. Then a' interchanges

y; and y;, and a'\T — (y, U yf) is the identity. So $>(a) (ij), and hence 4> is onto.

If ker(4>) is trivial then TSG+(F) Sq and we are done.

If N ker(4>) is non-trivial, then r — q > 2. If t>o ^ t>i, we let FI be the

embedded graph obtained from yq+\ U ¦ ¦ ¦ U yr by adding a single edge at uo and

adding a chain of length m at ui. Ifuo ui, then each y, contains at least two vertices
in its interior. In this case, let e be an edge in yq+\ such that e contains vq. Now we
add a vertex to the interior of every edge in the orbit of e under N, and add a single
edge at each of these new vertices. Let FI be yq+\ U ¦ ¦ ¦ U yr together with these

new vertices and edges. Now in either case, TSG+(FI) N. Also let FF denote

the graph obtained by gluing q edges together at a single vertex to form a star. Then

TSG+(FI/) Sq H/N. Hence both ,/V and H/N are realizable. Thus we are done

in the case where (ff,ffn(PU Q)) is /-fibered.

Step 6. We prove the proposition when (W, W n (P U Ç2)) is simple.

Note that the argument in the beginning of this step will be similar to the analogous

part of the proof of Theorem 1 in [F2].
We assume by Steps 4 and 5 that W, Wn(PUQ,))is neither Seifert fibered nor / -

fibered. Now by applying Thurston's Hyperbolization Theorem for Pared Manifolds
[Th] to (W, W n(PU Q)) we conclude that W - (W n (P U Q)) admits a finite
volume complete hyperbolic metric with totally geodesic boundary. Let D denote

the double of W — (W n(PU Q)) along its boundary. Then D is a finite volume
hyperbolic manifold. For every a e TSG+(F), the diffeomorphism ga\ W defines

a diffeomorphism g'a of D which restricts to ga on each side of D. Now we use
Mostow's Rigidity Theorem [Mo], to obtain an orientation preserving finite order

isometry f'a of D that restricts to an isometry fa of W — (W n(PU Ç2)) such

that fa is homotopic to ga\W — (W n(PU Q)). Furthermore, Mostow's Rigidity
Theorem implies that the set of all such fa generates a finite group K' of isometries

of W — W n (P U Q)). Now by removing horocyclic neighborhoods of the cusps of
W -(Wn(PUQ)), we obtain acopy of the pair (W, Wn(PUQ)) which is contained
in W — (W n(PU Ç2)) and is setwise invariant under K'. We shall abuse notation
slightly and consider K' to be a finite group of isometries of (W, W n (P U Q))
rather than of this copy. Now K' restricts to a finite group of isometries of the tori
and annuli in W n (P U Q) with respect to a flat metric. Finally, it follows from
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Waldhausen's Isotopy Theorem [Wa] that each fa is isotopic to ga \ W by an isotopy
leaving W n (P U Q) setwise invariant.

Now observe that since dN(V) n W, d'N(E) C\W,{M,---, An}, and 0 n W are

each setwise invariant under G, each of these sets is also setwise invariant under the

isometry group K'. Let / and g be elements ofK' which induce the same permutation
of the components of dN(V) n W, d'N(E) n W, and {Au An}. We prove as

follows that / g. By the end of Step 4 we know there is some vertex v of F such

that a component / of dN(v) P\ W is a sphere with r ^ 3 holes. Let ct\, ctr
denote the boundary components of /. Now /(/) g(J) and /(a,) g (a?) for
each f 1,..., r. Hence f~l°g restricts to a finite order orientation preserving
diffeomorphism of / which setwise fixes all of the boundary components of /. Since

/ is a sphere with at least three holes, this implies that f~l o g\J is the identity.
Finally, since / and g are isometries of W which are identical on /, we must have

f g.

Now suppose that fa and f'a are elements oîK' which come from elements ga and

g'a of G respectively, such that ga and g'a both induce a given a on F. As in the proof
of Step 4, ga and g'a induce the same permutation of the components of 3iV( V) n W,
d'N(E) n W, and {A\, An}. Hence fa and f'a also induce the same permutation
of these components. So by the above paragraph fa f'a. Thus each a g TSG+(F)
determines a unique fa G K'. Also if a, b G TSG+(F), then ga o gb and gaob

induce the same permutation of the components of dN(V) n W, d'N(E) fl V7, and

{A\, An}. Thus fa o /j and /ao6 induce the same permutation of each of these

sets. Hence by the above paragraph faofb faob. Thus K' {fa\a G TSG+(F)}.
Now we will re-embed W in S3 and extend K' to a finite subgroup of Diff+(5'3).

We start with W W U N(T') U (5i U ¦ ¦ ¦ U Bn). Then dW is a collection of tori
in 0. We re-embed W in S3 as follows. Let Tj be a component of 9 W. Because

Tj is incompressible in M, the closure of the component of S3 — Tj contained in
M is a knot complement Rj. Now, up to isotopy, there is a well-defined longitude

tj of Tj, which bounds a Seifert surface in Rj. Also for every g g G, there is a

component 7^ of dW such that g(7/) 7^. Now T^ bounds a knot complement
Äfe in M, g(/?;) ^, and g{t}) is a longitude of Rk. We re-embed W in S3 by
replacing each knot complement Rj by a solid torus Uj such that a meridian of Uj is

glued to tj. Re-embedding W in S3 in this way gives us a re-embedding A' of F".

We will extend Ä"' to a finite group of diffeomorphism s of S3 in stages. For
each ball or pinched ball 5,, let C, denote the solid cylinder obtained from 5, by
removing int(N(vi)UN(wi)) orint(N(ui)). After we have re-embedded W inS3 as

described above, S3 — W consists of the solid tori U\, Uq, the balls N(v) where

v G A', and the solid cylinders C\, Cn and N(e) where e C A'. First we will
extend K' to the solid tori U\, ,Uq. Recall that each fa G K' is isotopic to the

corresponding ga on (W, W n (P U Ç2)) and each ga took longitudes to longitudes
on 3/?i U ¦ ¦ ¦ U 3/î?. Thus Ä"' will take meridians to meridians on dU\ U ¦ ¦ ¦ U dUq.
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Since K'\(dU\ U ¦ ¦ ¦ U dUq) is a finite group of orientation preserving isometries,

we can find a finite number of pairwise disjoint meridians for each [/, such that the

collection {yu. i, \xr} of meridians for 9 U\ U ¦ ¦ ¦ U 9 Uq are setwise invariant under
K'. We first extend K' radially from {/xi, /xr} to a collection of pairwise disjoint
meridional disks bounded by {yu-i, yu.r}. These disks cut the solid tori U\, Uq

into a collection of solid cylinders. We can now extend K' radially within these solid
cylinders to obtain a finite group K\ of diffeomorphisms of W\ W U U\ U ¦ ¦ ¦ U Uq.

Next we will extend K\ to the balls N{v) such that v g A'. Observe that K\
restricts to a finite group of diffeomorphisms of the spheres with holes UueA' dN(v)n
W. We extend K\ radially first to the collection of spheres UueA' dN(v) and then

to the balls UueA' N(v) to obtain a finite group Ki of diffeomorphisms of W\ U

UueA' N(v) which leaves UueA' N(v) n A' setwise invariant.
Now K2 restricts to finite groups of diffeomorphisms of the annuli A\, An,

of the disks 5, n (dN(vi)U dN(wi)) or B{ nd(N(ui)) for i 1, n, of the annuli
d'N(e) for each e C A', and of the disks dN(e) n N(V) for each e C A. Thus

we can extend K2 radially within each of the solid cylinders C\, Cn and each

N(e) where e C A', to obtain a finite group of diffeomorphisms K of S3 such that
the collection of the cores of these solid cylinders is setwise invariant. In particular,
£ n A' is setwise invariant. Thus K is a finite subgroup of Diff+(5'3) which leaves

A' setwise invariant.

Now for each fa e K', let ha denote the element of K obtained from fa by the
above extensions. Since fa is isotopic to ga on (W, W n (P U Q)), ha is isotopic
to ga on (W, W n (P U Q)). Hence ha induces a|A'. Define $: H -> K by
cj)(a) ha. Then 4> is well defined since each a G TSG+(F) determines a unique
/a G Ä"', which in turn extends to a unique ha e K. Also, every g G K came from
such an a g TSG+(F). Thus 4> is onto. To see that 4> is one-to-one, suppose that

a G TSG+ (F) such that $ (a) ha is the identity on S3. Thus ha \ W is the identity.
So for every vertex« of F/,a(u) v. Let u be a vertex of F suchthat 9 N(v) does not
meet W. Then u is a vertex of some F,. Now A; is contained in 9 W, and Aa | A; is the

identity. Thus ga(A,) A,-, ga(c,) c\, and ga{d\) d\. Now by our assumption
attheendof Step3,a|F, istheidentity. Soa(u) u. It follows that 4> is one-to-one,
and hence H K.

Finally, suppose that F has no type II or type III spheres. As we saw in Step 2,

then each F, is either an arc or a single vertex. Let A denote the graph obtained
from A' by adding the core of each C; together with additional vertices so that A is

a re-embedding of F that is setwise invariant under K. Now for each a g TSG+(F),
ha induces a on A. It follows that H is a subgroup of TSG+(A). Thus H is induced

on A by an isomorphic finite subgroup of Diff+(5'3). This completes the proof of
Proposition 1.
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4. Proof of Proposition 2

An essential part of the proof of Proposition 2 involves showing that if TSG+(F) is a

simple group, then we can find an embedded graph A with no type I vertices such that

TSG_|_(A) TSG_|_(r). Our strategy is to first find an invariant proper subgraph F"

of F, then create a new graph A containing F" such that TSG+(A) TSG+(F) and

A has fewer type I vertices than F. Continuing this process until no type I vertices

remain, we arrive at the desired embedded graph A.
We begin with some definitions and lemmas.

Definition 7. Let F be a graph embedded in S3, let S be a type I sphere for F,
let B be the closure of one of the components of S3 — S, let a B n F, and let
j«) E fl F. Then we say that a is a type I subgraph of F with associated sphere

S, and associated type I ball B, and v is the attaching vertex of a, S or B. If X and

X' are subsets of S3 such that X n X' is either empty or a single vertex of F, then we

say that X and X' are almost disjoint.

Lemma 1. Let F be an embedded graph, and let T\,... ,Tr be pairwise almost

disjoint type I subgraphs with attaching vertices v\, ,vr, respectively. Let V
cl(F — (Fi U ¦ ¦ ¦ U Fr)) and let a be a type I subgraph ofV with attaching vertex x.
Then F has a type I ball E with attaching vertex x, andpairwise almost disjoint type I
balls E\, Er associated with T\, ,Tr such that E (IF' a and E is almost

disjoint from E; for all i such that v, e cl(F' — a).

Proof. Let D be a type I ball for F' associated with a. For each i, let 5, and C\ be

type I balls for F associated with F, such that 5, — {v{\ c int(C,). Then for each

i ^ j, F,- is almost disjoint from Cj. Now for each i, we can find a small ball B'; c B;
such that v\ e B'. and B- is almost disjoint from each Cj with j ^ i and from dD.

We start by shrinking B\ within itself to B[ by an isotopy of S3 which is pointwise
fixed on cl^3 — C\). This isotopy takes Fi to some F[ c B[. Next we shrink B2

to B'2 fixing c^^3 — C2), taking F2 to some F^ C B'2. Continue this process for
i 1, r. The composition of these isotopies is an isotopy of S3 which is fixed

on F' and takes F to A F' U r[ U ¦ ¦ ¦ U r'r. Now B[, B'r are pairwise almost

disjoint type I balls for A with associated subgraphs T'v T'r such that each B[ is

almost disjoint from dD.
Now without loss of generality we can choose s and t such that if i < s then

B. c int(D), if s < i < t then B[ c cl(5"3 - D), and if t < i < r then v, x and

B- c D. Let B c D be a ball containing B't+l U ¦ ¦ ¦ U B'r which is almost disjoint
from F' and from each B[ with i < s. Let B' c cl(5"3 - D) be a ball with x e dB'
which is almost disjoint from F' and from each B- with s < i < t. Now there is an

isotopy of S3 taking B to B' and pointwise fixing F' U (B[ U ¦ ¦ ¦ U B't). For each i,
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let B'J and T'J denote the images of B[ and V. as a result of this isotopy. This isotopy
takes A to A' V U Y'{ U ¦ ¦ ¦ U F'r'.

Now Bf, B" are pairwise almost disjoint type I balls for A' with associated

subgraphsFp F"respectively. AlsoDisatypelballforA'suchthatDnF' a,
and D is almost disjoint from B" for all i such that v, G cl (F" — a). The composition
of the above isotopies determines a homeomorphism h: (S3, F) —>¦ (S3, A') which
is fixed on F" and takes each F, to V". Now let E h l(D), and for each i, let
E; h l(B'J). Then the balls E and,Ei, ,Er satisfy the conclusion of the lemma.

D

We would like to focus on those type I subgraphs which are as small as possible.

Definition 8. Let F be a graph embedded in S3 and let a be a type I subgraph with
associated sphere S, associated ball B, and attaching vertex v. Suppose that F has

no type I subgraph which is a proper subset of a. Then we say that a is an innermost
subgraph and B is an innermost ball of F.

We can also choose a particular type I vertex, and look for the smallest type I
subgraph attached at that vertex.

Definition 9. Let F be a graph embedded in S3 and let a be a type I subgraph with
associated sphere S, associated ball B, and attaching vertex v. Suppose that F has

no type I subgraph with attaching vertex v which is a proper subset of a. Then we

say that a is an innermost subgraph rel v and B is an innermost ball rel v.

Observe that if a is any type I subgraph of F with attaching vertex v, then a
contains an innermost subgraph and an innermost subgraph rel v. The following
lemma can be proved using an argument identical to that of Lemma 4.1 of [Su], so

we do not include the proof here.

Lemma 2. Let F be an embedded graph and let X be an innermost subgraph of F

(respectively rel v). Let S be a type I sphere for F (respectively rel v) and let the

closures of the components ofT — S be a and ß. Then À is contained entirely in
either a or ß.

Observe that it follows from Lemma 2 that if X\ and A.2 are innermost subgraphs
of F (respectively rel v) which are not almost disjoint, then k\ A.2- Thus every
embedded graph F has a unique collection of innermost subgraphs (respectively
rel v) and these subgraphs are pairwise almost disjoint. Hence any diffeomorphism
of (S3, F) takes this unique collection to itself.

Lemma 3. Let F be an embedded graph with a type Ivertex. Then F has a type I vertex
v with the property that at most one innermost subgraph rel v is not an innermost
subgraph of F.
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Proof. Suppose that v\ is a type I vertex of F such that some innermost subgraph
rel v\ is not an innermost subgraph of F. Call this subgraph Fi. Since Fi is not
innermost, it contains a vertex t>2 ^ ui where an innermost subgraph is attached.

Consider those innermost subgraphs of F rel u2 which do not contain v\. Suppose
that one of these subgraphs is not innermost. Call this subgraph F2. Since F2 does

not contain v\, F2 is a proper subgraph of Fi.
Repeat the above argument starting with F2 in place of Fi. Since the graph

F is finite, it cannot have an infinite nested sequence of proper subgraphs. Hence

eventually, we obtain a vertex vn such that every innermost subgraph of F rel vn that
does not contain vn-\ is innermost. Since F has precisely one innermost subgraph
rel vn that contains vn-\, the vertex vn satisfies the conclusion of the lemma.

Now we are ready to prove Proposition 2.

Proposition 2. Let F be an embedded graph, and let H TSG+(F). Then either
H is realizable by a graph with no type I spheres, H Sr for some r, or H has a
non-trivial normal subgroup N such that both N and H/N are realizable.

Proof. IfTSG+(F) Z2, then//is realized by the graph consisting of a single edge,
and if H is trivial then it is realized by the graph consisting of a single vertex. Thus

we assume that H ^ Z2, H is not trivial, and F has at least one type I sphere. We

will show that either H Sr for some r, H has a non-trivial normal subgroup JV

such that both JV and H/N are realizable, or there exists an embedded graph A such

that TSG+(A) TSG+(F) and A has fewer type I vertices than F.

By Lemma 3 we can choose an innermost type I vertex v\ which has the property
that at most one innermost subgraph rel v\ is not an innermost subgraph of F. If v\
is fixed by TSG+ (F), let {Fi, F„} be the collection of innermost subgraphs of F

rel v\. Otherwise, let {Fi, F„} be the collection of innermost subgraphs of F. In
either case, let u, be the attaching vertex of F,. Thus if v\ is fixed by TSG+(F) then

for every i, v\ v\. Observe that, since ui is an innermost type I vertex, F has at

least two innermost subgraphs and at least two innermost subgraphs rel ui. Thus in
either case, n > 1. Furthermore, by the uniqueness of the collection {Fi, Fn},
each element of TSG+(F) takes each F, to some V j. Furthermore, since T\, ,Tn
are pairwise almost disjoint and F„ is a type I subgraph of cl(F — (Fi U ¦ ¦ ¦ U F„_i)),
we can apply Lemma 1 where r n — 1 and a F„ to obtain a collection of pairwise
almost disjoint type I balls, {5i, Bn} for F, associated with {Fi, F„}.

Let G denote the group of all orientation preserving diffeomorphisms of (S3, F).
Then G induces TSG+(F) and for every a e TSG+(F) there is a ga & G which
induces a. Let m denote a number larger than the number of vertices in F. We will
use the following observation in several places in the proof.

Observation. Suppose that g: (S3, F,) —>¦ (S3, Ff) is a diffeomorphism such that

g(vj) Vj. Let Di and Dj be balls containing F, and F; respectively such that
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dDj n F, {vj} and dDj n Fj {vj}. Now g(A") and Dj are both balls containing

Yj. Thus the complements of g (A*) and Dj are isotopic by an isotopy of S3 fixing
Yj. Hence g is isotopic to a diffeomorphism g': (S3, F,-) —>¦ (S3, Yj) such that

/|ri- g|Ff.

Step 1. We prove the proposition in the case where v\ is axed by TSG+(F) and

some Yi is not setwise invariant under TSG+(F).

Inthiscase, {Pi, F„} is the family of innermost subgraphs relui. Withoutloss
of generality, {Fi, Fr} is the orbit of Fi, andr > 1. We define a homomorphism
4> : TSG_|_(F) —>¦ Sr by letting $>(a) be the permutation that a induces on the set

{ri,...,rr}.
To see that 4> is onto, let (ij) be a non-trivial transposition in Sr. Since F,- and

Yj are both in the orbit of Y\, there is some a e TSG+(F) such that a(F,) Yj.
Now ga is a diffeomorphism of S3 such that ga(Y{) Yj, and 5, and Bj are balls

containing F, and Yj respectively such that 95, n F, {ui} and 95; n Fj {v\}.
By the Observation, there is a diffeomorphism g^ : (S3, F,) -^ (513, Yj) such that

g^(5f) Bj. We will use g^ to define a diffeomorphism g: (S3, F) -^ (5"3, F) as

follows. Since 5, and Bj are almost disjoint and g'a fixes ui, we let g15, g'a \ 5, and

g | Bj¦ (g'a ~11 Bj¦. Let B denote a ball containing Bt U 5y- such that 9 B n 5? U 5;)
{ui} and 5 n F F, U Fj. We can extend g to a diffeomorphism of 5 — (5, U Bj)
such that g | d B is the identity, and then extend g to S3 — B by the identity. Now g is an

orientation preserving diffeomorphism of (S3, Y). Let a' denote the automorphism
induced on F by g. Then a' interchanges F, and Yj and a'\Y — (F, U Yj) is the

identity. So $>(a') is the transposition (ij). Hence 4> is onto.

If ker(4>) is trivial, then TSG+(F) Sr and we are done. So suppose that
./V ker(4>) is non-trivial. Let FI denote the embedded graph obtained from F as

follows. For each i < r such that F, is not a simple closed curve, we add im vertices

to every edge of F, containing v\. For each i < r such that F, is a simple closed curve
we add im vertices to a single edge of F,. Now each F, is an innermost subgraph rel

v\ for FI, and is the unique innermost subgraph rel v\ which contains a chain whose

length is between im and (i + l)m — 1. Thus every element of TSG_|_(FI) takes F,-

to itself for all i < r. Now it is not hard to see that TSG_|_(FI) ker(4>). Finally,
let IT denote the embedded graph consisting of r edges joined together at a common
vertex. Then TSG+(n') Sr H/N. Thus both N and H/N are realizable. So

we are done with Step 1.

As a result of Step 1, we assume that one of the following hypotheses holds.

Hypothesis (a). v\ is not fixed by TSG+(F).

Hypothesis (b). v\ is fixed by TSG+(F) and every F, is setwise invariant under

TSG+(F).
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Step 2. We choose an invariant proper subgraph V and deone a non-trivial homo-

morphism * : TSG+(r) -> TSG+(r") such that N ker(*) is realizable.

First we assume that Hypothesis (a) holds. In this case, {Fi, F„} is the family
of innermost subgraphs of F. Without loss of generality, we can assume that the

subcollection of innermost subgraphs with attaching vertex v\ is {Fi, ,Tt). Let
O denote the orbit of Y\ U ¦ ¦ ¦ U F( under TSG+(F). Without loss of generality
there exists an r < n such that O Fi U ¦ ¦ ¦ U Fr. Now let V cl(F - O).
Then V is a connected graph. Observe that V is setwise invariant under G, and

the homomorphism * : TSG+(F) -> TSG+(F0 given by *(a) a\V for every
a G TSG_|_(F) is not trivial since v\ is not fixed by TSG+(F).

We create an embedded graph FI which realizes JV ker(^) as follows. Let
{xi, xs} be distinct vertices representing the orbit of v\ under TSG+ (F). As sets

{x\, ,xs} {v\, ,vr}, however we may have r > s if some u; v} for i ^ j.
Let ß\, ßs+\ be arcs such that each ßj contains jm vertices in its interior. We

obtain FI from Fi U ¦ ¦ ¦ U Fr by adding ß\, ßs+\ on the outside of B\,..., Br,
such that ß\ is attached to x\ ; for each j such that 1 < j < s +1, ßj has one endpoint
at xj and the other endpoint at xj+\ ; and ßs+\ is attached to xs. For each j, ßj is the

only chain in FI of length jm, and hence each ßj is invariant under TSG+(FI). Thus
for each j < s, {F,- \v, Xj} is setwise invariant under TSG+(FI). Now it is not hard

to check that TSG+(FI) ker(*).
Now suppose that Hypothesis (b) holds. Then {Fi, Fn} is the family of

innermost subgraphs of F rel v\. Since TSG+(F) is non-trivial, without loss of
generality there is some a G TSG+(F) which induces a non-trivial automorphism
on F„. In this case we let V F„. Now F" is setwise invariant under G, and again

*: TSG+(F) -> TSG+(F0 defined by *(a) a\T' for every a g TSG+(F) is

non-trivial. In this case, we let FI Fi U ¦ ¦ ¦ U F„_i together with two arcs added at

v\, one with m vertices and the other with 2m vertices (this guarantees that FI is not
a single arc). Then every element of TSG+(FI) fixes v\, and we see that FI realizes
./V ker(^). So we are done with Step 2.

Next we will introduce some notation that will be used throughout the rest of the

proof. If Hypothesis (a) holds, then v\ isnotfixedby TSG+(F). Hence there is some
innermost subgraph rel v\ which is not one of the F,. By our choice of v\, at most one
innermost subgraph rel v\ is not one of the F,. Thus 8 cl(F — (Fi U ¦ ¦ ¦ U F()) is

an innermost subgraph rel v\. Also V cl(F — (Fi U ¦ ¦ ¦ U Fr)) c S. If Hypothesis
(b) holds, then we let t r n - 1, and again let «5 cl(F - (Fi U ¦ ¦ ¦ U Tt)). In
this case 8 F„ F', and hence again 8 is an innermost subgraph rel v\. We will
use r in the next step and use t and 8 in Step 5.

In general, *I> : TSG+(F) --* TSG+(F/) may not be surjective. In Step 3 we will
create a new embedded graph A by adding vertices or chains of vertices to F", and in
Step 4 we will show that A realizes H/N.



344 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

Step 3. We construct an embedded graph A which contains V and satisoes the

following conditions:

(1) For every a g TSG+(F), there is a ga G G such that ga (A) A.

(2) If g, h g G induce the same automorphism of F and leave A setwise invariant,
then g and h induce the same automorphism of A.

(3) If g is a diffeomorphism of (S3, A), then g({ui, vr}) {v\, ,vr) and

r.
Case 1. v\ has valence one in V.

Then V contains a chain P with one endpoint at v\. Suppose that V P, then

TSG+(F') Z2. Since there is some a g TSG+(F) which induces a non-trivial
automorphism on F', im(*I>) TSG+(F/). Thus H/N is realizable. If AT is trivial,
then TSG+ (F) Z2, contrary to our initial assumption. If N is non-trivial we would
be done with the proposition. Thus we assume that F' ^ P.

Let e be the edge in P containing v\. We create A from F' by adding m vertices
to each edge in the orbit of s under TSG+(F). It is easy to see that Conditions (1)
and (2) are satisfied for A. We abuse notation and let P denote both the chain in F'
containing v\ and the chain in A containing v\. Since P and its orbit under TSG+ (F)
are the only chains of length at least m in A, the orbit of P under TSG+(A) is the

same as the orbit of P under TSG+ (F). Since V ^P, one endpoint of P has valence
at least three in A. Hence no element of TSG+(A) interchanges the endpoints of P

or any chain in its orbit. Thus for any diffeomorphism g : (S3, A) --* (S3, A), we
must have g({ui, vr}) {v\, vr}, and g(F') F'. Thus Condition (3) is

satisfied.

Case 2. The valence of v\ is at least two in F'.

Consider vertex neighborhoods N(v\), ,N(vr). For each i < r and each edge

Sj in F' which contains vu let fj N(v{) n ej and let wj be the point where fj
meets dN(vj). If Hypothesis (a) is satisfied, choose a collection of pairwise almost

disjoint regular neighborhoods N(fj) in N(vf) — (B\ U ¦ ¦ ¦ U Br). If Hypothesis
(b) is satisfied, choose a collection of pairwise almost disjoint regular neighborhoods

N(fj) in N(vi) n Bn. In either case, for each j, we let dj c N(ff) be an arc with
endpoints v\ and wj such that dj U fj bounds a disk Ej in N(fj). We create A from
F' by adding each dj together with the vertex wj and m additional vertices on dj.

As an arc, dj is isotopic to fj fixing F. Hence for every a G TSG+(F), we can
choose ga G G such that ga(A) A. Hence Condition (1) is satisfied. Furthermore,
by our construction of A, Condition (2) must also be satisfied. Observe that since

the valence of v\ is at least two in F', A has at least two <i;'s containing the vertex

v\. Thus for each i < r, v, has valence at least four in A, while each w, has valence
three. Therefore, v\, vr are the only vertices of valence more than three in A
which are endpoints of chains of length m. It follows that for any diffeomorphism
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g: (S3,A) -> (S3, A), we must have g({ui,...,ur}) {vu vr} and g(r')
F". Hence Condition (3) is satisfied. Thus we are done with Step 3.

Step 4. We prove that H/N is realized by A.

By Conditions (1) and (2), we can define a homomorphism 4>: TSG+(F) —>¦

TSG+(A) by letting $>(a) denote the automorphism that ga induces on A. Furthermore,

it is easy to check that ker(4>) ker(^) N.
To show that 4> is onto, we let a e TSG+(A). By definition there is an orientation

preserving diffeomorphism g: (S3, A) —>¦ (S3, A) inducing a on A. We will
construct an orientation preserving diffeomorphism h : (S3, F) —>¦ (S3, F) that leaves A
invariant and induces a on A as follows.

Case 1. F satisfies Hypothesis (a).

Since{ui, ur}istheorbitofuiunderGandbyCondition(3)g({ui, vr})
{v\,..., vr}, for every i < r, there is a g; £ G such that gi(vi) g(t>?)- Now
for each f < r, we can choose y(0 < r such that gf(F,-) Fjp), and hence

g, (u,) u/(f). It follows from the Observation that for each i < r, there is an orientation

preserving diffeomorphism gi: (Bj, F,) --* (5/(f), F/(,-)). Since B\,... ,Br
are pairwise almost disjoint, for each i < r, we can define h\B\ gi. Then

h{vi) g-(vi) Vj(i) g(vi).
Next we define a collection {Di,..., Dr) of pairwise almost disjoint innermost

balls for F with associated subgraphs {Fi,..., Fr} such that each 5, — {u,} c int(D;
and AHA 5j-nA {v;}. Since each g (u?) ui(,),eachg(A)isisotopictoDi(i)
by an isotopy of S3 fixing A. As in the Observation, it follows that g is isotopic to an

orientation preserving diffeomorphism g' : (S3,A) -^ (S3, A) such that g'|A g|A
and for each i < r, g'(Dj) D/(f). Hence g'({vi, vr}) {v\, ,vr) and

g'(r') r'. Thus we define/? | cl(5"3-(DiU- ¦ -UDr)) g'| cl(5"3-(DiU- ¦ -UDr)).
Finally, for every i < r, since h(dDf) 9D/(f) and h(dBf) 95/(f), and

/î|9D; and /?|95; are both orientation preserving diffeomorphisms taking u, to u/(f),
we can extend A to a diffeomorphism from D, — 5, to D/(?) — ß/(f). Now A is

a diffeomorphism of (513, A) which induces a on A and h(T) F. Let è be the

automorphism which h induces on F. Then $>(b) a, and hence 4> is onto.

Case 2. F satisfies Hypothesis (b).

In this case, V F„, we have A c Bn and dBn flA {v\}. Now by the

Observation, since g(A) A and g(ui) v\, g is isotopic to an orientation preserving
diffeomorphism g' : (S3, A) -> (S3, A) such that g'(5„) Bn andg'|A g|A.
Define h\Bn g'\Bn. Let Ai be an innermost ball for Fn such that Bn — {vn} c int(D„).
Since h \ d Bn is orientation preserving we can extend h to a diffeomorphism of Dn — Bn

such that h \ d Dn is the identity, and then define h to be the identity on S3 — Dn. Now
A is a diffeomorphism of (S3, A) which induces a on A, and h(T) F. So as above,
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let b be the automorphism which h induces on F, then <£>(£>) a. Thus again 4> is

onto.
Therefore in either case, H/N TSG+(A). Thus we are done with Step 4.

In Step 2 we saw that JV ker(^) is realizable. If JV is non-trivial then we are

done. Otherwise, H is realized by A. Hence we will be done after we prove the

following.

Step 5. We show that A has fewer type I vertices than F.

First suppose that A was created in Case 1 of Step 3. Then A is homeomorphic
as a topological space to V. Recall that a type I vertex must have valence at least

three. So, V and A have the same set of type I vertices, and by Lemma 1, every
type I vertex of F ' is a type I vertex of F. On the other hand, v\ is a type I vertex
of F. However, since the valence of v\ is one in A, v\ is not a type I vertex of A.
Therefore, A has fewer type I vertices than F.

Thus we can assume that A was created in Case 2 of Step 3. Let x be a type I
vertex of A. We will show that x is a type I vertex of F which is not one of v\, vr.
Let a be a type I subgraph of A with attaching vertex x, and let a' cl(A — a). For
each j, the simple closed curve fj U dj is contained entirely in either a or a'. Hence

a and a' each contain at least one edge of F". Let 0 A U (Fi U ¦ ¦ ¦ U Fr). Then

Fi, Fr are type I subgraphs of 0. Thus by Lemma 1, 0 has a type I ball E with
attaching vertex x such that E fl A a and E is almost disjoint from each F,- such

that v; g cl(r' — a). Then by definition, £ is a type I ball for A associated with a.
Let S dE.

Now suppose that x is a vertex of F". Then either the valence of x is at least three
in F ' or x v, for some i. In either case, the valence of x is at least three in F. Also

SnFcSn0 {x}, and each component of cl(S3 — S) contains at least one edge

of F. Hence S is a type I sphere for F and E n F is a type I subgraph of F with
attaching vertex x.

Recall from the end of Step 2 that Fi, Ft all have attaching vertex v\, and
S cl(F — (Fi U ¦ ¦ ¦ U Ff is an innermost subgraph rel v\ containing F'. Suppose
for the sake of contradiction that x v\. For all i <t,vi=x& c\{V — a), hence E
is almost disjoint from Fi U ¦ ¦ ¦ U F(. Also since E n F is a type I subgraph of F with
attaching vertex v\, F has an innermost subgraph rel v\ which is contained in E n F.

Let ß be this subgraph. Then ß c E n F c 8. However, ß c 8 implies that ß 8,

since ß and 8 are both innermost subgraphs rel v\. Thus F' C 8 E n F. But a' c
cl(S3 — E) contains at least one edge of F'. This contradiction implies that x ^ v\.
Furthermore, for each i < r, there is a diffeomorphism g : (S3, A) —>¦ (S3, A) such

that g(v\) vi. Thus, for all i < r, x ^ v;. Hence we have shown that if x is a

vertex of F', then x is a type I vertex of F which is not one of v\, vr.
Finally, for the sake of contradiction, suppose that x is not a vertex of F'. Since

the valence of x must be at least three in A, x wj for some j. Without loss of
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generality assume that fj U dj c a! and hence ej — fj C a. For some i < r, v,
is an endpoint of dj. We will show that our assumption that wj is a type I vertex of
A implies that v\ is also a type I vertex of A. Now v\ has valence at least four in A
and all of the edges of A containing v, are in a'. By our construction of A, fj U dj
bounds a disk Ej such that int(Ej) is disjoint from A. Thus by taking the union of
E and a ball containing Ej we obtain a type I ball B for A with attaching vertex v,
such that B H A aU fj U dj. Thus v, is a type I vertex of A. But we saw above

that this is impossible. Hence x ^ wj for any j.
Thus we have shown that every type I vertex of A is a type I vertex of F which is

not one of the vertices v\, ,vr. Hence the set of type I vertices of A is a proper
subset of the type I vertices of F. This completes the proof of Proposition 2.

5. Embedding graphs in S3

In this section we prove the converse of Theorem 2. In particular, in Theorem 3

we will show that for every finite subgroup G of Diff+(5'3), there is an embedded

complete bipartite graph F with TSG+(F) G. A complete bipartite graph Kn^n is

the graph consisting of two sets of n vertices V and W together with edges joining
every vertex in V to every vertex in W.

Our strategy to construct F will be as follows. Let n denote the order of G. Then
the sets of vertices V and W will be embedded as the orbits under G of distinct
points in S3. We will embed the edges of Kn>n by lifting paths from the orbit space
S3IG. Finally, by tying distinct knots in edges from different orbits we will ensure
that TSG_|_(F) is not larger than G.

We will use the following terminology. An edge e of a graph y is said to be

invertible if there exists some a e Aut(y) that interchanges the vertices of e. In this

case we say that a inverts e. Analogously if s is an edge in an embedded graph F,
and there is some diffeomorphism g of (S3, F) such that g interchanges the vertices
of e, then we say s is invertible and g inverts s.

Graph Embedding Lemma. Let y be a graph. Let H be a subgroup of Aat(y)
that is isomorphic to a unite subgroup G of Diff+(5'3). Suppose that no non-trivial
element ofH axes any vertex or inverts any edge of y. Then there is an embedded

graph F with underlying abstract graph y such that G induces H on F.

Proof. Smith [Sm] has shown that the fixed point set of every finite order orientation
preserving homeomorphism of S3 is either the empty set or a simple closed curve.
Let Y denote the union of the fixed point sets of all of the non-trivial elements

of G. Then Y is the union of finitely many simple closed curves whose pairwise
intersection consists of finitely many points. So M S3 — Y is path connected and

setwise invariant under G.
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Let *I> : H --* G be an isomorphism and for each a G H, define ga ^(a). Let
{w\, wq} be a set consisting of one representative from each vertex orbit of y
under H. Let v\,..., vq be distinct points in M which have disjoint orbits under G.

For each i < q, we embed the vertex w, as the point v,.
We embed an arbitrary vertex w of y as follows. Since no vertex of y is fixed by

any non-trivial element of H, there is a unique a G H andf < g such that«; a(wi).
Thus every u; determines a unique point ga(u?) in M. So we embed u; as ga(vi).
Let y denote the set of thus embedded vertices; then G leaves V setwise invariant.
Since v\,..., vq are in M and have disjoint orbits under G, all of the vertices of y
are embedded as distinct points in M. The map sending each a g H to ga \ V is an

isomorphism, since ^ is an isomorphism and V is disjoint from Y. Thus G induces

H on the set V.

Let {e\, en} be a set consisting of one representative from each edge orbit of
y under H. For each i, let x\ and y, be the embedded vertices of e;. Since M is path
connected, for each i there is a path a, in M from x\ to y;.

Let n : M --* M/G denote the quotient map. Then n is a covering map, and

the quotient space Q M/G is a 3-manifold. For each i, let ai n o a\. Then
ai is a path or loop from it{x\) to ^(y,). Using a general position argument in Q,

we can homotop each ai, fixing its endpoints, to a simple path or loop pi such that

int(p((/)), int(p'n(I)), and n(V) are pairwise disjoint. For each i, let p; be the

lift of pi beginning at x\. Since pi n o p, is one-to-one except possibly on the

set {0, 1}, we know that p, must also be one-to-one except possibly on the set {0, 1}.

Since pi is homotopic to ai fixing its endpoints, p, is also homotopic to a-, fixing its

endpoints. Thus p, is a simple path in M from x, to y,.
We embed each e\ as pi{l). We embed an arbitrary edge e as follows. Observe

that since no non-trivial element of H fixes any vertex or inverts any edge, no edge is

setwise invariant under any non-trivial element of H. Thus there are unique a € H
and i < n such that e a(e\). Hence e determines a unique arc ga(Pi(I)) in M
from ga(xi) to gaiyi)- So we embed e as s ga(p,(/)). Let £ denote the set of thus

embedded edges. Then G leaves E setwise invariant.

Let F consist of the vertices V together with the embedded edges E. Then F is

setwise invariant under G. We see that F is an embedded graph as follows. First,
since each int(p-(/)) is disjoint from n(V), each embedded edge must be disjoint
from V. Similarly, since for i ^ j, pi(I) and p'AI) have disjoint interiors, for every

g,h G G, g{pi (/)) and h{pj (/)) have disjoint interiors. Finally, since pi is a simple
path or loop, if g ^ h, then g{p\ (/)) and h(p; (/)) have disjoint interiors.

Hence F is an embedded graph with underlying abstract graph y such that G

induces H on F.

In the proofofProposition 4, we would like to be able to add a knot k to a particular
edge e of F so that no element of TSG+(F) can take e to an edge which does not
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also contain k. Furthermore, we would like to be able to add a non-invertible knot to

an edge e so that no element of TSG+(F) can invert e.

We will use the concept of local knotting. Let F be an embedded graph, let k be

a knot type, and let e be some edge which is contained in a simple closed curve in
F. We say that s contains the local knot k with ball B, if B is a ball and B n F is

an arc a in int(e) such that a is properly embedded in B and the union of a and an

arc in dB has knot type k. When we say an embedded graph V is obtained from F

by adding k to s with ball B we will mean that V is obtained from F by replacing
an arc a in int(e) with an arc a' in a regular neighborhood B of a which is disjoint
from F — a such that a' is properly embedded in B, and the union of a' and an arc
in dB has knot type k.

Suppose we add a local prime knot k to an edge e of F and call the new embedded

edge e'. We see as follows that if k' ^ k is a prime knot that was not a local knot of e,
then k' is not a local knot of e'. Suppose for the sake of contradiction that e' contains
k' with ball B'. Since the balls B and B' for k and k' are disjoint from F — e, and

e is contained in a simple closed curve C in F, it is enough to prove the assertion in
the case when F C. But in this case the assertion follows immediately from the

prime decomposition theorem for knots.

Orienting an edge from one endpoint to the other naturally induces an orientation

on any local knot contained in the edge. If k is a non-invertible prime knot not
contained in the oriented edge e, then, by an argument similar to the above paragraph,
adding k to s to get e' does not result in the oriented edge e' containing the reverse
of k. In particular, this means that if V is the graph obtained from F by adding k to

e, then there is no a e TSG+(F/) which inverts e'.

We want to be able to add a new local knot to one edge of an embedded graph
without causing other edges to contain that local knot. Let ei and £2 be edges of F.

A bridging sphere between ei and £2 is a sphere S which meets F transversely in

{x\,X2}, where each x\ is a point in the interior of £,-.

Local Knotting Lemma. Let F be an embedded graph with distinct edges e\ ande2,
each contained in a simple closed curve in F, such that there is no bridging sphere
between e\ and£2. Let k\ and ki be {not necessarily distinct) knot types such that £2

does not contain the local knot k^. Then adding k\ to s\ does not make £2 contain
the local knot /q.

Proof. Let V be the graph obtained from F by adding the local knot k\ to £1 with
ball B\, and let e[ denote the edge in F" obtained from £1 in this way.

Suppose that in F', £2 contains the local knot /q with ball B2. By general position,
we can assume that dB\ and 952 intersect in a collection of pairwise disjoint circles.

Suppose there is a circle of intersection that bounds a disk F on dB\ such that F
is disjoint from F". Choose C to be an innermost circle of intersection of 9^2 with
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F, and let Di be the disk in F which is bounded by C. Suppose, for the sake of
contradiction, that some component D2 of d B2 — C contains precisely one point of
82. By the hypotheses of the lemma, £2 is contained in a simple closed curve in V.
Now the sphere Di U D2 meets this simple closed curve transversely in a single point,
which is impossible. Thus C bounds a disk D2 on 952 which is disjoint from V.
Then the sphere Di U D2 is disjoint from V, so it bounds a ball X which is also

disjoint from F". Therefore, while fixing F', we can isotop D2 through X to a disk

just past Di, and thus eliminate the circle of intersection C. By repeating this process
as necessary, we can isotop B2, fixing F", to a new ball B'2 such that no circle of
dB\ n dB'2 bounds a disk on dB\ disjoint from V. Since B'2 is isotopic to B2 fixing
V, B'2 is also a ball for the local knot /q in «2.

Suppose, for the sake of contradiction, that dB\ n dB'2 is empty. Then B\ and

B'2 are disjoint. Hence we can replace e[ n B\ by the unknotted arc e\ n B\ without
introducing any intersections between ei and B'2. Thus, in F, £2 contains the local
knot K2 with ball B'2, which is contrary to the hypothesis of our lemma. Therefore

dB\P\ dB2 must contain one or more circles of intersection, none of which bounds a

disk on dB\ which is disjoint from V. Let Cbe a circle of intersection of dB\ P\dB2
that bounds an innermost disk Di on dB\. Let D2 be a disk bounded by C on dB'2.

Now e[ is contained in a simple closed curve in F', which intersects Di transversely
in some point in int(fij). Since Di U D2 is a sphere and F' n 952 C «2, F>2 intersects

«2 transversely in a single interior point. Thus Di U D2 is a bridging sphere for V
between e[ and £2. Since Di n e\ D\ n ej, Di U D2 is also abridging sphere for
F between ei and £2. But this contradicts our hypothesis. Thus, as an edge of F', £2

cannot contain K2.

Observe that a 3-connected embedded graph F can have no bridging spheres.

Thus, by the Local Knotting Lemma, adding a local knot k\ to any edge of F does

not cause any other edge of F to contain a new local knot K2.

Proposition 4. Let A be an embedded 3-connected graph, and let H be a subgroup

of TSG+(A) which is inducedby an isomorphic subgroup G of Diff+(5'3) and such

that no non-trivial element of H axes any vertex of A. Then A can be re-embedded

as F such that H TSG+(F) and H is induced by G.

Proof. The vertices of F will be the same as those of A. We will obtain the edges of
F by adding local knots to the edges of A. For each a e H, let ga denote the unique
element of G which induces a on A. Since G is a finite subgroup of Diff+(5'3), we
can choose a neighborhood N(A) so that N(V) and N(E) are each setwise invariant
under G.

Let {8\, 8n} consist of one representative from each edge orbit of A under
H. Without loss of generality, we can assume there is some m < n such that <5, is

invertible if and only if i < m. Since no non-trivial element of H fixes any vertex,
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for each i < m, there is a unique a-, G H such that gül inverts <5,-, and there is no
non-trivial element of G which leaves any 8; setwise invariant without inverting it.

Let {k\ Kn} be a set of distinct prime knots none ofwhich is contained in A,
such that if i < m then k\ is strongly invertible and otherwise k\ is non-invertible.
For each i, we add the local knot k\ to 8; with ball N(8i) and call this new embedded

edge £j. For i < m, since k\ is strongly invertible, we can add k\ to 8i in such away
thatga.(e?) =£f.

Ifa andfc are elements of // such that ga (<5,- gj(<5,-), thenga(e,-) gj(fif). For
each edge e of A, e is in the orbit of a unique <5,. Now there is an a G // such that
e a{8i). So we can re-embed e as ga(fif) and this embedding does not depend on
our choice of a. Since the local knots were each added within N{E), the interiors of
the new edges are pairwise disjoint. Let F denote the embedded graph obtained from
A by re-embedding the edges in this way. Observe that the local knot k\ was added

to an edge e of A if and only if e is in the orbit of <5, under G. By our construction,
for every a G H, F is setwise invariant under ga. Thus H is a subgroup of TSG+ (F)
which is induced by G. Now it follows from the Local Knotting Lemma that an

embedded edge e of F contains the local knot k\ if and only if s is in the orbit of £,-

under G.

We show as follows that H TSG+(F). Let <p be a non-trivial element of
TSG+(F). Then there is some diffeomorphism h: (S3, F) —>¦ (S3, F) such that h

induces <p on F. Since <p is non-trivial, there is some edge e which h does not leave

setwise invariant. For some i,eis in the orbit of e, under G, and hence contains the

local knot k\. Thus h{s) must also contain the local knot k;, and therefore h{s) is

also in the orbit of e, under G. Since e and h(e) are both in the orbit of e, under G,
there is some gi G G such that gi(e) h(e). Thus gj"1 o h(s) e.

We define another diffeomorphism / : (S3, F) -* (S3, F) as follows. If gf! o A

inverts e, then the local knot k; must be invertible. Thus there is some element of G

which inverts e;, and since e is in the orbit of e; under G there is some g2 G G which
inverts e. In this case we let / g2 ° g^1 ° A. Otherwise we let / gj"1 o h. Thus
in either case, /(e) e, fixing both vertices of e.

We will show below that / actually fixes every vertex of F. Since we have shown

that / fixes the vertices of e, it suffices to show that if / fixes a vertex x, then / fixes

every vertex adjacent to x. Suppose that there is some edge e' containing the vertex

x, such that f(e') ^ e'. By the same argument given two paragraphs up, since e' and

f{s') contain the same local knots, there is some g3 G G such that gz{e') f(e').
By hypothesis no non-trivial element of G fixes any embedded vertex. Let x' denote

the vertex of g3(e') other than x, then g3(x) x'. So g^1 o / is a diffeomorphism
of (S3, F) that takes e' to itself interchanging x and x'. It follows that the local knot
which is contained in e' must be invertible. Hence, as in the above paragraph, there
is a g4 G G which inverts e'. But this implies that g3 o g4(e/) ^ e' and g3 o g${x) x.
So g3 o g4 is a non-trivial element of G that fixes the vertex x of A. This contradicts
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the hypothesis of the proposition. Hence / fixes every vertex of F.
Recall that either f g2 o g~l o h or f g^1 o h. Since / fixes every vertex

of F, h induces the same automorphism on F as either gi o g~l or g\ does. Since the

automorphisms of F induced by both g\ og2"' and g\ are elements of H, it follows
that <p, the automorphism of F induced by h, is also an element of H. Therefore

TSG+(F) H. a

The following result follows immediately from Propositions 1 and 4, together
with the fact that a 3-connected embedded graph has no type I, II, or III spheres.

Corollary. Let A be an embedded3-connectedgraph. Let H < TSG+(À) such that
no non-trivial element of H axes any vertex of A. Then A can be re-embedded as
F such that H TSG+(F) and H is induced by an isomorphic unite subgroup of
Diff+(5"3).

We shall use Proposition 4 and the Graph Embedding Lemma to prove the
following converse of Theorem 2. Note that the statement of Theorem 3 that we prove
below is slightly stronger than that given in the introduction.

Theorem 3. For every unite subgroup G of Diff+(5'3), there is an embedded 3-

connected graph F such that G TSG+(F) and TSG+(F) is induced by G. Moreover,

F can be chosen to be a complete bipartite graph Kn%nfor some n.

Proof. The complete bipartite graph ^"3,3 is 3-connected. By the corollary there is an

embedded graph F with underlying abstract graph ^"3,3 such that TSG+(F) is trivial.
So we assume that the group G is not trivial.

Now let «denote the order of G. First we suppose that n > 2. Let{t>i, v2, ¦ ¦ ¦, vn}
and {w\, w2, ¦ ¦ ¦, wn) denote the sets of vertices of an abstract complete bipartite
graph Kn>n. Since n > 2 we know that Kn>n is 3-connected. Pick x\ to be a point
in S3 that is not fixed by any non-trivial element of G. Let {x\,x2, ¦ ¦ ¦ ,xn) denote

the orbit of x\ under G. We will define a homomorphism *I> : G -y Aut(Ä"„„) as

follows. Let g G G. Then for every i < n, there is a j < n such that g{x\) xj. We

define ^/(g)(ff) vj and ^I/(g)(w;i) wj. Let H denote the image of *I>.

Since no non-trivial element of G fixes any x\, ^ is one-to-one, and hence H G.

Also, no non-trivial element of H takes any vertex to itself. Furthermore, since no
element of H takes any v, to any wj, no edges of Kn>n are inverted by any element

of H. Now we can apply the Graph Embedding Lemma to obtain an embedded graph
F with underlying abstract graph Kn>n such that G induces H on F. Furthermore, by
Proposition 4, F can be chosen so that H TSG+(F) and H is induced by G.

Finally, suppose that« 2, so G Z2. Let{t>i, v2, U3, V4} and{w;i, w2, W3, W4}

denote the sets of vertices of an abstract complete bipartite graph £4,4. Then ^"4,4

is 3-connected. Let H be the subgroup of Aut(Ä"4 4) generated by the element
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(ui, V2)(vj, 1)4) (wi, W2XW3, W4). Then // Z2, no vertex of ^"44 is fixed by any
non-trivial element of H, and there are no edges which are inverted by an element

of H. Thus we can again apply the Graph Embedding Lemma and Proposition 4 to

get an embedded graph F with underlying abstract graph ^"4,4 such that TSG+(F) is

induced by G and G TSG+(r). D
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