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Optimal SL(2)-homomorphisms

George J. McNinch*

Abstract. Let G be a semisimple group over an algebraically closed field of very good
characteristic for G. In the context of geometric invariant theory, G. Kempf and - independently

- G. Rousseau have associated optimal cocharacters of G to an unstable vector in a linear
G-representation. If the nilpotent element X e Lie(G) lies in the image of the differential of
a homomorphism SL2 -> G, we say that homomorphism is optimal for X, or simply optimal,
provided that its restriction to a suitable torus of SL2 is optimal for X in the sense of geometric
invariant theory.

We show here that any two SL2-homomorphisms which are optimal for X are conjugate under
the connected centralizer of X. This implies, for example, that there is a unique conjugacy class

ofprincipal homomorphisms for G. We show that the image of an optimal SL2-homomorphism
is a completely reducible subgroup of G; this is a notion defined recently by J.-P. Serre. Finally,
if G is defined over the (arbitrary) subfield K of k, and if X e Lie(G)(K) is a K-rational
nilpotent element with X^ 0, we show that there is an optimal homomorphism for X which
is defined over K.
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1. Introduction

Let G be a semisimple group over the algebraically closed field k, and assume that
the characteristic of k is very good for G. (Actually, we consider in this paper a

slightly more general class of reductive groups; see §2, where we also define very
good primes).

Premet has recently given a conceptual proof of the Bala-Carter theorem using
ideas of Kempf and of Rousseau from geometric invariant theory. An element X e

Q Lie(G) is nilpotent just in case the closure of its adjoint orbit contains 0; such

vectors are said to be unstable. The Hilbert-Mumford criteria says that an unstable

vector for G is also unstable for certain one-dimensional sub-tori of G. This result
has a more precise form due to Kempf and to Rousseau: there is a class of optimal
cocharacters of G whose images exhibit such one dimensional sub-tori. One of the

nice features ofthese cocharacters is that they each define the same parabolic subgroup
of G; for a nilpotent element X e q, this instability parabolic is sometimes called the

Jacobson-Morozov parabolic attached to X.
In his proof of the Bala-Carter Theorem in good characteristic, Pommerening

constructed cocharacters associated with the nilpotent element X e q; see [JaO4]

for more on this notion, and see §6 below. Using the results of Kempf, Rousseau,
and Premet, one finds (cf. [McO4]) that the cocharacters associated with a nilpotent
X g q are optimal, and that any optimal cocharacter *I> for X such that Ieg(t;2)
is associated with X in Pommerening's sense.

In this paper, we show that the notion of optimal cocharacters is important in the

study of subgroups of G. We say that a homomorphism 4> '¦ SL2 —>¦ G is optimal
provided that the restriction of cf> to the standard maximal torus of SL2 is a cocharacter
associated to the nilpotent element

More precisely, we say that 4> is optimal for X.
We prove in this paper that any two optimal homomorphisms for X are

conjugate by C°C(X); cf. Theorem 44. This has an immediate corollary. A principal
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homomorphism 4> '¦ SL2 —>¦ G is one for which the image of dcf) contains a regular
nilpotent element; the conjugacy result just mentioned implies that there is a unique
G-conjugacy class of principal homomorphisms.

Generalizing the notion of completely reducible representations, J.-P. Serre has

defined the notion of a G-cr subgroup H of G: H is G-cr if whenever H lies in
a parabolic subgroup of G, it lies in a Levi subgroup of that parabolic. We show
in Theorem 52 that the image of any optimal homomorphism is G-cr. In a previous

paper [McO3], the author showed the existence of a homomorphism optimal for any p-
nilpotent Xeg; such a homomorphism was essentially obtained (up to G-conjugacy)
by base change from a morphism of group schemes defined over a valuation ring in
a number field. Suppose that G is defined over the arbitrary subfield K of k. If X
is a /iT-rational /?-nilpotent element, we show in this paper that there is an optimal
homomorphism tfi for X which is defined over K ; for this we use the fact, proved in
[McO4], that some cocharacter associated with X is defined over K.

G. Seitz [SeiOO] has studied homomorphisms 4> '¦ SL2 —>¦ G with the property
that all weights of a maximal torus of SL2 on Lie(G) are < 2p — 2; he calls the

image of such a homomorphism a good (or restricted) A1-subgroup. We give here a

direct proof that an optimal SL2-homomorphism is good: we show that the weights
of a cocharacter associated with a /?-nilpotent element X g g are all < 2p — 2; see

Proposition 30. It follows from results of Seitz that all good homomorphisms are

optimal - we do not use this fact in our proofs.
We do use here a result of Seitz (see Proposition 34) to show that (Ad o<fi, g) is a

tilting module for SL2 when cf> is the optimal homomorphism obtained previous by
the author [McO3]; this fact is used to prove aunicity result Proposition 38 for certain

homomorphisms Ga —>¦ G which is crucial to the proof of Theorem 44; of course, in
the end one knows that (Ad ocf>, g) is a tilting module for any optimal 4>.

Seitz loc. cit. proved a conjugacy result for good homomorphisms analogous to
the result proved here for optimal ones; he also proved that good homomorphisms
are G-cr, so in some sense our results are not new. On the other hand, our proofs
of conjugacy and of the G-cr property for optimal homomorphisms are free of any
case analysis; we do not appeal to the classification of quasisimple groups at all.

Moreover, we believe that our results on optimal homomorphisms over ground fields
are new and that the ease with which they are obtained is evidence of the value of our
techniques.

As further application of the methods of this paper, we include in §9 an extension

of a result of Kottwitz; we prove that any nilpotent orbit which is defined over a

ground field K contains a /iT-rational point.
Finally, the appendix contains a note of Jean-Pierre Serre concerning Springer

isomorphisms.
I would like to thank Serre for allowing me to include his note on Springer

isomorphisms as an appendix; I also thank him for some useful remarks on a preliminary
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version of this manuscript. Moreover, I would like to extend thanks to Jens Carsten

Jantzen, and to a referee, for several useful comments on the manuscript.

2. Reductive groups

We fix once and for all an algebraically closed field k; K will be an arbitrary subfield
of k, and G will be a connected, reductive algebraic group (over k) which is defined

over the ground field K.
If G is quasisimple with root system R, the characteristic p of k is said to be a

bad prime for R in the following circumstances: p 2 is bad whenever R ^ Ar,
p 3 is bad if R G2, Fa, Er, and p 5 is bad if R E%. Otherwise, p is good.

[Here is a more intrinsic definition of good prime: p is good just in case it divides no
coefficient of the highest root in K\.

If p is good, then p is said to be very good provided that either R is not of type
Ar, or that R Ar and r ^ — 1 (mod p).

If G is reductive, the isogeny theorem [Spr98, Theorem 9.6.5] yields a - not
necessarily separable - central isogeny \\i GtxT —* G where the G, are quasisimple
and T is a torus. The G\ are uniquely determined by G up to central isogeny, and

p is good (respectively very good) for G if it is good (respectively very good) for
each G ;.

The notions of good and very good primes are geometric in the sense that they
depend only on G over k. Moreover, they depend only on the central isogeny class

of the derived group (G, G).
We record some facts:

Lemma 1. (1) Let G be a quasisimple group in very good characteristic. Then the

adjoint representation of G on Lie(G) is irreducible and self-dual.
(2) Let M < G be a reductive subgroup containing a maximal torus ofG. Lfp is

goodfor G, then it is goodfor M.

Proof. For the first assertions of (1), see [Hu95, 0.13]. (2) may be found for instance
in [MS03, Proposition 16].

Consider Ä"-groups H which are direct products

(*) H Hi x S,

where S is a K -torus and H\ is a connected, semisimple K -group for which the

characteristic is very good. We say that the reductive K-group G is strongly standard

if there exists a group H of the form (*) and a separable /iT-isogeny between G and

a K-Levi subgroup of H. Thus, G is separably isogenous to M Ch(S) for some
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/T-subtorus S < H; note that we do not require M to be the Levi subgroup of a

/iT-rational parabolic subgroup.
We first observe that a strongly standard group G is standard in the sense of

[McO4]; this is contained in the following:

Proposition 2. IfG is a strongly standard K-group, then there is a separable K-
isogeny between G and G where G is a reductive K-group satisfying the "standard

hypotheses " of [JaO4, §2.9], namely:

(1) the derived group of G is simply connected,

(2) p is good for G, and

(3) there is a G invariant nondegenerate bilinear form on Lie(G).

Proof. Let H H\ x S where n\\ H\ --* H\ is the simply connected cover, and

let n Tt\ x id : H —> H be the corresponding isogeny; of course, H and n are

defined over H [KMRT, Theorem 26.7]. By assumption, G Ch(S) for some
/T-subtorus S < H. Since S n 1(S)° < H is again a K-torus, its centralizer
G Cjj{S) is a K-Levi subgroup of H and n,^ : G --* G is an isogeny. Now,

Lie(G) is the 0-weight space of S on Lie(//) and Lie(G) is the 0-weight space of
S (and S) on Lie(H). Since dn is an ^-isomorphism, it restricts to an isomorphism

^n\Lie(G) '¦ Lie(G) -^ Lie(G); in other words, n is a separable isogeny.

Since G is a Levi subgroup of H, its derived group G is simply connected, so that

(1) holds. Since p is good for H, it is also good for H and for the Levi subgroups G

and G; see for instance [MS03, Proposition 16]. Thus (2) holds for G.

Finally, notice that Lie(H) is semisimple as a H-module and that Lie(H') is a

self-dual, simple //'-module whenever H' is quasi-simple in very good characteristic.

It follows that there is a non-degenerate //-invariant bilinear form on Lie(//). This
restriction of this form to the 0-weight space for S is again nondegenerate, and so (3)
holds. [Note that the same argument gives non-degenerate invariant forms on Lie(//)
andLie(G).] D

Remark 3. Suppose that y is a finite dimensional vector space. Then the group
G GL(V) is strongly standard. Indeed, ifdim V ^ 0 (mod p), then G is separably
isogenous to SL(V) x Gm, and p is very good for SL(V). If dim V 0 (mod p),
then G is isomorphic to a Levi subgroup of H SL(V © k) and p is very good
for//.

On the other hand, SL(V) is only strongly standard when dim V ^ 0 (mod p).

Remark 4. If G is strongly standard, there is always a symmetric invariant non-
degenerate bilinear form on Lie(G). Indeed, up to separable isogeny, G is a Levi
subgroup of T x H where H is semisimple in very good characteristic. If the result
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holds for H, then it holds for G; note that any nondegenerate form on Lie(T) is

invariant. Thus we assume that G is semisimple in very good characteristic. For such

a group, the simply connected cover is a separable isogeny so we may also assume
G to be simply connected. But then G is a direct product of quasisimple groups,
hence we may as well suppose that G is quasisimple in very good characteristic. In
this case, the adjoint representation is a self-dual simple G-module. If p 2, we
are done. Otherwise, one can argue as follows: If G/q denotes the split group over
Q with the same root datum as G, then the adjoint representation of G/q is also

simple; identifying the weight lattice of a maximal torus of G and of G/q, the adjoint
representations have the "same" highest weight A.. Steinberg [St67, Lemma 79]
gives a condition on A for the invariant form to be symmetric; since this condition is

independent of characteristic, and since the Killing form is symmetric on Lie(G/Q),
our claim is verified.

Proposition 5. IfG is strongly standard, then each conjugacy class and each adjoint
orbit is separable. In particular, if G is defined over K, and if g G G(K) and
X € q(K), then Cc(g) and Cg(X) are defined over K.

Proof. Separability is [SS70,1.5.2andl.5.6]. The fact that the centralizers are defined

over K then follows from [Spr98, Proposition 12.1.2].

3. Parabolic subgroups

In this section, G is an arbitrary reductive group over k. The material we recall
here is foundational; the lemmas from this section will be used mainly for our
consideration of G-completely reducible subgroups of a reductive group G; cf. 8.4

below.

If V is an affine variety and /: Gm —> V isamorphism,wewriteu lim^o f{t),
and we say that the limit exists, if /extends to a morphism /: k --* Vwith/(0) v.

If y is any cocharacter of G, then

Pg(y) P(y) {x e G | lim,_o Y{t)xy{t~x) exists}

is a parabolic subgroup of G whose Lie algebra is p(y 5Z?>o fl(y 0- Moreover,
each parabolic subgroup of G has the form P(y) for some cocharacter y ; for all this
cf. [Spr98, 3.2.15 and 8.4.5].

We note that y "exhibits" a Levi decomposition of P P(y). Indeed, P(y) is the

semi-direct product Z(y )-U(y), where U(y) {x G P \ limt^o y (t)xy(t~l) 1}

is the unipotent radical of P(y), and the reductive subgroup Z(y) Coiy (Gm)) is

a Levi factor in P(y); cf. [Spr98, 13.4.2].
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Lemma 6. Let P be a parabolic subgroup ofG, and let T be a maximal torus of P.

Then there is a cocharacter y e X*(T) with P P(y).

Proof. Since P P(y') for some cocharacter y', this follows from the conjugacy
of maximal tori in P.

For later use, we record:

Lemma 7. Let P P(y) be the parabolic subgroup determined by the cocharacter

y G X*(G). Write L Z(y)for the Levifactor ofP determinedby the choice ofy.
Lf4> '¦ H —>¦ P is any homomorphism ofalgebraic groups, the rule

<p(x) lim y(s)(p(x)y(s~l)
O

determines a homomorphism tfi: H —>¦ L ofalgebraic groups. Moreover, the tangent

map dcf) is the composite

Lie(H) % Lie(P) ^> Lie(L) Lie(P)(y; 0)

where pr is projection on the 0 weight space.

Proof. It was already observed that P L ¦ U is a semidirect product; the map

x *--* lim y(s)xy(s~l)

is the projection of P on L and is thus an algebraic group homomorphism tf/ : P —* L.
The tangent map to ijr is evidently given by projection onto the 0-weight space for
the image of y, and the lemma follows.

Remark 8. If the cocharacter y is defined over the ground field K, then P P(y)
is a /iT-parabolic subgroup, and the Levi factor L Z{y) is defined over K. The

projection P —* L given by x i->- lim^o y (•?)¦*y (-s"1) is of course defined over K
as well.

4. Springer's isomorphisms

If the characteristic oik is zero, or is "sufficiently large" with respect to the group G,
(some sort of) exponential map defines an equivariant isomorphism exp : M —> %l

between the nilpotent variety and the unipotent variety of G. Simple examples show
the exponential to be insufficient in general, however, and in 1969, T. A. Springer
[Spr69] found (the beginnings of) a good substitute. See also the outline given in
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[SS70, III §3]. The unipotent variety is known always to be normal; to make Springer's
work complete, one required also the normality of the nilpotent variety. Veldkamp
obtained that normality for "most" p, and Demazure proved it for G satisfying our
hypothesis; cf. [JaO4, 8.5]. We summarize these remarks in the following:

Proposition 9 (Springer). Let G be a strongly standard K-reductive group, where K
is any subfield ofk. There is a G-equivariant isomorphism ofvarieties A : U --* JS

which is defined over K.

Sketch. We just comment briefly on our assumptions on G. First, note that if G is the

direct product of a torus and a semisimple group in very good characteristic, there is

a separable isogeny G —* G where G is the direct product of a K -torus and a simply
connected semisimple K -group in (very) good characteristic. Moreover, the separable

isogeny is defined over K and induces equivariant /iT-isomorphisms Û —>¦ %l and
Sf —* JS (using some hopefully obvious notation); see [McO3, Lemma 27]. Now,
Springer proved the proposition holds for G - see the above references- and thus the

result for G is true in this case.

Repeating the above argument, we may replace G by a separably isogenous group,
and thus we suppose that G Ch(S), where S is a K-torus in a K-group H as in (*)
of section §2; the above remarks show that there is an //-equivariant isomorphism
A# : Uh —^ <Mh between the unipotent and nilpotent varieties for H. Since U
(Uh)s and JS (JSh)s, it is clear that A# | %i defines the required isomorphism for
the varieties associated with G.

Remark 10. Suppose that A : U --* JS is an equivariant isomorphism defined over
K. If P < G is a /iT-parabolic subgroup, Lemma 6 makes clear that the restriction

A|[/ : U --* Lie(C/) is a P-equivariant isomorphism. Similarly, if L < G is a K-Levi
subgroup, then A\%iL : Ul —>¦ J^l is an L-equivariant isomorphism.

The isomorphism A of the proposition is quite far from being unique; cf. the

appendix of J.-P. Serre below. We summarize the result of that appendix with the

following statements, which we make only in the "geometric" setting - i.e. over k
rather than K.

Proposition 11 (Serre). Let G be a strongly standard reductive k-group.

(1) Fix a regular nilpotent X G g. For each regular unipotent v G Cg(X), there is a
unique G-equivariant isomorphism ofvarieties Av : U —>¦ ,M with Av(v) X.

(2) Any two G-equivariant isomorphisms A, A' : U —>¦ ,M induce the same map on
the finite sets oforbits.
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5. Frobenius twists and untwists

Let K' be a perfect field of characteristic p > 0, and let K' c K be an arbitrary
extension of K'. We fix an algebraically closed field k containing K.

In this section, algebras are always assumed to be commutative. Consider a

^'-algebra A. For r g Z, we may consider the ^'-algebra A1^1 which coincides with
A as a ring, but where each b g K' acts on A^ as bp ' does on A. For an extension
field K of K', we write A^/k and A/^ for the ^-algebras obtained by base-change;
thus e.g. A/k A ®k' K.

Let r > 0 and let q pr. There is a Ä"'-algebra homomorphism ,Fr : A1-''-1 —>¦ A
given by x h^ x?. We write A? {/? | / e A}; A? is a A"'-subalgebra of A, and

the image of Fr coincides with Aq.
Let A be a ^'-algebra and an integral domain. We clearly have:

Lemma 12. Ifr>0, and q pr, then Fr : A^' —>¦ Aq is an isomorphism of
K'-algebras.

Write B A/K. Let us notice that K[Bq] K[Aq]. For r > 0, consider the

algebra homomorphism FJK : A^/k -^ ^T[A?] c A/jç- given on pure tensors by

f ® a \-> fq ¦ a for / € A1^ and a € K. We have more generally

Lemma 13. For r > 0, .FL, : A^-1/^ —>¦ Ä"[5?] Z5 a« isomorphism, where again

q=pr.

Proof. We have observed already that C Ä"[5?] Ä"[A?] is the ^-algebragenerated

by Aq. According to the previous lemma, the image of the restriction of Fr,K to

A^ ® 1 is the set of ^-algebra generators Aq of C; this implies that Fr,K is surjective.

Since A is a domain, the homomorphism Fr : A^ --* A is injective. This implies
the injectivity of Fr,K since K is flat over K'.

Lemma 14. Assume that A is geometrically irreducible, i.e. that A/k is a domain.
Also assume A to be geometrically normal, i.e. that A/k is integrally closedin itsfield
offractions E. Let q pr forr > 0, and let f G A/k- Then f G K[Aq] ifandonly
iff g Eq.

Proof. We have clearly the implication =^ Now suppose that / G Eq, say

/ gq for g G E. The normality of A/k shows then that g G A/k- We may find

a\, ,an G k and elements /i, ...,/„ G A such that g YTi=\ aifil we maY
assume as well that {/; | 1 < i < n} is a ^'-linearly independent set. Since K'
is perfect, {f{q \ 1 < i < n} is again ^'-linearly independent. Since f gq

E"=i af^ G A/^' ^ follows that of G ^T for 1 < f < « and the proof of «= is

complete.
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Remark 15. It can happen that A/k is a normal domain, but that A/k is not normal;
cf. [Bo98,exerc. V.§1.23(b)].

Lemma 16. Let X and Y be irreducible affine k-varieties, and let f : X —* Y be a
dominant morphism. Then the following are equivalent:

(a) there is a non-empty open subset W c X such that dfx ^ Ofor all x e W(k).

(b) f*(k(Y)) is not contained in k{X)p.

Proof. For an affine ^-variety Z, let Q.z &k[Z]/k be the module of differentials.
The map f : X —> Y determines a map ci: ïïy ^ 0.x ofk[Y] modules and - since

/ is dominant - a map tp : Qk(Y)/k —* &k(X)/k of £(F)-vector spaces.
It follows from [Spr98, Theorem 4.3.3] that there are non-empty affine open

subsets U of X and y of F such that / restricts to a morphism U --* V, Qu is

a free £[C/]-module of rank dim X, and Ç2y is a free £[ V]-module of rank dim Y.

Now, 4> restricts to a map 4>\qv : Qy —* &u of £[ V]-modules, and it is clear that

4>\siv =0 if and only if >p 0 [use that Çlk(X)/k k(X) <g>k[U] &u together with the

corresponding statement for Y].
Choosing bases of the free modules Qu and Qv, 4>\siv is given on Qy by amatrix

M with entries in k[U]. For x € U(k), the map dfx : TXU —>¦ Tf(x) V identifies with
the map

Homjt[[/](Œ[/, kx) -> Romk[v](^v, ^/(x))

deduced from 4>\qv. The open subset of U defined by the condition Mx ^ 0 is

non-empty if and only 4>\qv ^ 0; thus (a) is equivalent to the statement ijr ^ 0.

Applying [Spr98, Theorem 4.2.2], one knows that the restriction mapping

Der^(X), k(X)) -> Derk(f*k(Y), k(X))

is dual to the mapping tf/ : Qk(Y)/k —* Qk(X)/k', in particular, this restriction is 0 if
and only if i/r =0.

Now, it is proved for instance in [La93, VIII, Proposition 5.4] that z € k(X) is

contained in k(X)p if and only if D(z) 0 for each D G Derk(k(X), k(X)). The
assertion (a) ^=^ (b) follows at once.

If X is an affine ^'-variety and A K'[X], then for r G Z we write X(r) for the

^'-variety Spec(A^). For an arbitrary ^'-variety X, one defines the ^'-variety X^
by gluing together the K '-varieties Uj^ from an affine open covering {[/, | 1 < i < n}
of X; this construction is independent of the choice of the covering.

Let r > 0. When X is affine, the r-th Frobenius morphism Frx : X --* X^ is

defined to have comorphism Fr : A^ --* A. For an arbitrary K' variety X, there is

a unique morphism Frx : X —> X^ whose restriction to each affine open subset U

of X is given by F[j.
We write X(r)/K for the base change of the ^T'-variety X(r) to K.
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Theorem 17. Let X and Y be geometrically irreducible K-varieties. Assume that
X is defined over K' and is geometrically normal - i.e. X/k is normal. Suppose
that f : X —>¦ Y is a K-morphism whose image contains apositive dimensional sub-

variety ofY. There is a unique r > 0 and a unique K-morphism g: X^/k —* Y

such that

(1) / g o Frx, and

(2) there is a non-empty open subset U ofX^ such that dgx ^ 0 for x e U(k).

Remark 18. (a) Of course, the image of / contains a non-empty open subset U of
its closure f(X) [Spr98, Theorem 1.9.5], so the dimension assumption made in the

theorem is equivalent to: U has positive dimension.

(b) The theorem has been known for a long time, but it seems to be difficult to
give a reference. It was used for instance by J.-P. Serre in his classification of the

inseparable isogenies of height 1 of a group variety (and especially of an abelian

variety), cf. Amer. J. Math. 80 (1958), pp. 715-739, Section 2.

ProofofTheorem 17. Notice that if the theorem is proved when X and Y are affine,
the unicity of r and g shows that it holds as stated; we assume now that X and Y are

affine. The affine variety X is defined over K', and the domain K'[X] is geometrically
normal in the sense discussed previously.

Write Y' for the closure of the image of /. Then Y' is defined over K. Moreover,
iff : Y' --* Y denotes the inclusion, diy is injective for all y e Y'(k); see e.g. [Spr98,
Exercise 4.1.9(4)]. Since Y' is again geometrically irreducible, we may and shall

replace Y by Y'; thus we assume that / is a dominant morphism. Since the tangent

maps of Fx are all 0, it is clear that if a suitable r > 0 exists, it is unique.
Assume that dfx 0 for all smooth ^-points of X; Lemma 16 then shows that

f*k(Y) c k(X)p. The assumption on the image of / means that the transcendence

degree over K of K(Y) is > 1; since k(X) is a finitely generated field extension of
k, it follows that we may choose r > 1 such that f*k(Y) C k(X)q for q pr but
not for q pr+l.

Put q pr. We now apply Lemma 14 to see that f*(K [Y]) c K[Aq]. Lemma 13

gives then a /iT-algebra isomorphism 4> '¦ K[Aq] --* K[X^] inverse to Fr, and we
define g : X^ -^ Y to have comorphism cf> ° /*• It is clear that f g° Frx and that

g is the unique morphism with this property.
The Frobenius map gives an isomorphism Fr : k(X^) --* k(X)q. If h G K[Y],

and if g*h is a p-th power in k(X^) then f*h is a q'-th power in k{X), where

q' pr+l. Since f*k(Y) is not contained in k{X)q', g*(k(Y)) is not contained
in k(X^')p. It then follows from Lemma 16 that dgx is non-0 for all x in some

non-empty open subset of X, and the result is proved.
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p —Remark 19. Let XcA2 denote the irreducible variety with ^-points {(s,t) \ s

tp(t — 1)}, and let Y A1. Consider the morphism / : X --* Y given on £-points by
f(s, t) t — 1. Since t — \ {s/t)p on the open subset U ofX defined by t ^ 0, we
have dfx 0 for each x g £/(£). Since X is over ¥p in an obvious way, we identify
X and X(1); the Frobenius map F : X ^ X is then just F(s, t) (sp, tp). There is

a unique g: U —* A1 with /jy g o F ; it is given on ^-points by ((s, t) *--* s/t).
Moreover, dgx 7^ 0 for each x € U(k). However, there is no regular function g on
X such that g\u g; thus X is not normal, and the conclusion of the theorem does

not hold for /.

Corollary 20. Let G and H be linear algebraic K-groups. Assume that G is
connected, and that G is defined over the perfect subfield K'. Let tfi: G —>¦ H be a
homomorphism of K-groups such that the image ofcf) is a positive dimensional

subgroup ofH. There is a unique integer r > land a unique homomorphism ofK-groups
\fr : G{r)iK -> H such that

(1) <p fo FrG, and

(2) the differential dtp dtpi is non-zero.

Proof. The ^'-variety G is geometrically irreducible; since G/k is smooth, G is

geometrically normal. Hence we may apply Theorem 17; we find a unique r > 0 and

a morphism of /iT-varieties tp : G^/% --* H/k such that tp o FrG coincides with the

restriction of tfi and such that d^rx is non-zero for x in some non-empty open subset

oiG{r\
Since the Frobenius homomorphism FQ : G —>¦ G^' is bijective on ^-points, it

is clear that ijr is a homomorphism of algebraic groups. Since dijrx 7^ 0 for some

x G G^ (k), the map induced by tp on left-invariant differentials in QG(r)/k is non-0;
this implies that d>p\ 7^ 0 and the proof is complete.

6. Nilpotent and unipotent elements

We return to consideration of a strongly standard reductive K -group G. Let X g q be

nilpotent. A cocharacter *I> : Gm —> G is said to be associated with X if the following
conditions hold:

(Al) Ié{|(*;2), where for any i G Z the subspace Q(i) fl(*; i) is the i weight

space of the torus ^>{Gm) under its adjoint action on q.

(A2) There is a maximal torus S c Cg(X) such that A>{Gm) c (L, L) where
L CG(S).
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With the preceding notation, X is a distinguished nilpotent element in the Lie
algebra of the Levi subgroup L (see the discussion just before Proposition 22 for the

definition).
If *I> is associated to X, the parabolic subgroup P P(^) is known variously as

the canonical parabolic, the Jacobson-Morozov parabolic, or the instability parabolic
("instability flag") associated with X. Among other things, the following result shows

this parabolic subgroup to be independent of the choice ofcocharacter associated to X.

Proposition/Definition 21. Let X e q(K) be nilpotent.

(1) There is a cocharacter *I> associated with X which is defined over K.

(2) Ifty is associated to X and P -P('J') is the parabolic determined by ty, then

CG(X) c P. In particular, cB(X) C Lie(P).

(3) Let U be the unipotent radical ofC C°G(X). Then U is defined over K, and
is a _K"-split unipotent group. If the cocharacter ^ is associated with X, then

L C n Coi^iGm)) is a Levi factor ofC; i.e. L is connected and reductive,
and C is the semidirectproduct U ¦ L.

(4) Any two cocharacters *I> and 4> which are associated with X are conjugate by a
unique element x e U. Ifty and <£> are each defined over K, then x e U(K).

(5) The parabolic subgroups P(^) for cocharacters *I> associated with X all coin¬

cide; the subgroup P(X) -P('J') is called the instability parabolic ofX.

See e.g. [Spr98, Chapter 14] for the notion of a A"-split unipotent group. We will
not need to explicitly refer to this notion here.

Proof. The assertion (1) in the "geometric case" (when K k) is a consequence of
Pommerening's proof of the Bala-Carter theorem in good characteristic; a proof of
that theorem which avoids case-checking has been given recently by Premet [PrO2]

using results in geometric invariant [Ke78]. One can deduce the assertion from
Premet's work - see [McO4, Proposition 18]. Working over the ground field K,
(1) was proved in [McO4, Theorem 26].

(2) is [JaO4, Proposition 5.9].
The first assertion of (3) is [McO4, Theorem 28]; notice that assumption (4.1)

oîloc. cit. holds for strongly standard G, by Proposition 5. The semidirect product
decomposition of C may be found in [JaO4, Proposition 5.10 and 5.11]; see also

[McO4, Corollary 29].
We now prove (4). By (3), C C°G{X) is the semidirect product C U ¦ L of

its unipotent radical U and the Levi factor L C n Coi^iGm)). One knows by
[JaO4, Lemma 5.3] that <£> Int(g) o * for an element g G C. Write g x ¦ y with
x g U and y G L. Since y centralizes ^, one sees that 4> Int(x) o ^ as well.



404 G. J. McNinch CMH

Since U HL {1}, we see that <î> and *I> are indeed conjugate by the unique element

x G U.
Assume that * and <£> are defined over K, and write S * Gm and S' <£> Gm ;

thus S, S' < C are tori defined over K. We have just seen that the transporter

is non-empty (it has geometric points); it follows from [Spr98, 13.3.1] that Nc(S, S')
is defined over K.

Choose a separable closure Ksep c k of the ground field K; [Spr98, Theorem

11.2.7] shows that Nc(S, S/)(Ksep) is dense in Nc(S, Sr); we may thus find

g G Nc(S, S')(Ksep). Since S and S' are one dimensional, and since Int(g) induces

an isomorphism between the respective groups of cocharacters of these tori, we must
have Int(g) o *I> ±4>. Since g & C, the cocharacter Int(g) o *I> is associated with
X; it follows that Int(g) o * <i> e.g. since X G fl(Int(g) o *, 2).

Writing g y ¦ x with x £ U and y G L, we have y lim^o ^(O^^C^ 1)-

By Remark 8, y G C(^Tsep), so thatx y !g G U(Ksep). Thus x G U(Ksep) is the

unique element of U for which Int(x) o *I> $. Let F GalCÄ'sep/^') be the Galois

group. Since *I> and 4> are F-stable, if y G F, we see that

the unicity of x shows that x y (x) and we deduce that x g U(K) as required.
To see (5), let ^ and 4> be cocharacters associated with X. Since we have U <

C < P(*) by (2), it follows from (4) that the parabolic subgroups P(*I>) and P($)
are equal.

Recall that a nilpotent element X g q is said to be distinguished if the connected

center of G is a maximal torus of Cg(X). A parabolic subgroup P < G is said to be

distinguished if
dim P/U dim U/(U, U) + dim Z

where C/ is the unipotent radical of P, and Z is the center of G.

Proposition 22. Assume that X & q is a distinguished nilpotent element. Then the

instability parabolic P P(X) is a distinguished parabolic subgroup, and X lies in
the dense (Richardson) orbit of P on Lie(RuP).

Proof. [McO4, Proposition 16].

Remark 23. Fixing an equivariant isomorphism A : U --* J/ defined over K, we

may say that a cocharacter *I> is associated with the unipotent element m g G if it
is associated with A(w). The analogous assertions of the proposition then hold for
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unipotent elements of G. Note that, with this definition, the notion of cocharacter
associated with a unipotent element depends on the choice ofA. If ^ is a cocharacter
associated with X A (u) and ifA' is a second Springer isomorphism, easy examples
show that A'(u) need not be a weight vector for *I>. On the other hand, if *!>' is

associated with X' A'{u), then P(^) P(^'). To see this, note that X and

X' have the same centralizer. Fix a maximal torus S of this centralizer and write
L Cg(S); since both A and A' restrict to isomorphisms %Il —>¦ J^l (see Remark

10), we may as well suppose that X and X' are distinguished. Since e.g. A' restricts

to an isomorphism U --* Lie(C/) where U /?M(P(^)), it follows that X and X' are

both Richardson elements for P(^>). Thus *I> and *!>' are conjugate by an element of
P(*) and it is then clear that P(*) P(*')- In fact, it is even clear that * and

ty' are conjugate by an element of the unipotent radical of P(^); this shows that *I>

is an optimal cocharacter for X' (in the sense of [Ke78]) even though it need not be

associated to X'.

7. The order formula and a generalization

Throughout this section, G is a strongly standard reductive £-group defined over K.
Let P be aparabolic subgroup of G; we may fix representatives u g U RU(P) and

X g Lie(C/) for the dense (Richardson) P-orbits on U and Lie(C/).
Recall that if the nilpotence class of U is < p, then Lie(C/) may be regarded as

an algebraic K-group using the Hausdorff formula; cf. [SeiOO, §5].

Proposition 24. Assume that P is a distinguished/>araZ>o/zc subgroup. Thefollowing
conditions are equivalent:

(1) u has order p,

(2) X[p] 0,

(3) ß(*I>; i) 0 for all i > 2p and some (any) cocharacter ty associated to u or
toX,

(4) the nilpotence class ofU is < p.

Proof. The equivalence of (1) and (2) follows e.g. from [McO3, Theorem 35]. The

equivalence of (2), (3) and (4) is [McO2, Theorem 5.4] - note that there is a mis-
statement ("off by 1 glitch") concerning the nilpotence class in [McO2] which is

explained and corrected in the footnote to [McO3, Lemma 11].

Remark 25. Let X be a distinguished nilpotent element with X^ 0, and let U be

the unipotent radical of the instability parabolic of X. The proposition shows that the

nilpotence class of U < p. This is not true in general for nilpotent elements which are
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not distinguished. For example, let G GL5, and let X g g be a nilpotent element
with partition (3, 2). Then X is distinguished in Lie(L), where L is a Levi subgroup
whose derived group is SL3 x SL2. If ^ e X*(L) is associated to X, then Pg(^) is

a Borel subgroup of G. In particular, if p 3, X^ 0 but a Richardson element
Y for PGW) has Y[p] ^ 0.

Proposition 26. Ze? P be a distinguished parabolic subgroup. If the equivalent
conditions ofProposition 24 AoW, and ifP is defined over K, then:

(1) ?/zere is a unique P-equivariant isomorphism ofalgebraic groups

e: Lie(C/) -> U

such that deo : Lie(C/) —>¦ Lie(C/) zs r7ze identity.

(2) e is defined over K.

(3) ^4/ry homomorphism Ga —>¦ U over K has the form

s h^ e(sX0) ¦ e(^Xi) ¦ e(^2X2) ¦ ¦ ¦ e(sp"Xn)

for some elements X0,Xi,...,Xn G Lie(U)(K) with [X;,X}] 0 for all
0 < i, j < n.

Proof. Since the conditions of Proposition 24 hold, the unipotent radical U RUP
has nilpotence class < p. In §5 of [SeiOO] - a section contributed by J.-P. Serre - one

now finds the necessary results. (1) and (2) follow from Proposition 5.3 oîloc. cit.,
while (3) is Proposition 5.4 oîloc. cit.

Remark 27. Recall from Remark 10 that the restriction of any Springer isomorphism
J/ --* U gives a P-equivariant isomorphism Lie(C/) —>¦ U. If p > h, there is always
a Springer isomorphism whose restriction is e. It does not seem to be clear (to the

author, at least) whether a suitable analogue of this statement is true if one weakens

the assumption on p.

Recall that we may regard G/k as arising by base change from a split reductive

group scheme G/z over Z. Write T/i for a split maximal torus of G/%.

Lemma 28. Let X € q, let L be a Levi subgroup ofG with X € Lie(L) distinguished,
and let ty G X*(L) be associated with X. We may find a number field F D Q, a
valuation ring A G F whose residue field embeds in k, a standard Levi subgroup

M/z ofG/z, a cocharacter *' G X*{T/z), and an element YA G Lie(M/A)(*/; 2)
such that (Y, M, ty') g.(X, L, ty)for some g G G, where 7 7A ® 1^. Moreover,
we may arrange that Yp Fa <S> If is also a Richardson elementfor the parabolic
subgroup PM/F(V') < M/F.
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Proof. L is evidently conjugate to some standard Levi subgroup M, which we may
regard as arising from the Levi subgroup scheme M/z. Replacing X, L, and *I> by
a G-conjugate we may thus supposed that L is standard. Replacing {X, L, *I>) by
an L-conjugate, we may then assume that X is a Richardson element for a standard

distinguished parabolic of L. The remainder of the lemma is now essentially the

content of [McO2, Lemma 5.2].

Proposition 29 (Spaltenstein). Let A G F be a valuation ring in a number field, as

in the previous lemma. Let ^ e X*(T/a), let Xa e Q/a(^', 2), and assume that ^
is associated to Xk and to Xp. Then

dim cs(Xk) dim cS/F(XF).

Proof. This is essentially [McO2, Proposition 5.2] when G is semisimple in very
good characteristic. As observed in loc. cit., it was proved by Spaltenstein for such

G. A look at the proof of Spaltenstein in [Spa84] shows that the result remains valid
for strongly standard reductive groups [the only conditions on G used in the proof in
[Spa84] are: the validity of the Bala-Carter theorem and the separability of nilpotent
orbits].

Proposition 30. Let X G q satisfy X^ =0. Ifty is a cocharacter associated with
X and if ß(*I>; n) ^ 0, then -2p + 2 < n < 2p - 2.

Remark 31. The analogue of the proposition for unipotent elements of order p was

essentially observed by G. Seitz [SeiOO] and is crucial to the proof of the existence

of good A i-subgroups in loc. cit. It is proved for the classical groups in [SeiOO,

Proposition 4.1], and for the exceptional groups it is observed in the proof of [SeiOO,

Proposition 4.2] that it follows either from an explicit calculation with the associated

cocharacter ("labeled diagram") of each nilpotent orbit, or from some computer
calculations of R. Lawther.

ProofofProposition 30. It is enough to verify the proposition for a G-conjugate of
*I> and X. Lemma 28 shows that, after replacing the data X, L, *I> by a G-conjugate,
we may assume, as in that lemma, that X, L, and *I> are "defined over A" for a suitable
valuation ring A. We write Xa for the element of q/a giving rise to Xk X by base

change, and we write Xp Xa ® If e Q/f; note that ^ is a cocharacter both of
G/F and of G/k, and A> is associated to both X and Xp.

We now contend that if fl(vI/; n) ^ 0 for some n > 2p — 1, then ad(X^)p ^ 0;

this implies the proposition. The proof is essentially like that of [McO2, Theorem 5.4]

except that we must also deal with the fact that the (in general, not distinguished)
orbit of X may not be "even".

Let X ©,>_! Q/a^', i), and X+ ©i;>1 Q/a^', 0- Since we may embed

Xp in an s[2(F)-triple normalized by the image of ^, the representation theory of
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implies that ad(Xp) : Xp —* £% is surjective, where the subscript indicates
"base change" - e.g. Xf X <S>a F. In view of Proposition 29 and Proposition 21,

one knows that the kernels of the maps ad(X^) : Xk —>¦ X^ and ad(Xp : <£f —>¦ „C^
have the same dimension. We may therefore argue as in [McO2, Proposition 5.1] and

see that ad(Xk) : Xk —>¦ X^ is also surjective, hence that ad(X^)"/2 ^ 0 if n is even,
and that ad(Xk)^n+l^2 ^ 0 if n is odd, whence our claim and the proposition.

8. Optimal SL2-homomorphisms

Throughout this section, G will denote a strongly standard reductive K-group. We

first ask the reader's patience while we fix some convenient notation for SL2. We
choose the standard basis for 5 [2 :

0 0 0 -1
and 7l= 1 0

Now put

and

and write X {x\{t) \ t G k} and X" {yi(t) \ t G k}. Finally, write

t 0

0 t~l

for the standard maximal torus of SL2.
We fix once and for all one of the two isomorphisms Gm ~ 1, so that if

4> : SL2 —>¦ G is a homomorphism, it determines a cocharacter *I>

by restriction to 7"; explicitly, ^ is given by the rule

Definition 32. The homomorphism 0 : SL2 —>¦ G is an optimal SL2-homomorphism
if the cocharacter *I> ^y is associated to the nilpotent element X d4>(X\) g q.

Briefly, we say that 4> is optimal for X.

We first recall that the main result of [McO3] shows that optimal homomorphisms
always exist. More precisely, let X g q with X^ 0, and let ^ be a cocharacter
associated with X. If S is a maximal torus of C\y, then X is distinguished in Lie(L)
where L CG{S). We may apply Proposition 26 to Pl(*); let e: Lie(C/) -> C/

be the isomorphism of that proposition, where we have written U for the unipotent
radical of Pi(^). Now the main result of [McO3] says the following:
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Proposition 33. There is an optimal SL2-homomorphism 4) for X with the following
properties:

(1) (j)\T *, and

(2) 4>{x{t)) e(tX) for each t e k.

We wish to see that s{tX) is independent of the choice of the maximal torus S of
Cxj/. For this, we will use the following result due to Seitz; the result is essentially
[SeiOO, Proposition 4.2].

Proposition 34 (Seitz). Let A c F be a valuation ring in a number field whose

residue field is embedded in k, let Jibe a A lattice, and let p/A : SL2/A —>¦ GL(oC)
be a representation over A. Assume that

(1) all weights of the standard maximal A-torus 7/a on X are < 2p — 2,

(2) the representation p/k of SL2/k is self-dual,

(3) the dimension ofthefixedpoint space ofup p/pl I
n ,11 on Xf is the same

as the dimension of the fixedpoint space ofuk p/k II Mo« Xk-

Then the representation (p/k, Xk) is a tilting module for S^/k-

Proof. One decomposes the SL2/jfc-niodule £k according to the blocks of Sl^/jt. In
view of the assumption on the weights of T/k on Xk, the blocks that can conceivably
occur are those of the simple modules L(d) with 0 < d < p. The summand

corresponding to the block for d p — 1 is isomorphic to L(d)v^ for some integer
v{d) > 0. Otherwise, the summand corresponding to a block with d < p — 1 is

isomorphic to a module of the form

T(cd)r{d) e w(cd)s{d) e (W(cd)vyid) e L(cd)u{d) ® L(d)v{d)

where cd =2p — 2—d and where the exponents r(d), s(d),t(d),u(d),v (d) are non-
negative integers. [We are using Seitz's notation for SL2/^-representations: W{d) is

the Weyl module with high weight d, and T{d) is the indecomposable tilting module
with high weight d; cf. [SeiOO, §2].]

The assumption (2) implies that s(d) t(d) for all 0 < d < p — 1. As in [SeiOO,

Proposition 4.2], one now expresses the dimensions of the fixed point spaces of Uk

and up in terms of the exponents and finds that u{d) s{d) t{d) =0 for all d.

Thus Xk is the direct sum of various simple tilting modules L(d) for0<d<p, and

various indecomposable tilting modules T{cd) T(2p — 2 — <i) for 0 < d < p — 1,

so indeed Xk is a tilting module.
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Proposition 35. With notation as above, we have

(1) C°G{X) CG(e(X)); in particular, *(Gm) normalizes C°G{e{X)).

(2) CG(s(X)) CG(s(tX)) for each t G kx.

Proof. If X is distinguished, (1) holds since e is P P(^) equivariant, since

s{X) g RU(P) is again a Richardson element, and since CG{X), Cg{s{X)) < P by
Proposition 21. [In fact, Cg(X) Cg(s(X)) always holds in this case.] It remains

to prove (1) when X is no longer distinguished; we essentially follow the proof in
[SeiOO, Lemma 6.3].

By the unicity of e, it is enough to prove the result with L, *I>, and X replaced
by a G-conjugate. We will regard G G/k as arising by base change from the split
reductive group scheme G[% over Z; let T/i be a Z-split maximal torus of G[%.

According to Lemma 28, we may find a suitable valuation ring in a number field

AcF and assume that the Levi subgroup L contains T/k and arises by base change
from a standard split reductive Levi subgroup scheme L/i < G/i containing T/i,
that * G X^T/z), and that the nilpotent element XA g Lie(L/A)(*; 2) gives X on
base change.

After possibly enlarging A and F, [McO3, Theorem 13] gives a homomorphism

/ : SL2/A —>¦ G/a

/I *\
such that the restriction of / to the subgroup scheme I I of SL2/A is given

by/ 1^- e(tX^), where XA g Q/a gives X upon extension of scalars to k (recall
from [SeiOO, Prop. 5.1] that e is indeed defined over Z(p) hence over A). Moreover,
the restriction of / to the standard maximal torus of SL2/A gives the cocharacter *I>

of 7/A.
Since G is strongly standard, its adjoint representation is self-dual. Together with

Proposition 29, this shows that we may apply Proposition 34 to the representation

Ado/: SL2/A —>¦ GL(Lie(G/A)). Thus the SL2-representation (Ado//£,ß) is a

tilting module, and it follows from [SeiOO, Lemma 2.3(d)] that

for each t e kx. The orbits of e(fX) and X are separable by Proposition 5; thus we
know that Lie CG(s(tX)) LieCG(X). In particular, CG(X) and CG(s(X)) have

the same dimension; assertion (1) will follow if we show that CG{X) < C°G{s{X)).
For any connected linear group H, we write Ht for the subgroup generated by the

maximal tori in H. Applying [Spr98, 13.3.12], to the group H CG{X), we find
that H is generated by Ht and Ch(S), where S is our fixed maximal torus of H; i.e.

(*) H (Ht,CH(S)).
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Working for the moment inside the Levi subgroup L Cg(S) of G, the
"distinguished" case ofpart(l)ofthe proposition means that Ch(S) Cl(X) Cl(s(X));
in particular Ch(S) centralizes e(X). So according to (*), the containment H <
C°G(e(X)), and hence (1), will follow ifwe just show that e(X) is centralized by each

maximal torus T oîCG{X). Since cfl(e(X)) cs(X) Lie CG{X), one knows that

e(X) centralizes Lie(T). We claim that (*) CG(T) CG(Ue(T)); this shows that
T centralizes e(X) as desired.

Write M CG(T). Since T is a maximal torus of Q(X), it follows that T is

a maximal torus of the center of M. Thus (*) is a consequence of the next lemma
(Lemma 36), and (1) is proved. For (2), notice that if s2 t, we have by (1) that

C°G(e(X)) ^(S)C°G(e(X))^(S-1) CG(e(Ad(^(S))X)) CG(e(tX)). D

Lemma 36. Let G be a strongly standard reductive group, let T < G be a torus,
and write M Cg{T). IfT is a maximal torus of the center ofM, then CG(T)
Cg(Uq(T)).

Proof. We essentially just reproduce the proof of [SeiOO, Lemma 6.2]. Let Tq be a

maximal torus of G containing T. Denote by R C X*(To) the roots of G and by
Rl C R the roots of L. Choose a system a\, ,ar G X*{Tq) of simple roots for
G such that ct\, at is a system of simple roots for M CG(T) (so t < r). If
we write Ua < G for the root subgroup corresponding to a G R, then Ua < L for
a £ Rl; moreover,

CG(T) {To; Ua | a\T 1), and CG(Lie(T)) {To; Ua \ da\Ue(T) 0).

We have always CG(T) < CG(Lie(T)). If the lemma were not true, there would
be some root ß of G such that yß|r 7^ 1 but dß\ue(T) 0- We may write ß
a + 5Zf=f+i ciai witn a ^ Rl- Since /? is good, the c, are integers with 0 < c, < /?

[SS70,1.4.3]. Since/î|7- 7^ 1, it follows that Cj^ isnon-zeroin^forsomef+1 < j <r.
Since G and M are strongly standard, [SS70, Corollary 1.5.2] implies that 3(5)

Lie Z(G) and 3(m) Lie Z(M) (where j(?) denotes the center of a Lie algebra,
and Z(?) that of a group). We thus have dim T dim $(g) + (r — f )• It follows
that {dat+\, ¦ ¦ ¦ dar) is a linearly independent subset of Lie(T)v (the dual space of
Lie(T)). In particular, there is A g Lie(T) such that

ö?a?(A) =<5fJ.

But then dß{A) cj ^ 0, contradicting the choice of ß. This completes the proof.
D

Remark 37. If S, S' < C\y are maximal tori, let us write U and U' for the unipotent
radicals of the distinguished parabolic subgroups Pl(^) < L and Pl'(^) < ^'
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where L CG(S) and V CG{S'). If e : Lie(C/) -> U and e': Lie(f/') ->
C/' are the isomorphisms of Proposition 26, then e(fX) e'(tX) for each t e k.

Indeed, we may choose g G C^,(X) with gSg~l Sf. It is then clear that U'
gUg~l and the uniqueness statement of Proposition 26 shows that e' Int(g) o e o

Ad(g~1): Lie(U') —>¦ C/'. Let f G £x. Proposition 35 shows that g centralizes

e(tX) in addition to X. So indeed

e'(tX) Int(g) o e o Ad(g~1)(fX) Int(g) o s{tX) s{tX)

as asserted.

Now let 4> '¦ Ga --* G be an injective homomorphism of algebraic groups with
X dcf){\), and assume that the cocharacter H> associated to X has the property that

ty(t)(j)(s)ty(t l) 4>(t2s) for each t g kx and s G k.

Since cfr is injective, the cocharacter H> is non-trivial; this means in particular that

X / 0 and so d<f> is non-zero.
We remark that the homomorphism h: Ga —* G given by t \--* e(tX) is injective.

Indeed, as in the proof of Proposition 35, there is an optimal homomorphism

/: SL2 --* G such that h(s) f(xi(s)) for s G Ga. The group SL2 is almost

simple; its unique normal subgroup is contained in each maximal torus. In particular,
ker h is trivial as asserted.

Fix now a maximal torus S of Co{X) centralized by the image of A>, and hence

a Levi subgroup L CG(S) such that *(Gm) < L and X g Lie(L).

Proposition 38. With 4> andty as above, we have4>(t) e(tX)for each t G k, where

s : Lie(U) —>¦ U is the isomorphism ofProposition 26 for the unipotent radical U of
the distinguished parabolic subgroup Pl(^) < L. In particular, <f>(Ga) < L.

Proof. Notice that 4>(s) £ C°G(X) for all s G Ga. According to Proposition 35 this
shows that <t>(s) G CG(e(tX)) for all t G kx, hence that

s \--* e(—sX) ¦ 4>(s)

is a homomorphism 4>\\ Ga --* G. Moreover, ^(t)4>\(s)^(t~l) 4>\(t2s) for
t € kx and s G k, and a quick calculation shows dct>\ to be trivial.

Assume that the proposition is not true, hence that 4>\ / 1; it has positive dimensional

image and so by Corollary 20 there is a homomorphism 4>2 '¦ Ga —>¦ G and

an integer r > 1 such that 4>\ 4>2 ° Fr, where F denotes the Frobenius morphism
for SL2, and such that dfc / 0. On the additive group, F is given by s i-^- sp, so

we know that <f>i(s) (fo.{spr) for s G k. [Notice we have used the fact that Ga is

defined over ¥p, so that Ga identifies with Gj for r > 0.]
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Observe that if 4>\ (so) 1 for some so 7^ 0, then 1 (f>i(so) e(—soX)(f>(so) so

that e(soX) 4>(so); applying Int(*(0) for t e F,we see that e(sX) 4>(s) for
all s G k, so that 4>\ 1- Thus if 0i ^ 1, then 4>\ is an injective map on the points
of Ga. It is then clear that $2 is injective as well [since dfc is non-zero, $2 is even

an injective homomorphism of algebraic groups].
Since ^>(Gm) normalizes the image of 02, we have ^> (t)cf)2(s)^> (t~l) 4>2(tns)

for some n G Z. Let now t G kx and s G k. Then

since 0i and 02 are injective, we have (f2^)p tnsp for all t e kx and s e £. It
follows that « 1pr.

Denoting by 0 ^ Y an element in the image of dfo, it is clear that Ad(^ (t))Y
t2p Y so that Y g ß(*I>; 2//). Since r > 1, since *I> is associated with X, and since

X^ 0, this contradicts Proposition 30; hence 4>\ 1 and 0(,s) e(sX) for all

j G ^ as asserted.

Remark 39. Assume that p > h, where h is the Coxeter number of G. Then the

nilpotence class of the unipotent radical U of a Borel subgroup B of G is < /?.

Thus there is a 5-equivariant isomorphism e: Lie(C/) —>¦ C/ as in Proposition 26.

Fix a regular nilpotent element X g Lie(C/) and write u e(X). According to
Proposition 11, there is a unique Springer isomorphism A : U —>¦ M with A (u) X.
It is then clear by the unicity of e that A i^ierf7) e ^or ^e unip°tent radical U of any
Borel subgroup of G. Since the unipotent radical V of any parabolic subgroup P of
G is contained in that of some Borel subgroup, it is then clear that A"1 |Lie(V) is the

isomorphism of Proposition 26 (of course, the nilpotence class of V is < p). This
permits for these p a simple proof of Proposition 35 and hence of Proposition 38 (i.e.

a proof independent of the tilting module considerations of Proposition 34)

8.1. Conjugacy of optimal SL2 homomorphisms. The goal of this paragraph is to
show that any two optimal SL2-homomorphisms for X are conjugate by an element

ofC°G(X).
Let 4> be an optimal SL2-homomorphism for X G g with cocharacter *I> (f>yy.

Choose a maximal torus S < Cq,, so that X is distinguished in Lie(L), where L
Cg(S) is a Levi subgroup of G. If 4> is defined over K, then the maximal torus S -
and so also L - may be chosen over K.

We will write Pl Pl(^) for the parabolic subgroup of L determined by the

cocharacter *I>, and U for the unipotent radical of Pl- Denote by e : Lie(U) --* U
the unique Pz,-equivariant isomorphism of Proposition 26.

Proposition 40. (1) The torus S centralizes (f>(X); in particular, (f>(X) C U.

(2) <t>(xi(t)) e(tX) for each t G k.

(3) For each t G kx, C°G(X) CG(u,)) where ut </)(xi(t)).
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Proof. We apply the result of Proposition 38; that proposition shows that 4>(t)

e(tX). (1) and (2) are then immediate, and (3) follows from Proposition 35.

Proposition 41. The image of <fi lies in the derived group of the Levi subgroup
L CG(S).

Proof. Since SL2 is equal to its own derived group, we only must see that the image
of 4> lies in L.

Now write

Y d<f)(Yi)&Q and u~ <f>(yi(t)) G G forfeit.
Since SL2 is generated by the subgroups X and X it suffices to show that ut, ut e

L CG(S) for all t G kx. Fix t G kx. It was proved in Proposition 40(1) that

ut G L.
Now, there is g G </>(SL2) with gutg~l ut and Ad(g)X Y. Together with

Proposition 40, this implies that C°G{ut) C°G{Y) for t G kx. So the proof is

complete once we show that S < Co (Y).
Since S and the image of *I> commute, fl(vI/; —2) is S-stable and is thus a direct

sum of S-weight spaces

yeX*(S)

Hence, we may write Y g ß(*I>; —2) as a sum of 5-weight vectors:

Y J2 Yy with Yy

y

We need to show that F Yo, or equivalently that Yy 0 for y 7^ 0.

As^is associated to X,itfollowsfromProposition21thatcfl(X) ç J]i>ofl(*' 0-
Since S centralizes X, it follows that ad(X) : fl(vI/; 2) —>¦ fl(*; 0) is an injective map
of ^-representations. Writing H d^{\) g ß, we have ad(X)7 [X,7] //G
fl(*; 0)0. Since ad(X)7y g fl(*; 0)y, the injectivity of ad(X) implies that YY 0

unless y 0, as desired. Thus Y Yq and the proof is complete.

Proposition 42. Let X g q satisfy X^ 0. 7/"0i and 4>2 are optimal SL2-
homomorphismsfor X andiftfii^ 4>2\t> then 4>\ 4>2-

Proof. Combined with Proposition 41, the hypotheses yield a maximal torus S <
Cg(X) such that the image of 4>ilies in L Cg(S) for i 1,2. Thus we may replace
G by the strongly standard reductive group L and so suppose that X is distinguished.

Proposition 40 shows that 0i (xi(0) e(tX) <p2(xi(t)) for all f G k. It follows
that 4>\ and 4>2 coincide on the Borel subgroup B T X of SL2. Using this, we argue
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that 4>\ and $2 coincide on all of SL2. Indeed, consider the morphism of varieties
SL2 —>¦ G given by

g I-

Since the (/>; are homomorphisms, this morphism factors through the flag variety
SL2 /B P1 (the projective line); since P1 is an irreducible complete variety, and

since G is affine, this morphism must be constant. The proof is complete.

Corollary 43. If 4> is an optimal homomorphism, let as usual X d4>(X\) and

* (j)\r. Then the centralizer o/0(SL2) is Cy CG(X) n CG(*(Gm)).

Proof. This is just a restatement of the previous proposition.

Theorem 44. Suppose that G is strongly standard, and that X G q satisfies X^ 0.

Then any two optimal SL2-homomorphisms for X are conjugate by a unique element

of the unipotent radical ofC°G(X).

Proof. Let 4>\ > 4>2 be optimal SL2-homomorphisms for X, and write 'J',- </>,¦
yj- for

the corresponding cocharacters. According to Proposition 21, the cocharacters ^1
and ^2 associated with X are conjugate by a unique element of the unipotent radical
U of C°G{X). Replacing cf>2 by a [/-conjugate, we may thus suppose that ^1 ^2-
It then follows from Proposition 42 that 4>\ 4>2- D

8.2. Uniqueness of a principal homomorphism. Suppose that X g q is a

distinguished nilpotent element. Then any cocharacter *I> G X*(G) with X G ß(^; 2)
is associated to X. In particular, if 4>: SL2 —>¦ G is any homomorphism with
dct>{X\) X, then *I> ^y is a cocharacter associated with X; thus cf is optimal.

An application of Theorem 44 now gives:

Proposition 45. If4>\,4>2'- SL2 -* G are homomorphisms such that d(j)\(X\)
d4>2(X\) X is a distinguished nilpotent element, then 4>\ and $2 are conjugate by
an element ofCG(X).

A principal homomorphism tfi: SL2 —>¦ G is one for which d(j)(X\) is a regular
nilpotent element. Since a regular nilpotent element is distinguished, we have:

Proposition 46. A principal homomorphism is optimal. Any two principal
homomorphisms are conjugate in G.

8.3. Optimal homomorphisms over ground fields. Recall that K is an arbitrary
ground field. The following theorem gives both an existence result and a conjugacy
result for optimal homomorphisms over the ground field K. If X g g(K), write
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C Cq(X) for its connected centralizer; recall by Proposition 21 that the unipotent
radical of C is defined over K.

Theorem 47. Let G be a strongly standard reductive K-group, and let X e Q(K)
satisfy X[p] 0.

(1) There is an optimal SL2-homomorphism tfi for X which is defined over K.

(2) Let U be the unipotent radical ofC Cq(X). Any two optimal SL2-homomor-
phismfor X defined over K are conjugate by a unique element ofU(K).

Proof. To prove (1), we need first to quote a more precise form of Proposition 33.

The proof of that Proposition given in [McO3] shows that there is a nilpotent element
X" in the orbit of X which is rational over the separable closure Ksep of K in k and

an optimal SL2-homomorphism tfi" for X" defined over Ksep. Since the orbit of X
is separable, one can mimic the proof of [Spr98, 12.1.4] to see that X and X" are

conjugate by an element rational over Ksep. Indeed, let G be the orbit of X and

let [i : G --* G be the orbit map fx{g) Ad(g)X. The separability of the orbit G

means that d\.i\ : T\{G) —> Tx(&) is surjective, and it follows for each g & G that

dßg\ Tg{G) —> TAd(g)x(G) is surjective. It follows from [Spr98, 11.2.14] that the

fiber [i l (X") is defined over Ksep, so that by [Spr98, 11.2.7] there is a Ksep-rational
point g in this fiber. It follows that 4>' Int(g)o0//is an optimal SL2-homomorphism
for X which is defined over Ksep.

According to Proposition 21, we can find a cocharacter *I> associated with X
which is defined over K. Writing C Cq(X), that same proposition shows that the

cocharacters *I> and *!>' cf'^ are conjugate by an element h G C(Ksep) [in fact, h

can be chosen to be a Ksep-rational element of the unipotent radical of C].
It now follows that (fi lnt(h~l) o cfi' is an optimal SL2-homomorphism for

X which is defined over Ksep. We argue that cfr is actually defined over K. Let

y G Gal(Ä"sep, K). Then (fiy y o (fi o y~l : SL2 —>¦ G is another optimal SL2-
homomorphism for X; since *I> 4>\T is defined over K, 4>\t 4>Y\r- Thus

Proposition 42 shows that (fi (fiy. Since (fi is defined over Ksep, Galois descent (e.g.

[Spr98, Cor. 11.2.9]) shows that 4> is defined over K.
We now give the proof of (2), which is the same as the proof of Theorem 44.

If (fi and \jr are optimal SL2-homomorphisms for X, each defined over K, then by
Proposition 21, the ^-cocharacters 4> 4>\r and A> i>'\r associated with X are

conjugate by aunique element ofU(K). Thus we may replace tp by a U (K) -conjugate
and suppose that 4>\r i>'\T ¦ Proposition 42 then shows that 4> *p and the proof is

complete.

Remark 48. In the case of a finite ground field K, Seitz [SeiOO, Proposition 9.1]
obtained existence and conjugacy over K for good A\ subgroups (see §8.5 below for
their definition).
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8.4. Complete reducibility of optimal homomorphisms. Let G be any reductive

group. Generalizing the notion of a completely reducible representation of a group,
J.-P. Serre has introduced the following definition. A subgroup H < G is said to
be G-completely reducible (for short: G-cr) if for every parabolic subgroup P of G

containing H there is a Levi subgroup of P which also contains H. See [SerO4] for
more on this notion.

We are going to prove that the image of an optimal homomorphism is G-cr. We

establish some technical lemmas needed in the proof. First, we show that a suitable

generalization of Proposition 35 is valid.

Lemma49. Letty G X*(G) andsuppose that P P(ty) is a distinguishedparabolic
subgroup with unipotent radical U RUP. Suppose that the nilpotence class ofU
is < p, and let

e: Lie(U) -> U

be the isomorphism of Proposition 26. If Xq g Q(^;n) for some n > 1, then

Xo G Lie(C/) andC°G(X0) C°G(e(X0)).

Proof. Let N(X0) {g G G | Ad(g)X0 G kX0} < G. By assumption, the torus

A>{Gm) is contained in N{Xq); in particular, this torus normalizes Cg(Xo). We may
choose a maximal torus S of Cg(Xo) centralized by *I>(Gm); thus S' 51-^(Gm)is
a maximal torus of N(Xo). According to [McO4, Lemma 25], there is a cocharacter
A g X^(S') which is associated to Xq. Let T be a maximal torus of G containing
5"; thus T lies in the centralizer of A(Gm), of S, and of A>{Gm).

Since a Richardson orbit representative X for the dense P-orbit on U satisfies

X^ 0, we have also Xop 0. Now consider the Levi subgroup L Cg(S); the

nilpotent element Xq is distinguished in Lie(L). Let Q Pl(A), and let V Ru Q
be the unipotent radical of Q. Proposition 26 gives a unique isomorphism

e'\ Lie(V) -> V,

and we know from Proposition 35 that CG(Xo) C°G(e'(Xq)). Thus our lemma will
follow if we show that e(Xo) e'(Xo).

Notice that T is contained in the Levi factors Zg(^) of P and Zl(A) of Q, so

that T normalizes the connected unipotent subgroup W (U n V)° of G. Since the

nilpotence class of W is < p, [SeiOO, Proposition 5.2] gives a unique isomorphism
of algebraic groups

e": Lie(W) -> W

whose tangent map is the identity and which is compatible with the action of the
connected solvable group T Why conjugation. On the other hand, the tangent maps
of the restrictions £|Lie(VK) and e(Lie(vi/) are tne identity, and these maps are compatible
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with the action of T ¦ W; we thus have

£\Ue(W) e £|L;e(vp)-

This implies that s(Xq) s'{Xq) as desired, and the proof is complete.

We now show that a suitable deformation of an optimal homomorphism remains

optimal.

Lemma 50. Let 4> '¦ SL2 -^ G be an optimal SL2-homomorphism, and suppose that
4> takes its values in the parabolic subgroup P.

(1) There is a cocharacter y G X*(P) such that y(Gm) centralizes <p(T) and such

that P P(y).

(2) DenotingbyL Z(y) the Levifactor ofP determinedby y, write 4>: SL2 —>¦ L
for the homomorphism

x h> lim y(t)è(x)y(t~l)

ofLemma 7. Then <f> is an optimal SL2-homomorphism as well.

Proof. Since <p(T) lies in some maximal torus of P, (1) follows from Lemma 6.

Let us prove (2). Let X d4>(X\) as usual, and write *I> for the cocharacter

4>\r', it is associated with X. Denoting by Cq, the corresponding Levi factor of the

centralizer of X, we may choose a maximal torus S < Cy and Proposition 41 implies
that 4> takes its values in the Levi subgroup Cg(S). We may evidently replace G by
L and so assume that X is distinguished.

Now let X X0 + X',Y Y0 + Y' with Xo, Yo G Lie(L) g(y; 0) and with
X', Y' G Uq(RuP\ Lemma 7 shows that d$(Xi) Xo and djj>{Yi) Yo.

To shows that 4> is optimal for Xo, it is enough to show that 4> takes values in some
Levi subgroup M of L such that Xo g Lie(M) is distinguished. Indeed, since SL2 is

its own derived group, this will imply that *I> 4>\? takes its values in (M, M), so

that A> is indeed associated with Xo.
Note that the torus A>{Gm) normalizes Cl{Xq). Since A>{Gm) lies in a maximal

torus of the semidirect product of Cl{Xq) and ^>{Gm), it is clear that there is a

maximal torus S of Cl{Xq) centralized by A>{Gm). Taking M Cl(S), we claim
that 4> takes its values in M.

Notice that

y{s)s{tX)y{S-1) lim e(t(X0 + Ad(y(s))X')) e(tX0)

for each t g k, Similarly, 0(yi(O) e(tYo) for each t G k.
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Since S is contained in the centralizer of X, it is contained in the instability
parabolic Px for X by Proposition 21. Thus e is S-equivariant. Since SL2 is generated

by X and X~, this equivariance shows that we are done if S centralizes both Xo and

Fo - of course, S centralizes Xo by assumption.
Write H dV(l); since * and y commute, &\r *. Now, ad(X0)Y0

[Xo, Yo] H. As in the proof of Proposition 41, we write Yo 12xeX*(S) ^o,x

as a sum of weight vectors for the torus S. Since *I>(Gm) commutes with S, H is

centralized by S, and so we have [Xo, Yo,à] 0 when k ^ 0; we want to conclude
that Yo,), 0. We do not know that *I> is associated with Xo, so we can not simply
invoke Proposition 21. However, since Fo,à £ ß^; —2), the general theory of
SL2-representations shows: if Fo,à 7^ 0, then *p(xi(t)) e(tXo) acts non-trivially
on 7o,à for some t & ky\ On the other hand, according to Lemma 49 we have

C°L(Xo) C°L(e(tXo)),sothatYo,k € cLie(L)(Xo) cLie(L)(e(fXo)). Thus indeed

70 À 0 for each non-zero k, as required. Thus Yo Yo,o so that S centralizes Yo;

the proof is now complete.

Lemma 51. Let X € q be any nilpotent element, let ^jr g X*(G) a cocharacter
associated with X, and let L CG(if(Gm)) be the Levi factor in the instability
parabolic determined by i/r.

(1) The L orbit V Ad(L)X is a Zariski open subset ofQ(f; 2).

(2) Let Y G gbe nilpotent. Then tf/ is a cocharacter associated with Y ifand only if
Y g V.

Proof. To prove (1), note that the orbit map

: L -+ fl(^; 2)

has differential ad(X) : Lie(L) Q(ir; 0) —>¦ Q(ir; 2); if we know that the differential

is surjective, then the orbit map is dominant and separable and (1) follows. To

see the surjectivity, we argue as follows. Recall from Proposition 21 that cs(X) is

contained in 5Z?>o ß(^; ')' m particular, g(ft; —2) n cs(X) 0. According to [JaO4,

Lemma 5.7] this last observation implies (in fact: is equivalent to) the statement

[q(i/s; 0), X] ${;ip; 2); this proves the required surjectivity (note that [JaO4, 5.7]
is applicable since the Lie algebra of a strongly standard reductive group has on it a

nondegenerate, invariant, symmetric, bilinear form - cf. Proposition 2).
For (2) note first that ijr is evidently associated to any Y G V. Conversely, if ijr

is associated to Y, then Y g qO/; 2), and (1) shows that Ad(L)7 is also open and

dense in Q(f; 2). Thus Ad(L)X n Ad(L)7 ^ 0, so that Y g Ad(L)X V.

Theorem 52. Let G be strongly standard, and let 4> '¦ SL2 -^ G be an optimal SL2

homomorphism. Then the image oftfi is G-cr.
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Proof. Let X dcfi (X i as usual, and write *I> for the cocharacter 4>\ ; it is associated

with X. Denoting by Cy the corresponding Levi factor of the centralizer of X, we

may choose a maximal torus S < Cq, and Proposition 41 implies that 4> takes its

values in the Levi subgroup L Cg(S). Applying [SerO4, Proposition 3.2], one
knows that </>(SL2) is G-cr if and only if it is L-cr. We replace G by L, and thus

suppose that X is distinguished.
Let P be a parabolic subgroup of G and suppose that the image of 4> lies in P.

We claim that since X is distinguished, we must have P G; this will prove the

theorem.
To prove our claim, first notice that by Lemma 50(1) we may choose y e X:¥(P)

with P P(y) and such that y(Gm) commutes with *I>(Gm).

Let us write X 5Z?>o %i wi*n %i G 8(V< i)- Consider the homomorphism

0: SL2 —>¦ Z(y) constructed in Lemma 50; according to (2) ofthat lemma, cfr is

optimal for Xo, so that the cocharacter *I> is associated to Xo as well as to X.
We now claim that X and Xq are conjugate. This will show that Xq is distinguished

in G, hence that G Z{y) so that also P G as desired. Let L CG(xI/(Gm)).
Then Lemma 51 implies that Xo is contained in the orbit V Ad(L)X c fl(*; 2),
proving our claim.

8.5. Comparison with good homomorphisms. According to Seitz [SeiOO], an SL2

homomorphism cf> '¦ SL2 —>¦ G is called good (or restricted) provided that the weights
of a maximal torus of SL2 on Lie(G) are all <2p — 2.

Proposition 53. Let tfi '¦ SL2 -^ G be a homomorphism, where G is a strongly
standard reductive group. Then 4> is good ifand only ifit is optimalfor X d4>(X\).
In particular, all good SL2-homomorphisms whose image contains the unipotent
element v are conjugate by C°G(v).

Proof. That an optimal homomorphism is good follows from Proposition 30. Choose

a Springer isomorphism A : U --* J/. If u is a unipotent element of order p, choose

a Levi subgroup L in which u is distinguished; this just means that X A(w) G q
is distinguished. It follows from Proposition 24 that X^ 0. Choose an optimal
homomorphism tfi' for X; we know that <fi>' takes values in L (Proposition 41), and if
v 4>'(x(\)), it is clear from Proposition 40 that v and u are Richardson elements in
the same parabolic subgroup of L; thus v and u are conjugate. This proves that u is

in the image of some optimal homomorphism (p.

To prove that good homomorphisms are optimal, we use a result of Seitz. Since
4> is optimal, we just observed that it is good, and Seitz proved [SeiOO, Theorem 1.1]
that any good homomorphism with u in its image is conjugate by Cg(u) to 4>. Thus,

any good homomorphism is indeed optimal.
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9. Rational elements of a nilpotent orbit defined over a ground field

In this section, we extend a result first obtained by R. Kottwitz [Ko82] in the case

where K has characteristic 0. We give here a proof which is also valid in positive
characteristic (under some assumptions on G). For the most part, we follow the

original argument of Kottwitz.

Theorem 54. Let K be anyfield, andlet G be a strongly standard connected reductive

K-group which is K-quasisplit. If the nilpotent orbit 0 c <N is defined over K, then

0 has a K-rationalpoint.

Proof. If K is a finite field, the theorem is a consequence of the Lang-Steinberg
theorem; cf. [St68, §10] and [St65]. Suppose now K to be infinite.

We fix a Borel subgroup B of G which is defined over K, and a maximal torus
T c B which is also over K. The roots of G in X* (T) which appear in the Lie algebra

of the unipotent radical of B are declared positive, and we will write C c X*(T) for
the positive Weyl chamber determined by B :

C {/j, | {a, n) > 0 for all positive roots a of G in X*(T)}.

If W No (T)/T denotes the Weyl group ofT, then each /j, g X*(T) is V7-conjugate

to aunique point in C. We also write F Gal(Ksep/K) for the absolute Galois group
of the fields.

The /iT-variety 0 has a point X' rational over the separable closure Ksep of K in
k (e.g. by [Spr98, 11.2.7]). According to Proposition 21, there is a cocharacter *!>'

associated with X' and defined over Ksep. Let T be a maximal torus of G defined

over Ksep which contains the image of ^'.
For y g F, the cocharacter ^'v is associated with the nilpotent X'v. Since 0

is defined over K, X'v and X' are conjugate. Hence *!>' and ^'v are conjugate by
another application of Proposition 21.

According to [Spr98, Proposition 13.3.1 and 11.2.7] we may find g G G(Ksep)
such that gT'g~l T; the same reference shows that any element w of the Weyl

group of T may be represented by an element w G Ng(T) rational over Ksep. We
have that * Int(g) o *' g X+(T) is defined over Ksep. Replacing * by Int(w) o *
for a suitable w in the Weyl group of T, we may suppose that A> G C c X*{T)
and is defined over Ksep. Of course, ^ is associated with the nilpotent element
X Ad(wg)X'.

Since B and T are F-stable, y permutes the positive roots in X*(T). Thus, y
leaves C invariant; in particular, ^v g C. We know *I> and ^v to be conjugate in
G. Since T is a maximal torus of the centralizer of both H>{Gm) and of ^v (Gm),
we may suppose that ^v Int(w)^ for some w in the Weyl group of T. But C is a
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fundamental domain for the V7-action on X*(T), so we see that *I> ^v. Since *I>

is defined over Ksep and is F-stable, *I> is defined over K [Spr98, 11.2.9].
This shows in particular that the subspace g(xI/; 2) is defined over K. According

to Lemma 51, there is a Zariski open subset of ß(*I>; 2) consisting of elements in G.

Since K is infinite, the /iT-rational points of fl(^; 2) are Zariski dense in fl(*; 2).
Hence there is a /iT-rational point in & and the proof is complete.

Corollary 55. Let G be a strongly standard reductive K-group which is K-quasisplit.
There is a regular nilpotent element X e Q(K). In particular, there is an optimal
homomorphism 4>: SL2 —>¦ G defined over K with d4>(X\) X.

Proof. Since G is split over a separable closure Ksep of K, there is a Ksep rational

regular nilpotent element. Thus the regular nilpotent orbit is defined over Ksep. Since

this orbit is clearly stable under Gal(Ksep/K), it is defined over K. So the theorem
shows that there is a /iT-rational regular nilpotent element X. The final assertion

follows from Theorem 47.

Remark 56. With G as in the theorem, there is a Springer isomorphism A : U --* JS

defined over K. Thus a unipotent conjugacy class defined over K has a /iT-rational

point.

10. Appendix: Springer isomorphisms (Jean-Pierre Serre, June 1999)

Let G be a simple algebraic group in char, p, which I assume to be "good" for G.

I also assume the ground field k to be algebraically closed. Call Gu the variety of
unipotent elements of G and Qn the subvariety of q Lie(G) made up of the nilpotent
elements.

Springer has shown that there exist algebraic morphisms

/: G -? ß

with the following properties:

a) / is compatible with the action of G by conjugation on both sides.

b) / is bijective.

In fact, it was later shown that these properties imply (at least when p is "very good",
which is always the case if G is not of type A):

b') f is an isomorphism of algebraic varieties.

Despite the fact that there are many such f 's (they make up an algebraic variety of
dimension t, where t is the rank of G), one often finds in the literature the expression
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"the Springer isomorphism" used - and abused -, especially to conclude that the

G-classes of unipotent elements of G and nilpotent elements of g are in a natural
correspondence, namely "the" Springer correspondence.

It might be good for the reader to consider the case of G SL„ (or rather PGLn,
if one wants an adjoint group). In that case a Springer isomorphism is of the form

where e" 0 (so that m 1 + e is unipotent), and the a; are elements oik with a\ ^ 0.

Every such family a (a\, an_\) defines a unique Springer isomorphism /j,
and one gets in this way every Springer isomorphism, once and only once. This
example also shows that the Springer isomorphisms can be quite different: e.g., for
some one may have f(um) m.f(u) for all u and all m € Z such an / exists if
and only if p > n), and for some one does not even have f{ul) —f{u)\

In what follows, I want to repair this unfortunate mix-up by showing that all the

different Springer isomorphisms give the same bijection between the G-classes of Ga

and the G-classes of fln, so that one can indeed speak (in that case) of the Springer
bijection.

I have to recall first how the Springer isomorphisms are defined. Call Gur the set

of regular unipotent elements of G ; it is an open dense set in Gu; same definition for
Qn in q Lie(G). Choose an element u in Gur and let C(u) be its centralizer. It is

known that C(u) is smooth, connected, unipotent, commutative, of dimension t
rank G). Let c(w) Lie C(u) be its Lie algebra. Choose an element X of c(w) which
is regular. Then its centralizer is C(u), and the Springer construction shows that there
is a unique Springer isomorphism / fUix which has the property that f{u) X.
Let us fix X; then it is clear that every Springer isomorphism is equal to fv>x for
some v € C(u)r, where C(u)r C(u) n Gur; moreover, v is uniquely defined by /.
Hence we have a one-to-one parametrization of the Springer isomorphisms by the

elements v ofC(u)r.
The next step consists in showing that this parametrization is "algebraic". The

precise meaning of this is the following:

Proposition. There exists an algebraic morphism F : C(u)r x Gu —>¦ Qn such that

F{v,z) fv,x(z) far every v G C{uf andz € G".

Proof. Call Nu the normalizer of C(u) in G. Since all regular unipotents are

conjugate, Nu acts transitively on C{uf, so that one can identify the algebraic variety
C(w)r with the coset space Nu/C(u). Similarly, one may identify Gur with G/C(u).
Let us now define an algebraic map

by the formula
F'(n,z) =Ad(zn~l).X
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(i.e. the image of X g g by the inner automorphism defined by z«"1). It is clear
that F'(n, z) depends on n only mod. C{u), and that it depends on z also mod C(u).
Hence F' factors out and gives a map of Nu/C(u) x G/C{u) into gn. If we identify
Nu/C(u) with C(w)r and G/C(u) with Gur, we thus get a map

It is well-known that Gu is a normal variety and that Gu — Gur has codimension > 1

in Gu. Hence the same is true for C(u)r x Gur in C(u)r x Gu. Since Qn is an affine

variety, the map Fq extends uniquely to an algebraic map F : C(u)r x Gu —>¦ ßn.

One checks immediately that for every fixed u G C(w)r, the map z i->- F(u, z) has

the following properties: a) it commutes with the action of G; b) it maps v to X.
(Property a) is checked on Gur first; by continuity, it is valid everywhere.) This
shows that F is the map we wanted.

Corollary. The bijection

G-classes ofGu —>¦ G-classes ofgn

given by a Springer isomorphism f is independent of the choice off.
This is easy. One uses the following elementary lemma:

Lemma. Let Y, Z be two G-spaces. Assume G has finitely many orbits in each. Let
T be a connected space, and F : T xY —* Z a morphism such that, for every t G T,
the map y i—>¦ F(t, y) is a G-isomorphism of Y on Z.

Then, for every y G Y, the points F(t, y), t G T, belong to the same G-orbit.

Proof by induction on dim Y dim Z. The statement is clear in dimension zero,
because of the connexity of T. If dim Y > 0, there are finitely many open orbits in
Y (resp. Z); call Fo and Zo their union. It is clear that, for every t, the isomorphism
Ft: y *--* F(t,y) maps Fo into Zo. Moreover, the connexity of T implies that the

Ft 's map a given connected component of Yq into the same connected component of
Zo. And the induction hypothesis applies to Y — Yq and Z — Zo.

The corollary follows from the lemma, applied with T C{uf, Y G" and

Z fln.

Note. The structure of Nu/C(u) seems interesting. If I am not mistaken, it is the

semi-direct product of Gm by a unipotent connected group V of dimension £ — 1 ;

moreover, the action of Gm on Lie V has weights equal to ki — 1, kj — 1, ki — 1,

where the k\ 's are the exponents of the Weyl group.
Another interesting (and related) question is the behaviour of a Springer isomorphism

/ when one restricts / to C(u). The tangent map to / is an endomorphism of
c{u) Lie C{u). Is it always a non-zero multiple of the identity?

J.-P Serre, June 1999
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