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Path-components of Morse mappings spaces of surfaces

Sergey Maksymenko*

Abstract. Let M be a connected compact surface, P be either R1 or S1, and T(M, P) be the

space of Morse mappings M -> P with compact-open topology. The classification of path-

components of T(M, P) was independently obtained by S. V. Matveev and V. V. Sharko for
the case P R1, and by the author for orientable surfaces and P Sl. In this paper we give
a new independent and unified proof of this classification for all compact surfaces in the case

P R, and for orientable surfaces in the case P Sl. We also extend the author's initial proof
to non-orientable surfaces.

Mathematics Subject Classification (2000). 37E30, 58B05.

Keywords. Surface, Morse mapping, mapping class group, Torelli group.

1. Introduction

Let M be a smooth (C00) connected compact surface with boundary dM (possibly
empty) and let P be a one-dimensional manifold, i.e. either the real line M1 or the

circle S1. Consider the subspace F (M, P) of C^iM, P) consisting of Morse
mappings M —>¦ P. It is well-known that !F(M, P) is an everywhere dense open subset

of C^iM, P) in the compact-open topology of C^iM, P). The homotopy type of
this space is of great importance in differential topology and dynamical systems, see

e.g. [H], [I], [HT], [HH], [KE], [SV1], [M], [IS].
Recently, S. V. Matveev and V. V. Sharko [SV1] have obtained a full description

of path-components of the space F(M, R1). Matveev's proof is included and
generalized in the paper [KE] of E. Kudryavtseva to numerated Morse functions. Their
proofs were independent and based on different ideas. The classification of path-
components of 5r(M, S1) for orientable surfaces was given in the author's Ph.D.

thesis, see [M].
These results (which we will refer to as Main Theorem) can be summarized as

follows: two Morse mappings f, g: M --* P belong to same path-component of
F(M, P) if and only if they are homotopic as continuous maps and have the same

*The author is partially supported by the grant of Government Fond of Fundamental Researches no. 1.7/132
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number of critical points at each index and the same sets of positive and negative
boundary components (in the sense described below.)

In this paper we give a unified and independent proof of this theorem for all

compact surfaces in the case P R. The case of Morse mappings M --* S1 requires
information on the subgroup of the mapping class group of M preserving a given
element in the cohomology group H1(M, Z). We also find the generators of this

group for orientable surfaces and extend the presented method to Morse mappings
from orientable surfaces into S1.

In fact, the proof given in [M] for this case almost literally extends to non-
orientable surfaces as well. Since [M] was never published in English, we give
this proof for all surfaces in the Appendix. Thus the Main Theorem is proved here

for all cases of M and P.
Our approach has a relation to the paper [HT] ofA. Hatcher and W. Thurston, who

used deformations of Morse functions to construct a representation for the mapping
class group of a surface. In constrast to this approach, we exploit generators of this

group to find a deformation between Morse mappings in F(M, P). The principal
observation is that "elementary diffeomorphisms" like Dehn twists, boundary and

crosscap slides generating mapping class groups of surfaces preserve certain Morse
functions.

2. Preliminaries

Let M be a compact surface. A surface obtained by shrinking every connected

component of M to a point will be denoted by M. Thus M is closed and is homeomorphic
with a connected sum of the form either S2#f=1 T2 (orientable case, g > 0)or#f=1P2
(non-orientable case, g > 1). In each of the cases the number g is called the germ
of M. All homology and cohomology groups will be taken with integer coefficients.
The term simple closed curve will be abbreviated to SCC. The circle Sl will be

regarded as the subset {z e C : \z\ 1} of the complex plane C. For a topological
space X let #[X] denote the number of its connected components.

2.1. Morse mappings. Let us fix, once and for all, an orientation of P. Consider
a smooth mapping f : M —* P. A point z e Mis critical for / if df(z) 0. A
critical point z of / is non-degenerate if the Hessian of / at z is non-degenerate.

Suppose that z is a non-degenerate critical point of /. Then by Morse lemma there

are embeddings p : M2 --* M and q : M1 —>¦ P onto open neighborhoods of z and

fiz) respectively such that p(0, 0) z, q(0) f{z),q preserves orientation, and

q~l o f o p(x, y) ±x2 ± y2. The number of minuses in this representation does

not depend on a particular choice of such embeddings and is called the index of a

critical point z-

A C00-mapping / : M --* P is Morse if the following conditions hold:
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(1) all critical points of / are non-degenerate and belong to the interior of M;

(2) / is constant at each boundary component of M while its values on different

components may differ each from other.

The subspace of C^iM, P) consisting of Morse mappings will be denoted by
!F(M, P). We endow C°°(M, P) with the compact-open topology. Then this topology

induces some topology on 5r(M, P).

2.2. X-homotopies. Let/, g G F (M, P) be two Morse mappings and 4>: [0, 1] —>¦

Cœ(M, P) be a path between them in the space of Morse mappings. Thus <fi is

continuous, 0(0) /, 0(1) g and 0(0 is Morse for all t g [0,1]. Then 0 yields
a continuous mapping (homotopy) F : M x I —* P such that Fo f, F\ g, and

Ft is Morse for all t G /. In particular, F is C00 in x g M but may be just continuous
in t G [0, 1]. Conversely, every such mapping F gives rise to a path between / and

g in F(M,P).
We will call the mapping F a T,-homotopy or T,-deformation between / and g

F V
and write / ~ g. The term / ~ g will also be used to indicate that / and g are

S-homotopic.

Remark 2.1. In [SV1], [KE], S-homotopies are called isotopies of Morse functions.
We will use another term in order to avoid confusions with isotopies of diffeomor-
phisms.

2.3. Invariants of X-homotopies. Let/ G F (M, P). The objects (i) homotopy
class, (ii) number of critical points in each index, and (iii) positive and negative
boundary components are invariant under S-homotopies of /.
2.3.1. Homotopy class. First suppose that P S1. Let § G H1 (S1 be a generator
defining the chosen orientation of S1. If / : M ->¦ S1 is a continuous mapping,
then the correspondence / i->- /*(§) g H1 (M) yields a bijection between the set of
homotopy classes of mappings [M, S1] and the cohomology group Hl{M). Since

by our definition Morse mappings are constant at the connected components of dM,
it follows that thej>et of homotopy classes of Morse mappings M ->¦ S1 is bijective
to the group Hl(M) for the corresponding closed surface M.

Let g be a genus of M. A simple calculation shows that Hl{M) is isomorphic
with 7U, where r is either 2g or g — 1 provided M is orientable or not. Let us fix a

basis for H1 (M). Then the homotopy class of / is an integer vector

For P R we will assume that (q\, qr) (0,..., 0).
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2.3.2. Number of critical points in each index. Denote by c,(/) c, (i 0, 1, 2)
the number of critical points of / of index i. Then by Morse equalities we have

co(/) + ci(/)-c2(/) x(M). (2.1)

2.3.3. Positive and negative components of dM. Let y be a component of dM,
z g V and let § g TMz be a tangent vector at z directed outward M. Denote by

£/ V) the sign of the value df(z)^. Since / has no critical points on V, we see that

e/(V) ±1 and does not depend on a particular choice of a point z g V and a

vector § g TMZ as above. Thus we get a function Sf : n^dM --* {±1}. We may also

think of £/ as an element of {±1}6, where £> is the number of connected components
of dM.

We will call V either f-positive or f-negative in accordance with £/(V). Let
9+M (resp. 9_ M) be the union of /-positive (resp. /-negative) boundary components
of dM, and let b+ (resp. £>_) denote the numbers of these components.

The following collection of numbers

K(f) {q\,...,qr, c0, c\,c2, £/}

will be called the critical type of a Morse mapping /. It can be regarded as a point
in 7U x Nq x {±1}6 belonging to the "hyperplane" defined by Eq. (2.1), where

No N U {0}. If we choose another orientation of P, then coif) exchanges with

ciif), c\ (/) remains unchanged, e/ and every q\ change their signs.
Our aim is to give a new proof of the following theorem:

Main Theorem (Matveev [KE], Sharko [SV1], Maksymenko [M]). Two Morse
mappings f,g:M->P belong to the same path-component of FiM, P) if and only if
K(f) K(g), i.e. they are homotopic, have the same number of critical points in
each index, and the same sets ofpositive and negative components ofdM.

The necessity is obvious therefore we confine ourself to the sufficiency. Let us

briefly review the known proofs of this theorem. First consider the case P M1.

Let / and g be two Morse functions with equal critical types. In both proofs [KE],
[SV1] the problem was reduced to minimal Morse functions with no critical points
of index 0 and 2.

Let F be a gradient-like vector field for a minimal Morse function /. Consider a

union of /-negative boundary components of M with trajectories of F that finish at

critical points of /. This set is called a spine of M. Matveev (see Kudryavtseva [KE])
notes that the space of Morse functions with isotopic spines is path-connected. He
further suggested elementary transformations of spines which induce S-homotopies
of Morse function and showed that any two spines can be connected by a finite

sequence of these transformations.
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Sharko [SV1] reduced the problem to minimal Morse functions on a surface M
with only one positive and only one negative boundary component.Such a surface

can be regarded as a "framed" chords diagram in which the union of all chords and

a negative boundary component constitute the spine of M. Notice that n\M is free.

Choose a basis of this group. Then the edges of any other chords diagram in M can
be written down as words in the terms of a given basis. These words also form the

basis of n\M and determine chord diagrams up to equivalence. Moreover, by the

well-known Nielsen theorem any two bases of a finitely generated free group are

related by a finite sequence of Nielsen transformations. Sharko proved that Nielsen
transformations yield S-homotopies between corresponding Morse functions, and

that Morse functions with equivalent diagrams are S-homotopic.
The extension of the proof of [M] for P S1 and all surfaces is given in the

Appendix.

2.4. Plan of the present proof. First the problem will be reduced to the case when

g f o h, where h is a diffeomorphism of M and / is of a special "canonical" form.

It is convenient to say that a diffeomorphism h is /-admissible if / ~ / o h. Using
a special type of /, we will choose a system of generators for M(M) and show that

if P R, then all of them are /-admissible. This will prove the Main Theorem for
this case.

For the case P S1, M is orientable, and / is not null-homotopic we shall see

that one of the generators chosen above is not /-admissible. Nevertheless, since /
and / o h are homotopic, it will be possible to reduce the problem to the case when h

acts trivially on the homology group Hi (M, 3M), i.e. h belongs to the Torelli group
of M. Generators of this group are known from [P], [J], [MG]. This information will

allow us to show that / ~ / oh.

2.5. Structure of the paper. In Section 3 we prove some technical results
concerning Morse mappings to the circle. In Section 4 we recall the definition of the

Kronrod-Reeb graph of a Morse mapping and define "canonical" Morse mappings.
In Section 5 we reduce the Main Theorem to the case when / is canonical and g
differs from / by a diffeomorphism. This was done by Kudryavtseva in [KE] for
Morse functions. We consider the case P S1. In Section 6 we show that elementary

diffeomorphisms generating mapping class groups M(M) of M (Dehn twists,
boundary and crosscap slides) preserve certain Morse functions. In Section 7 we
recall the generators of mapping class groups for surfaces with boundary. Every
canonical Morse mapping gives a "canonical" set of such generators whose admis-

sibility (or nonadmissibility) for this map is almost obvious. We also complete the

Main Theorem for P R (statement (i) of Lemma 7.3).
In Section 8 we give the plan of the proof of the Main Theorem for the case M is

orientable and P S1. For this in Section 9 we consider the stabilizers of elements
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of I?g with respect to the action of the symplectic groups Sp2g(Z), in Section 10 we
study minimal Morse functions. Section 11 includes one technical lemma. Finally,
in Sections 12-14 we complete the proof.

3. Cutting M along a regular level-set of /
We prove here two lemmas which will be used in the proof of Proposition 5.2.

Let c be a regular value of a Morse mapping / : M --* S1. Then f~1(c) is a

disjoint union of SCCs on M. Suppose that / l{c) n dM 0. We cut M along
f~l(c) and denote the new surface by M M(f, c). Similarly, we cut S1 at/(c) and

obtain [0, 1]. Let/?: M -> M and q: [0, 1] ->¦ Sl be the corresponding factor-maps,
where q(t) e2jtlt, t e [0, 1]. Then there exists a Morse function f : M —* [0, 1]

such that the following diagram is commutative:

M —f-^ [0,1]

'1 1« (31)

M —'—> S1.

Thus

fix) exp (27tif{p-l{x))) for all x g M. (3.2)

Denote Bo /-1(0), B\ f~l{\), and B Bo U B\. Then there is a natural

correspondence between S-homotopies ft of / with respect to some neighborhood
of B and S-homotopies ft of / with respect to some neighborhood of y. The

corresponding maps ft and ft are related by the commutative diagram (3.1).
Since M is connected, it follows that every connected component X of M intersects

B non trivially. However, it is possible that Iflß, =0 for some i =0,1. Thus the

components of M can be divided into the following mutually disjoint sets

Qo Qo(f,c), Ql QlQ(f,c), Ql Ql(f,c) (3.3)

consiting of those components that (respectively) have non-empty intersections only
with Bq, with both sets B\ and Bo, and with B\ only.

It follows that for every connected component X of Q\{f, c) and t G [0, 1] we
1

Lemma 3.1. (1) Let V be an f-positive (resp. f-negative) component of dM and
v f(V). Then for every w > v (resp. w < v) there exists a H-homotopy ft
changing f only in an arbitrary small neighborhood of V and such that f\ V) w,
see Figure 3.1a).
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(2) Let X be a connected component of M. For every w g (0,1) there exists

a Y-homotopy /: M -> [0,1] such that f0 f, ft f on (M \ X) U B, and

f{l{\) n X f-\w) n X, see Figure 3.1b).

(3) Let X be a connected component of M. Then there exists a H-homotopy

ft: M -^ [0, l]withfo fandft fon(M\X)UB, suchthat f^fynX 0,
whenever X c go U g1, and#[f{l(\) nl] l, whenever X c gj.

\ fted

a) b)

Figure 3.1

(1) Suppose that V is an /-positive component of dM. By definition, /
has no critical points on V. Then there exist an e > 0, a neighborhood ./V of V,
and a diffeomorphism h : S1 x (v — 2e, v] --* N such that h(Sl x {v}) V and

/o h(x, t) t for (x, t) e S1 x (v - 2s, v].
Let //( be an isotopy of R fixed on (—cxd, u — e] and such that H\{v) w.

Then the S-homotopy ft defined by the formulas ft{x) f{x) for x e M\N and

ft(x) Ht o/(x)forx g AT satisfies the statement (1) of the lemma. Theprooffor
/-negative components is similar.

(2) Notice that, for any v G (0, 1), there exists an isotopy Ht of R1 fixed near 0

and 1 and such that Hi(s) \. Then the S-homotopy ft: M —>¦ [0, 1] defined by
the formulas ft HtofonX and ft f on M \ X satisfies the statement (2) of
the lemma.

(3) It follows from the definition that for every connected component X of go U g1
there exists a number v g (0, 1) such that / 1(v) n X 0. Therefore, if X c
go U g1, then our statement follows from (2).

Let X c Qq. If for some i 0, 1 the intersection X n 5,- is connected, then for

every t in some neighborhood of i we have that X n f~l (t) is connected. By (1) of
the lemma we can choose t \.

Suppose now that the intersections X n 5,-, i 0, 1 are not connected. By (1)
and (2) we assume that

o < f{p~l{d_M) n X) < -~l{ X) < - < f{p-l {d+M) n X) < 1,
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where S y is the set of critical points of /. Thus all critical values of f\x belong to

(\, j);the values on/-negative boundary components ofXexceptfor/(Xn5o) 0

are in (0, \); and the values on /-positive boundary components of X except for

f(X n B\) 1 are in (^, l). In particular, ^ is a regular value of /.
Denote n #[/-1 (^)] and suppose that n > 1. Our object is to reduce n. Let

F be a gradient-like Morse-Smale vector field of X for the function f\x. It follows
from Morse theory that the union of /|x-positive boundary components d+X with
the set of trajectories that start at saddle critical points of f\x and finish at d+X is

a strong deformation retract of X. Since X is connected, we see that there exists

a saddle critical point z of f\x such that the trajectories starting from z finish at

different components of d+X. We denote these trajectories by u>\ and <x>2-

Then (Milnor [MJ1], Theorem 4.1) there exists a S-homotopy / of /o f\x
that changes f\x only in an arbitrary small neighborhood of (<x>i U u>2) n f~l (\, ^]
such that \ < fiiz) < l,but/i(z') < \ for all other critical point z' of f\. It follows

that 2 is a regular value for f\ and the level-set /j"1 (|) has precisely n — 1 connected

components. Now (3) follows by induction on n.

Lemma 3.2. Every Morse mapping f : M -> S1 is•T,-homotopic to aMorse mapping
g such that for some regular value c of g we have:

(A) iff is null-homotopic, then g~l{c) 0;
(B) otherwise, #[g"1(c)] is equal to the index of fJHi(M)) in HiiS1).

Proof. Let c be a regular value of / such that f~1(c)ndM 0 and let n

#[/~1(c)]- We cut M and obtain the surface M M{f, c) and the function /: M ->
[0,1] as above.

By Lemma 3.1, if ßo U Q1 ^ 0 or if for some connected component X of Ql0 the

intersection X n Bq has more than one component, then there exists a S-homotopy
/( of / with respect to some neighborhood of B such that #[/f1 (^)] < n. As noted
above, this S-homotopy yields a S-homotopy / of / /o to a Morse mapping

/l with respect to some neighborhood of / l(c) such that #[/1~1(ci)] < n, where

c\ q Q) is a regular value of f\.
Repeating these arguments for f\ and c\, and using induction on n we will obtain

a Morse mapping /t and its regular value cy_ such that either (i) f^l{ck) 0
or (ii) Qo(fk,ck) Ql{fk,ck) 0 and for every connected component X of
Ql0 M(fk, Ck) the intersection X n 5, (/t, Ck) is non-empty and connected, whence
it is an SCC.

Suppose that fk is null-homotopic. Then fk lifts to a Morse function /t : M -?
M1 which must have a global minimum and maximum. Therefore, if fkl{ck) ^
0 (case (ii)), then go (/it, cfc) U Q1(fk, ck) ^ 0, which contradicts (ii). Hence,

fk~l(ck) !2>- This proves (A).
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Suppose fk is not null-homotopic. For convenience we denote fu by / and ck

by c. We will now lift / onto the covering of S1 corresponding to the subgroup

f(Hi(M))oi HiiS1). Letm #[M] and let pm : S1 -> S1 be the m -sheet-covering
of S1 defined by the formula pm (e2lïit) em2jtit, e [0,1].

First notice, that the set of connected components of M admits a natural cyclic
ordering. Indeed, let Xq be any component of M. If Xk, (k > 0) is defined, then
there exists a unique connected component Xk+i of M such that p(Xk+\ n Bq)

p(Xk n B\). Since M is connected, it follows that every connected component of M
is numbered in this way.

Then the following formula defines a lifting f: M —* S1 of f onto the m-sheet

covering of S1:

f(x)=exp—(f(p-1(x))+k), xep(Xk), k 0,...,m-l,
m

i.e. Pmo f f.
Finally, let us prove that the homomorphism /* : H\ (M) --* H\(S1)is onto. This

will imply that the index of f(H\(M)) in H\(Sl) is m. For every k 0, m — 1

let (Wjt: [0,1] —>¦ Xk be a simple arc which is transversal to level-sets of / and

such that /W(0) t, p(cokW) p(cok+i(0)) and p(com-i(l)) p(co0(0)).
Evidently, these arcs constitute an SCC œ on M such that the restriction f\a is a

homeomorphism, whence /* is onto. Thus (B) is proved.

3.1. Orientation of level-sets of /. Suppose that M is orientable. Let c g S1 be

a regular value of a Morse mapping f : M -> Sl, L f~l{c) the corresponding
level-set of /, and F a gradient vector field for / taken in some Riemannian metric
on M. Then the orientation of M together with F yields an orientation of L so that
the homology class of an oriented cycle [f~l (c)] e H\ (M, dM) does not depend on
a particular choice of a regular value c and even on the homotopy class of /. For

every x e L let vx be a tangent vector to L at x such that the pair {vx, grad/OO)
gives a positive orientation of M. Then the orientation of L defined by vx satisfies

the conditions of the previous sentence.

Let § G H1 (S1 be a generator that defines the positive orientation of S1 and let œ

be an intersection form on H\ (M, dM). Then for every oriented SCC y : S1 —* M,
regarded as an element of H\ (M), we have

f(Ç)(y) {L,y)=deg(f\y). (3.4)

Since / is constant on boundary components of M and is not null-homotopic
it follows that /(§) ^ 0 in Hl(M, dM). The intersection form co on M yields an

isomorphism <p'¦ Hl(M,dM) -> H\(M,dM) which by Eq. (3.4) maps /(§) to the

homology class [L].
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In particular, if h : M --* M is a diffeomorphism such that / o h and / are

homotopic, then it follows that h*(f(Ç)) /(§) in H1 (M, dM) andÄ*([L]) [L]
mHi{M,dM).

4. Kronrod-Reeb graph of a Morse mapping

Let / : M -> P be a Morse mapping, c g P, and y a connected component of

f l(c). We call y regular if it contains no critical points of /; otherwise y is

critical.
Consider the partition of M by the connected components of level-sets of /. The

factor-space F/ of M by this partition has the structure of a one-dimensional CW-
complex and is called the Kronrod-Reeb graph or KR-graph of / (see e.g. [KA],
[KE], [SV2]). There is a unique decomposition

/ : M f*
> 17

/r > P,

where /* is a factor map and for every open edge e of F/ the restriction fr\e is a

local homeomorphism. Notice that the orientation of P yields a unique orientation
of e preserved by fr. The mapping fr will be called KR-map associated with /.

The vertices of F/ correspond to the critical components of level-sets of / and to
the boundary circles of M. The last type of vertices will be denoted on the KR-graph
by circles o (see e.g. Figure 4.1). Notice that for non-orientable surfaces, KR-graphs
can possess vertices of degree 2 (e.g. [KE]). We will denote these vertices by stars *.

Let /, g: M ->¦ P be Morse mappings. By an isomorphism between their KR-
graphs we will mean a homeomorphism Fg —>¦ F/ preserving orientations of edges
and the sets of o- and *-vertices.

We will say that their KR-maps fr and gr are equivalent provided there exist
a preserving orientation diffeomorphism 4> of P and an isomorphism a : Tg --* F/
such that in the following diagram the right square is commutative:

(4.1)

The mappings / and g are said to be equivalent provided there exists a

diffeomorphism h of M such that f oh 4> o g. In this case there is a unique equivalence
a between KR-maps of / and g such that the whole diagram (4.1) is commutative.

A Morse mapping / is called generic if every level-set of / contains at most one
critical point. Let / be a generic Morse mapping. If M is orientable, then the degree

M -

\
M -

g T

a

f*

gr

1

/r
f

P

A
> p.
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of each vertex of F/ is either 1 or 3. If M is non-orientable, then F/ may possess
vertices of degree 2.

The following lemma is well-known. Its different variants can be found in [BF],
[KE], [K], [SV2].

Lemma 4.1. Two generic Morse mappings f and g having equivalent KR-maps are
equivalent.

We say that a Morse mapping / is canonical if its KR-map is equivalent to that
drawn in Figures 4.1 or 4.2.

First consider the case P R, see Figure 4.1. The part of KR-graph under the

rectangle corresponds to the following cases of M:
a) M is orientable.

b) M is non-orientable of odd genus g.
c) M is non-orientable of even genus g.
d) M is non-orientable, g > 3 and is odd. In this case we will use two types of

canonical Morse functions shown in Figure 4.1. They are related by a S-homotopy,
see [KE]. For the case P S1 a canonical Morse mapping f : M -> Sl can be

Ù2.

f*

R1

a) b) c) d)

/r

Figure 4.1. KR-graphs and KR-maps of a canonical Morse function M —?¦ R.

described as follows: there is a regular value c of f such that y f l{c) is an
SCC. Moreover, if we cut M along y, then the restriction of f : M \y --* S1 \c
is a canonical Morse function. Its KR-graph is hidden behind the rectangle, see

Figure 4.2.

Notice also that a canonical Morse mapping is generic and the homomorphism

/*: Hi(M) -> H^S1) is onto.

Lemma 4.2. Let f, g: M -> P be two canonical Morse mappings of the same

critical type K{f) K(g). Then they are equivalent.
Moreover, there is a H-homotopy ofg to a canonical Morse mapping g\ such that

gi f o h, where h is a diffeomorphism ofM.
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Figure 4.2. KR-graphs and KR-maps of a canonical Morse mapping M -> S1.

Proof. Evidently, KR-graph and KR-map of a canonical Morse mapping is
determined by the numbers cq, C2, b+, b- and the (orientable or non-orientable) genus g
of M. Notice that c\ is related to these numbers via Euler characteristic.

Hence the condition K{f) K(g) implies that KR-maps of / and g are equivalent.

Then by Lemma 4.1, / and g are equivalent, i.e. p o g f oh, where p is

a preserving orientation diffeomorphism of P and h is a diffeomorphism of M. It
follows that p is isotopic to idM- Let pt be an isotopy of p pi to idM po- Then

gt Pt ° g is a S-homotopy of g g0 to g\ p\ o g p o g f o h.

5. Reduction of the problem

Let /, g : M ->¦ P be two Morse mappings such that £"(/) K(g). We have to

prove that / ~ g.

In this section we reduce the proof of the Main Theorem to the case when / and

g are canonical, and g f o h, where h is a diffeomorphism of M. This was done

in [KE] for the case P R. Let P S1.

5.1. Step 1. It may be assumed that the homomorphism /* g* : H\ (M) --*
HiiS1) is surjective. In particular, / and g arenotnull-homotopic. This also implies
that M is neither a sphere nor a projective plane (with holes if dM ^ 0).

Indeed, suppose that the homomorphism /* g* is not onto. Let p : S ->¦ S1 be

the covering of Sl corresponding to the subgroup f*{H\{M)) c H\{Sl) niiS1)
and let /, g : M --* S be some liftings of / and g respectively which are evidently
Morse.

Yj ~ Yj
Lemma 5.1. / ~ g if and only if f ~ g.

The proof is easy and is left to the reader. It can be found in [M].
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5.2. Step 2. We may assume that / and g are canonical due to the following
statement:

Proposition 5.2 ([KE]). Every Morse mapping f : M —* P such that the homo-

morphism f^{H\{M)) c H\{Sl) niiS1) is onto is T,-homotopic to a canonical
one.

Yj Yj
It follows from this proposition that / ~ /i and g ~ g\, where f\ and g\

are canonical Morse mappings of the same critical type K{f) K(g). Then by
Lemma 4.2 g\ f\ ° h, where h is a diffeomorphism of M.

Proof. As noted above, this statement is proved in [KE] (Lemma 10) for closed
surfaces and P R. The proof easily extends to surfaces with boundary. Suppose
that P S1. Since /* is onto, it follows from Lemma 3.2, that / is S-homotopic
to a Morse mapping f\ such that a f^1 (c) is an SCC, where c is a regular value

of f\. Cutting M along a as in Section 3 we obtain a surface M and a function

f : M -> [0,1]. Then by the M-case of this proposition / is S-homotopic with
respect to a neighborhood of B to a canonical Morse function. This S-homotopy
yields a S-homotopy of / to a canonical Morse mapping.

6. Admissible diffeomorphisms and curves

Definition 6.1. Let/: M --* P be a Morse mapping. A diffeomorphism/?: M —* M
will be called f-admissible provided / o h is S-homotopic to /. Notice that /-
admissibility implies that h preserves the sets of /-positive and /-negative components

of 9 M and that / and / o h are homotopic.

Let A(f) c <©M be the set of all /-admissible diffeomorphisms, let <©id M be the

identity component of DM, and let C{f) be the path-component of / in F(M, P).

Lemma 6.2. A{f) is a group consisting offull isotopy classes, i.e. DaM c A{f).
Moreover, if g & C{f), then A{g) A{f).

Proof. Suppose that p,q e A(f) and let / ~ fop and / ~ / o q be S-
homotopies. Then p o q and p~l G A{f). Indeed,

fyt &t°q _1 &\-t°p^ _i/~/°? ~ / ° P°q and / / o po p ~ /op
Thus <A(/) is a group.

If p ~ pi is an is

Thus A(f) consists of full isotopy classes.

Ht <&t°Ht
If p ~ pi is an isotopy, then the homotopy / ~ / o pj is a S-homotopy.
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Finally, if / ~ g is a S-homotopy, then g ~ /
p G A(g), i.e. <A(/) c A(g). Similarly A(g) C

7. Hence
D

We will now consider three types of "elementary diffeomorphisms" and show that

they preserve certain simple Morse functions.

6.1. Dehn twists. Let y be a two-sided oriented SCC in M. For the definition of
a Dehn twist along y see e.g. [D], [LI]. This diffeomorphism is supported in some

neighborhood of y and its effect on such a neighborhood is shown in Figure 6.1a).

a)

I 1

b)

Figure 6.1. Dehn twist.

Definition 6.3. Let y be a two-sided SCC in M \ dM. We say that y is f-admissible
if / is S-homotopic to a Morse mapping g such that y is a connected component of
a regular level-set of g.

Lemma 6.4. Let y C IntM be an f-admissible oriented SCC in M. Then a Dehn
twist ty along y is f-admissible.

Proof. Let / ~ g be a S-homotopy such that y is a connected component of a

regular level-set of g. We will construct a Dehn twist ty along y such that g g oty.
Then ty is g-admissible, whence by (1) of Lemma 6.2 ty is also /-admissible.

Since y is a regular component of a level set of g, there is a regular neighborhood
of y which is diffeomorphic to S1 x / and such that the function g is the projection
to /, see Figure 6.1b). Then there is a Dehn twist ty along y that preserves the sets

of the form S1 x {t}. They are level-sets of g, whence ty preserves g.

6.2. Boundary slides. Let A be an annulus and let Co, C\ be the connected components

of 9 A. Divide C\ into four arcs of equal length l\,..., 14 so that h is opposite
to h and h to I4. Let us identify the opposite points of l\ and h. Then the quotient is

a Möbius strip B with the hole C[ h UI4.
Let r : A —>¦ A be a half-Dehn twist along C\, which exchanges h with I3 and h

with 14 and is the identity near Co. Then r yields a certain diffeomorphism v of B
that "rotates Cj by n and fixes Co", see Figure 6.2a).
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Suppose that B is embedded into M so that C\ is mapped onto a connected

component C of 9 M. Then v extends by the identity on all of M. This diffeomorphism
is called a boundary slide of C along B.

Notice that our description of boundary slide differs from ones given in [KM],
[SB]. The advantage is an evidence of the symmetry of v.

Now it is easy to see that there is a Morse function f : B' —* [0,1] having a

unique critical point of index 1 and such that /^(O) Co, f 1(l) C[. Its critical
level sets and the KR-graph are shown in Figure 6.2b).

a) b)

Figure 6.2. Boundary slide.

The following lemma is obvious.

Lemma 6.5. / : M -> P be a Morse mapping on a non-orientable surface M.
Suppose that the KR-graph of f has an edge e such that one of its vertices, v\, has

degree 2 and another one, V2, corresponds to the boundary component of M, see

Figure 6.2b). Let N be a neighborhood of e containing no vertices ofTf but de.

Then B fr1(N) c M is a Möbius band with hole and there exists a boundary
slide v: M —>¦ M offf1 («2) along B such that f ° y f.

6.3. Crosscap slides. This type ofdiffeomorphisms was introduced by W B. R. Lick-
onsh [L2] and called a Y -diffeomorphism. In [KM], [SB] the term crosscap slide
is used. We recall the definition of this diffeomorphism (given in [BC]) via oriented
double coverings.

Let K be a Klein bottle with two holes and let p : T --* K be its oriented double

covering, where T is a torus with 4 holes. We can assume that T is embedded into
IR3 so that it is symmetrical with respect to the origin 0. In other words it is invariant
under the involution §(x, y, z) {—x, —y, —z) of R3, see Figure 6.3a).

Let V\,..., V4 be the connected components of 9 T numbered so that § V\ V2

and §(V3) V4. Then there is a diffeomorphism y:T^T which is fixed near
V3 U V4, coincides with § near V\ U V2 and such that y ° ^ § o y. Thus y can be

described as a "rotation" of T with respect to the z-axis by n with fixed boundary

components V3 and V4. For example, in Figure 6.3a) an arc and its image under §

are shown. It follows that y induces some diffeomorphism y of K fixed near dK.
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Suppose that K c M is embedded into M. Then y extends by the identity to a

diffeomorphism of M. Such a diffeomorphism of M is called Y-diffeomorphism or
crosscap slide based in K.

Notice that there is a Morse function / : T --* R with 4 critical points such that

/ °y /> see Figure 6.3a), where the critical level-sets of / are shown. Then /
yields a unique Morse function / : K --* R having 2 critical points and such that

/ ° y f ¦ The KR-graphs Vj and Vf of / and / are shown in Figure 6.3b).

r/
a) b)

Figure 6.3. Crosscap slide on the orientable covering.

Lemma 6.6. Lef f : M —* P be a Morse mapping on a non-orientable surface M.
Suppose that the KR-graph of f has an edge e with vertices of degree 2. Let N be a

neighborhood of e containing no vertices of Vf but de. Then K fr1(N) c M is

a Klein bottle with two holes and there exists a Y -diffeomorphism y.M—*M based

in K such that f oy f. D

7. Mapping class group of a surface with boundary

Let M be a closed connected surface and let X {x\,..., xn) be a set of mutually
distinct points of M. The extended mapping class group Mn{M) of M is defined to
be the group of isotopy classes of diffeomorphisms of M which take X to itself. The

pure extended mapping class group PMn (M) of M is the group of isotopy classes of
diffeomorphisms of M which take Xjroint-wise. The groups Mq(M) and PMq{M)
will be denoted by M(M) and PM(M) respectively.

Let M be a connected surface with boundary 9 M consisting of n connected

components V\, Vn. Regarding these components as punctures, we can identify the

groups M(M) and 3>M(M) with Mn{M) and PMn{M).
We recall the sets of generators of M{M) and !PM{M) given in [B2], [G] for

orientable surfaces and in [KM] for nonorientable ones.
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7.1. Orientable case. Suppose that M is orientable. Consider the following 3 types
of diffeomorphisms of M:

(1) Let O be a reversing orientation diffeomorphism of M.
(2) Let at, ßi, y,, Si, q be the SCC shown in Figures 7.1a), where the bold points

denote connected components of 9 M divided into two parts (positive and negative
components). We will refer to them as SCCs of configuration G. Denote by tai, t^,
ty., tg., t£. the corresponding Dehn twists.

(3) For every pair i < j 1, n let a\j be an SCC that separates M into
two connected components so that one of them is a sphere S with 3 holes whose

boundary components are o\-} and the connected components V, and V) of 3M, see

Figure 7.1b). Let b;j be a diffeomorphism of M with support in S which permutes
boundary components V, and V) and preserves all others. Evidently, bf. is a Dehn
twist ta.. along a;j.

Theorem 7.1 ([B2], [G]). The group M(M) is generated by

(i) {O,bu:i,j l,...,n}ifg=0;
(ii) {ti,O,bij :l&e,i,j l,...,n}ifg>\.

The group PM(M) is generated by

(i) {O,bfj tat} :i,j l,...,n}ifg=0;
(ii) {ti,O:lGG,i,j l,...,n}ifg>\.

a)

Figure 7.1. The configuration G. Orientable case.

b)

7.2. Generators for M. (M). Non-orientable case. Suppose that M is non-orien-
table of genus g, see Figure 7.2, where the interiors of the shaded disks are removed
and then the antipodal points on each boundary component are to be identified.

Consider the following 4 types of diffeomorphisms of M:
(1) Let y be a crosscap slide of M. If g > 3, then we additionally assume that

y2 is a Dehn twist along a two-sided separating SCC both components of whose

complement are non-orientable.
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(2) and (3) Similarly to the oriented case we define the configuration G of SCCs

«j, ßi, Yi > &i > ei shown in Figure 7.2, SCCs a\j, the corresponding Dehn twists and

diffeomorphisms b\j.
(4) Let V; denote the boundary slide obtained by sliding the boundary component

V, along the loop /x if g is odd and along m if g is even, see Figure 7.3. Also if g is

even, denote by u>\ the boundary slide obtained by sliding V; once along the loop yu-2.

Theorem 7.2 ([KM]). 77ie growp <M(M) is generated by

(i) {vfe, bfj :i,j,k \,...,n,i < j] if g 1;

(ii) {^0, y, Vfe, è,-j :i, j,k \, n, i < j} if g 2;

(iii) {ti, y, Vk, bjj : l G G, i, j, k 1,..., n, i < j} if g > 3 w odd;

(iv) {f;, y, Vfe, cok, bjj : I e G, i, j,k 1, n, i < j} if g > 4 w even.

Replacing every bjj by bf. ta.. we obtain generators for PM(M).

Figure 7.2. The configuration C for g 2r + 1 and g 2r + 2. Non-orientable case.

Figure 7.3. Boundary slides for g 2r + 1 and g 2r + 2.
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7.3. Generators of M. (M) for canonical Morse mapping. Given a Morse mapping

/, denote by Mf(M) the subgroup of M(M) consisting of diffeomorphisms
that preserve the sets of /-positive and /-negative components of dM. Evidently,

A{f) c Mf(M).

Lemma 7.3. Let f : M -> P be a canonical Morse mapping. In the case P Sl

assume that M is orientable. Then there is a "canonical" set of generators for
Mf(M) suchthat

(i) for the case P M1 all of them are f-admissible, i.e. A(f) Mf(M), whence
the Main Theorem holds for this case;

(ii) for P S1 (and orientable M) all but one of them are also f-admissible.

Remark 7.4. Recall that we do not give the proof of the Main Theorem (by the new
method) for the case that M is non-orientable and P S1. Therefore we also do not
consider this case in Lemma 7.3 since it is more complicated and due to the length
of the paper, see also the last paragraph of this section.

Proof. Let / be a canonical Morse mapping. We will construct a set of generators
for M(M) described in Theorems 7.1 and 7.2 such that their /-admissibility is rather
evident.

First suppose M that is orientable and embedded into M3 as it is shown in Figure

4.1. Then the canonical Morse mapping / is just the projection onto the vertical
line.

(1) Let O be a diffeomorphism of M that is a symmetry with respect to the plane
of this sheet. Then O reverses orientation of M and preserves /, i.e. / / o O.
Thus O is /-admissible.

(2) Comparing Figures 4.1 and 7.1 we see that a, and y, are regular components
of regular level-sets of /, whence the Dehn twists tai and tn are admissible. In
Figure 7.4 an /-admissibility of twists tß., tst and te. is shown.

Figure 7.4. /-admissibility of configuration G.

(3) Let Vi and V) be two /-positive components of dM. Then / is S-homotopic
to a Morse mapping f\ such that the KR-graph V fx of f\ includes a subgraph T\
shown in Figure 7.5a). Let a;j be an SCC corresponding to a point s € Pi. Then



674 S. Maksymenko CMH

there exists a diffeomorphism b;j of M\ that exchanges V-, and V), preserves f\ and

bf. is a Dehn twist along a\j. Then b\j and a\j are /-admissible.
Now let V; be /-positive and V} be /-negative. In this case a diffeomorphism

bij permuting V; and V) is not /-admissible, since it does not preserve the sets of
/-positive and /-negative boundary components. Nevertheless we will now show

that its square bf. ta.. is /-admissible. Consider two cases.

(a) Suppose that / has at least one critical point of index either 0 or 2 or a boundary
component different from V; and V). Then / is S-homotopic to a Morse mapping f\
whose KR-graph F/2 includes a subgraph F2 shown in Figure 7.5b). Then we define

oij to be an SCC corresponding to a point s e F2. Hence a\j is /-admissible.
(b) Otherwise, / has no local extremes and 9M V\ U V2. Let an be an SCC

that intersects every y, non trivially but no other SCCs of configuration G, separates
M in two components M\ and M2 such that M\ is disk with two holes V\ and V2, see

Figure 7.5c).
We claim that o\2 is not /-admissible. Otherwise the restriction of / to M2 must

have extremes, which could be taken only on boundary components different from
V\ and V2 or at critical points of indices 0 and 2. But all of them are absent on M2.

Nevertheless, it is well-known that a Dehn twist tan is a product of Dehn twists
along SCCs of configuration G except for y,. Hence a Dehn twist tan is /-admissible.

V;

a) b) c)

Figure 7.5. /-admissibility of bij andtr^.

Suppose that M is non-orientable of genus g (see Figure 7.2) and let / be a

canonical Morse mapping as in Figure 4.1. Again we define the generators of M(M)
associated with /.

(1) For the case g > 2 we will now define an /-admissible crosscap slide. If g is

odd then F/ has an edge e with vertices of degree 2. Otherwise, / is S-homotopic
to a Morse function f\ whose KR-graph has such an edge, see Figure 4.1d). Then by
Lemma 6.6, there exists a crosscap slide y such that / / o y or f\ f\ o y in the

second case. Hence y is /-admissible.
Definition and /-admissibility of generators of types (2) and (3) are similar to

the orientable case. We need to verify the admissibility of ßo and So for the case

g 2r > 2.

Let Af be a neighborhood of e defined just above containing no vertices of F/
but de. Then K f~l (N) c M is a Klein bottle with two holes. Let p : T -? K.
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Then T is a torus with four holes. We can assume that the function / fop: T --* R
coincides with the one defined in Section 6.3, see Figure 6.3. Since ßo and <5o are two
sided, their inverse images ßo p l{ßo) and So p l{So) in T consist of pair of
disjoint SCC. They are shown in Figure 7.6a).

It is shown in Figure 7.6b) that ßo is a regular level-set of /. This figure also shows

a symmetrical S-homotopy of / fixed near dT which makes Sq a regular level-set.
Hence ßo and So are /-admissible, whence ßo and So are /-admissible.

a) b)

Figure 7.6. /-admissibility of ßo and <

(4) It remains to construct /-admissible boundary slides v\ and co;. Let V, be a

connected component of dM and z\ £ F/ be the corresponding o-vertex.
First suppose that g is odd, so F/ has a unique vertex x of degree 2. Then / is

S-homotopic to a Morse function f\ such that z\ and x will be the vertices of the

same edge, see Figure 7.7 for the cases when z\ is /-negative or /-positive. Then

by Lemma 6.5, there exists a boundary slide v, of V, preserves f\. Whence v, is

/-admissible.
If g is even, then F/ has two vertices x\ and X2 of degrees 2. As in the previous

case we define /-admissible boundary slices v, for V, and x\, and u>\ for V; and X2.

Zi O

x

O

Figure 7.7

Consider now the case P S1. Let c g S1 be a regular value of / and a\
f~l{c) such that the restriction of / to M \ a\ is a canonical Morse function to S1 \ c.

Suppose that M is orientable. Then the definition of the configuration G associated

with / is shown in Figure 7.8, where / is the "projection" to ß\. Similarly to the

previous case we can define a diffeomorphism O, Dehn twists along the SCCs of
configuration G, and permutations of boundary components b\j. The same arguments
as in the case P R show that all of them are admissible, except for ß\, since / and

/ o tßx are not even homotopic.
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If M is non-orientable, then the surface M\ct\ can be orientable or non-orientable
as well. We do not consider this case, see 7.4.

Figure 7.8. Configuration G if M is orientable and P Sl

8. Proof of the Main Theorem

The case P R is proved in statement (i) of Lemma 7.3. Before processing with
the case P S1 we recall the definition of the Torelli group and its generators.

8.1. Torelli group T(M). Let M be a closed orientable surface. Then the Torelli

group of M is a subgroup T (M) of !PM (M) M (M) consisting of diffeomorphisms
of M acting trivially on the homology group H\(M). Evidently, T(M) is a normal
subgroup in !PM{M).

Suppose now that dM ^ 0. Let us glue everyjxmnected component of dM by a

2-disk and denote the obtained closed surface by M. Then we obtain an epimorphism

j : PM(M) -> PM{M) induced by the inclusion M c M, see [B2]. Define the

Torelli group T(M) c PM(M) of M to be the inverse image j'1 (7"(M)).
The following theorem describes the generators of ker j.

Theorem 8.1 ([Bl], [B2]). Let a; and ßt be the curves of configuration G on M. For

every component Vj ofdM letctjk (ßiu) be an SCC which together with a, (ßj) bounds
in M a cylinder with a hole Vf. Then the kernel of j is generated by the following
diffeomorphisms: Sik a,- o a]k and rjk ß\ ° ß\k-

Theorem 8.2 ([B3], [P], [J], [MG]). The Torelli group T(M) of M is generated by
the following types of diffeomorphisms:
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(a) Dehn twists along SCC separating M (if g 2 then these diffeomorphisms

generate all the group T(M), [MG]);
(b) products ofDehn twists of the form tn o ty^, where the SCCs y\ and Y2 are

oriented, disjoint, and homologous.

Proof. This theorem was proved for closed surfaces [P] and surfaces with one boundary

component [J]. In fact it holds for arbitrary oriented surfaces.

Let t g T{M). Since M is closed, we have that j{t) is generated by diffeomorphisms

of types (a) and (b). Notice that we can choose the corresponding curves
so that they belong to M, whence j{t) yields some diffeomorphism t\ of surf such

that ff1 o t G kery. By Theorem 8.1, this diffeomorphism is also generated by
diffeomorphisms sjk and rjk which evidently are of type (b).

8.2. Proof of the Main Theorem for orientable M and P S1. It suffices to
establish the following statement using the notations of Lemma 7.3.

Proposition 8.3. Let h g Mf(M) be a diffeomorphism such that the Morse
mappings f and f o h: M -> S1 are homotopic. Then h is isotopic to a product of
diffeomorphisms of the form po cot, where

(1) p is generated by O and those b\j that belong M/(M);
(2) c is generated by Dehn twists along the SCCs of configuration G but tßx;

(3) t G T(M).

Diffeomorphisms of types (l)-(3) are f -admissible, whence so is h.

Proof. Evidently h can be represented as a product p o h\, where h\ G !PM{M)
and preserves orientation of M and p is of type (1). Then, by Theorem 7.1, hi is

generated by the Dehn twists along the curves of configuration G.

Notice that / and f o hi are homotopic. This condition will allow us to remove
tßx from the generators of hi and replace this twist by diffeomorphisms of type (3).

Lemma 8.4. Let hi be a diffeomorphism ofM generated by the Dehn twists along the

SCCs of configuration G and such that f and f o hi are homotopic. Then there exists

an f -admissible diffeomorphism c generated by the Dehn twists along the SCCs of
configuration G except for tß1 such that the diffeomorphism t c~l o hi belongs to

T(M).

Hence it remains to establish that every diffeomorphism t G T(M) is /-admissible.

By Theorem 8.2 it suffices to prove this for diffeomorphisms of type (a) and

diffeomorphisms of type (b).
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Theorem 8.5. Let f : M —* S1 be a Morse mapping.
(i) Let y c M be an SCC and let ty be a Dehn twist along y. Then ty is

f-admissible if and only if the restriction f\y is null-homotopic. If y separates M, then

f\y is null-homotopic, whence every diffeomorphism of type (a) is f-admissible.
(ii) Every diffeomorphism of type (b) is f-admissible.

Thus in order to complete our proposition, and therefore the Main Theorem, it
remains to prove Theorem 8.5 (Sections 12 and 13) and Lemma 8.4 (Section 14).

9. Symplectic group

For the proof of Lemma 8.4 we need a description of generators of stabilizers in the

symplectic group Sp2g (Z). The representation of the group Sp2g (Z) is given in [B 3].
We will also use the ideas from [OM].

Let I?8 be a free 2g-module with basis

a\, ctg, ß\, ßg, (9.1)

let / be the unity g x g-matrix, and let e\j be a g x g-matrix, whose (i, ,/)-element
(the intersection of f-th row and j-th column) is equal to 1 and all other entries are

zeros.
Let also co be a skew-symmetric 2-form whose matrix in the basis (9.1) is the

following:
0

0
(9.2)

Thus « (ai, ßi) 1 andft>(ctf;, af) co(ßi, ßj) co(ai, ßj) Oforf, j 1,..., g.
The group of all linear isomorphisms of Z2g preserving œ is denoted by Sp2g (Z) and

is called symplectic.

9.1. Transvections. For every y e I?8 the following automorphism ty of I?8
defined by the formula

ty(x) =co(y,x) y +x for all x G I?8 (9.3)

is called the transvection along y. It is easy to see that ty e Sp2g(Z) and

t~l{x) -co(y,x) y +x forallxeZ2g.

Define the following elements of Sp2g(Z):

IMj ta; o ta. o ta;+a., r)ij tßi o tß. o tß;+ßj,
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Lemma 9.1. The following formulas hold true for i ^ j 1, g:
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ta:
I
0

en

I lPi

at+a}

tßt+ßj

IMj - I
0

/
-en
I
0

e;

-en -
-ejj - eji

I

u
/ +

0

/
i +

ea

' tai+Pj

o.. + efj + e

/
I

0

/-e j"

1

n

0

/
/
+ e

r _ eij

a

0

/

en

I + e/;

Moreover, the matrices tav tß., [i\j, rnj, andvjj (i ^ j 1,..., g) generate Sp2g(Z).

Proof. The lemma can be established by direct calculations. The fact that these

matrices generate Sp2g(Z) can be easily deduced from [OM, Ch. 2, §2.2.] or [B3].
D

For each x e I?g denote by T(x) the subgroup in Sp2g(Z) generated by transvec-

tions along elements of I?g that are «-orthogonal to x, i.e.

T(x) (tY | y el?g,co(y,x) 0). (9.5)

Also, let St(jc) be the stabilizer of x in Sp2g(Z), i.e.

St(jc) {he Sp2g(Z) | h(x) x}.

It easily follows from (9.3) that T(x) c St(x).

Proposition 9.2. T(ct\) St(ai). Moreover, this group is generatedby thefollowing
matrices:

ta;, tß., ßij, rjij, Vij, (9.6)

except for tßl, rju m\ and vn (i ^ j 1, g).

Proof. Evidently, the matrices (9.6) belong to T(ct\). Let h e St(ai). We will show

that h is generated by (9.6). The proof consists of two steps.

Step 1. We will find an element h\ e Sp2g(Z) such that h ¦ K[x is generated

by (9.6) and h\(ßi) ß\. Let

h(ßi) a\ a\ + b\ ß\
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for some a\, b\ e Z, (i 1, g). Since h preserves the form co and h(ct\) a\,
we get

bx =co(ai,h(ßi)) =co(h(ai),h(ßi)) co(ax,ßx) 1.

Consider now the effect of action of [i\-} and v\j on h(ß\), j 2, g. Let
t G Z. Then it is easy to verify that for j > 1 we have:

{ax - tbj) a\ + ß\ + ¦ ¦ ¦ + (a/ - f) ay + fc/^8/ + ¦ ¦¦
{ax + fa/) ai + ßx + ¦¦ ¦ + a/a/ + (&/ - f) ^- + ¦¦ ¦

where the coefficients at other basis elements are not changed.
Define now h\ G I?8 by the formula

/=2

where

a ai —

1=2

We claim that A 1(^1) =ßi.
Indeed, the product of imj reduces the coefficients at aj and the product of vxj

reduces the coefficients at ßj for every / =2,..., g. This also makes the coefficient
at ax equal to a'. Since

tai{ux)=ux and (tai)'(ßi) (ax + t)ux + ßx,

we obtain that the multiple (tai )~a reduces this coefficient.
Step 2. Consider the following submodules of Z2g:

P {ax,ßx) and Q {at, ßt \ i 2, ...,g).

They are orthogonal with respect to the form co and h\\p id. Since h\ preserves
co, it follows that hx(Q) Q. Thus Ai can be regarded as an element of the group
Sp2g-2(^) C Sp2g(Z) consisting of isomorphisms that are the identity on P.

By Lemma 9.1 the group Sp2g_2(Z) is generated by matrices (9.6) for I ^ j
2, g. In particular, they generate Ai.

10. Minimal Morse maps

For the proof of Theorem 8.5 we need the notion of minimal Morse mappings. Let
M be a compact surface, orientable or not. We say that a Morse map f : M —* P
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is minimal if the number co(/) + c\{f) + C2(f) of critical points of / is minimal

among all possible Morse maps M —* P having the same sets ofpositive and negative
boundary components as /. Let b+ and b- be the number of /-positive and /-
negative boundary components of M. The following lemma is easy to prove:

Lemma 10.1. A Morse mapping f : M —* P is minimal if and only iffor every
connected component X of M the restriction f\x is minimal. A Morse function

f : M -> R1 on a connected surface M is minimal if and only if the following two
relations hold true:

f 1, if fe_ 0, f 1, if fc+ 0,
co(/) (o ifè>o C2(/)

Let f : M -> S1 be a Morse mapping which is not null-homotopic. Then f is minimal

if and only if co(f) c2(f) 0.

We admit now that M may be not connected. Let / : M -> [0,1] be a Morse
function such that \ e [0, 1] is its regular value. Denote

V0 r1 [0, 1/2], Vx Z"1 [1/2,1].

Lemma 10.2. Suppose that

(1) So, #i and Z are nonempty, the union Bq U B\ is included in 9 M and intersects

every connected component of M non trivially;

(2) the restriction /|y. w a minimal Morse function for i 0,1;

(3) foreveryconnectedcomponentXoj~MsuchthatXHZ ^ 0wehaveXnB{ ^ 0
for both i =0, 1.

Then f is a minimal Morse function on M.

Proof. Let X be a component of M. We will show that f\x is a minimal Morse
function. Denote Xx¦ X n Vt (i 0, 1).

If X n Z 0, then X is a connected component of either one of the sets Vq or
V\. Then the restriction of / onto X is minimal.

Suppose that X n Z ^ 0. Then X n 5, ^0 for f 0, 1 by (3). Evidently, the

components of the intersection X n Z ^ 0 are negative for the restriction /1 xj and

positive for the restriction f\x0- Therefore, by Lemma 10.1, we have

c2(/lxo)=co(/lx1)=O. (10.2)
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Similarly, the intersection X n Bq (resp. X n B\) consists of some negative (resp.

positive) components of /1 x and/|x0 (resp. f\xx)- Then from Lemma 10.1, we also

get

co(f\xo)=c2(f\xl)=O.
Combining this with (10.2), we obtain

ci(f\x) ci(f\xo) + ci(f\Xl) 0, i= 0, 2.

Hence by Lemma 10.1 f\x is minimal.

11. Minimization of intersections with a level-set

Let M be a compact surface (orientable or not), let / : M --* S1 be a Morse mapping,
and let y\, ym c M be disjoint SCCs.

Lemma 11.1. / is T,-homotopic to a Morse mapping g such that for some level-set
L of g and for every i 1,..., m the curve y, does not pass through the critical
points of g and

(i) if the restriction f\yi is not null-homotopic, then y\ transversely intersects every
level-set of g;

(ii) otherwise yi P\ L 0.

Proof. Let c g S1 be a regular value of /. Set

m m

r \Jyt, n #[f~1(c)nr], and d J^ I deg f\y;\.
î=i î=i

Then #[f~l(c) n y,] > deg f\y. for i 0, 1, whence n > d. Moreover, n d if
and only if #[/"1(c) n y;] deg f\n.

Claim 11.2. Suppose that n > d. Then f is H-homotopic to a Morse map f\ such

that#[f{l{c\) n F] < n for some regular value c\ of f\.

Proof. We will exploit the notations and the construction of Section 3. Cutting M
along f~l (c) we obtain the surface M and the Morse function / : M —>¦ [0, 1]. Let
also p : M -? M be the factor-map, 5, J~l (i) for i 0, 1, and B Bo U B\
p-\f-\c)).

Let L p l(T) and let l\,..., h be the connected components of L. Then
the intersection lj n 5 is either empty (whence /; is an SCC) or consists of two
points (whence lj is a simple arc with ends in B). Let us divide L into four groups
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L0, Lq, Lq, L1 consisting of arcs that respectively do not intersect B, have

nonempty intersections only with Bo, with both sets B\ and Bo, and with B\ only. Thus
L L0 U Lo U Lj U L1. Notice that #[L n Bo] #[L n 5i] n, #[L0] #[L1],
and the sets Lq and L1 are non-empty if and only if n > d.

Let ßj C M be the union of those connected components of M which intersect
both sets Bo and B\ non trivially. Consider the set

G ôJn(50

By definition, Gn(L0UL1) 0. Then there exists a regular neighborhood W of G

which does not intersect L0 U L1 and such that the boundary Z dW transversely
intersects every component of Lj at a unique point. Hence, Z H L Z C\L\.
Evidently, Z separates M between Bo and B\. Moreover, #[Z n Lj] < «.

We will now construct a Morse function g : M —>¦ [0, 1] which coincides with/in
some neighborhood of B U 9M, has the critical type of /, and such that g"1 (^) Z.

Let go : Vo —>¦ [0, |] and gi : Vi —>¦ \\, l] be two minimal Morse functions such

that

go-1(O) 5o, go"1 (1/2) gf1 (1/2) Z, g1"1(l) 51,

and the Morse function g : M -> [0,1] defined by g|y. g, (f 0, 1) is C00, has

the same sets of positive and negative components as /, and coincides with / in some

neighborhood of B U dM.
We claim that g is minimal. Indeed, let X be a component of M such that

XHZ ^ 0. Since Z dW c Q\, we obtain that X c ßj. Denote Xj XnVj,
then inßj X, n 5, 7^ 0, by the definition of Q\. It follows from Lemma 10.2

that g is minimal.
Adding critical points to g outside of B U Z we can change its critical type to

the critical type of /. Let us denote this new function by f\. Then f\ satisfies the

statement of our claim.
Indeed, denote c\ q{\). By the case P R1 of the Main Theorem we obtain

that / ~ /1 with respect to some neighborhood of B U dM. This S-homotopy
induces a S-homotopy (with respect to f~l (c) U dM) of / to a Morse mapping f\
such that #[/1"1(ci) n T] < n. D

We now proceed with the proof of Lemma 11.1. By Claim 11.2 we can assume that

n d. As noted above this is equivalent to the statement #[f~l (c) Hyi] deg f\n.
In particular, if the restriction f\y. is null-homotopic, then #[f~1(c) n y,] 0, i.e.

Yi n /-1(c) 0, whence (ii) holds true.

Let us assume that /; is given by an embedding /, : [0,1] —>¦ M so that /; n /; =0
for 7 7^ i. To establish (i) we prove that following claim:
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Claim 11.3. Suppose that /,(0) g Bq, /,(1) g 5i, and f/iaf the intersection I; n 5
w transversal for each i 1,... ,k. Then f is H-homotopic to a Morse function g

f/iaf /j w transversal to level-sets of g.

It follows that a S-homotopy of this claim yields a S-homotopy / ~ g with
respect to Z"1 (c) such that every y, is transversal to level-sets of g. This will complete
Lemma 11.1.

Proof of Claim 11.3. We will construct a Morse function /i and a gradient-like vector
field F for f\ such that for every i 1, m the arc /,- is a trajectory of .F. Then

adding or canceling the proper number of pairs of critical points of f\ outside of
Uj /, we obtain a Morse function g having the critical type of / and such that F is a

gradient-like for g.
For every i 1,..., m let 4>i '¦ [0, 1] x [—1, 1] —>¦ M be a smooth embedding

such that the image V, Im0, is a neighborhood of /;, 4>i (t,0) l\ (t) for t G [0, 1],
4> 1{BS) {s} x [—1, 1] for s 0,1. Since the /, are mutually disjoint, we can
assume that so are the V-,. Denote V U?li ^ m& define a function g : V --* [0,1]
by the formula g(x) p2o<p~1(x)iorx g Vi, where pi : [0, l]x[—1,1] -> [—1,1]
is the natural projection.

Slightly changing g outside some neighborhood of IJ, /; we can extend g over all
of M. Moreover, this extension may be assumed Morse whose positive and negative
boundary components coincide with the ones of / though the number of critical
points of g and / may be different. Now we show how to change the critical type

K(f) of g by adding or canceling pairs of critical points outside of IJ, /;.
Recall that a vector field F on a manifold M is gradient-like for a function

/ : M --* M1 if df(F)(x) > 0 at each regular point x of /.
Let * be any gradient-like vector field for the function g on M and let <£> be the

gradient vector field for the function p2 on [0, 1] x [—1, 1], i.e. $>(s,t) (0, 1).

Using 4>i we transfer 4> to V,;. This gives us a vector field 4> on V such that /; is a

trajectory of <b for i 1, m.

Finally, we glue *I> and 4>. Let V be a neighborhood of IJ, /; such that V c V

and let W M \W. Then V U W M.
Let/xi, ß2- M -* [0, 1] be a partition of unity corresponding to the open covering

{V, W} of M, i.e. supp [i\ c V, supp yu-2 C W, and [i\ + yu-2 1. Define a vector
field F on M by the formula

F{x) =/i.i(x)-$(x)+/i.2(x)-*(x), x G M.

Evidently, i7 is gradient-like for g and coincides with $ near |J; /,. In particular,

every /, is a trajectory of F, whence /; transversely intersects level-sets of g.
It remains to show that g can be changed outside of IJ, /; to have the critical type

of /. First we show how to make g a minimal Morse function.
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Suppose that g has a critical point zo either of index 0 or 2. Since the sets of
positive and negative boundary components of g are non-empty, there exists a critical
points zi of index 1 and a trajectory to of F with ends at zo and z\. This trajectory
does not intersect |J /;. Hence g can be changed in some neighborhood JV of co to
have no critical points in JV (see [HM], [MJ1]). Thus the number of critical points is
reduced. By a similar procedure we can add pairs of critical points outside of |J(- /,-.

Therefore we can change the critical type K(f)ofg leaving /, transversal to level-sets
of g.

12. Proof of (i) of Theorem 8.5

Let y c M be a simple closed curve and let ty be a Dehn twist along y.
Necessity. Suppose that ty is /-admissible. Then / and / o ty are homotopic.

We should show that deg f\y 0. We can assume that there is a regular value c of

/ such that a f~l(c) is an SCC. Denote a' ty(a).
Since / and foty are homotopic, we obtain from the last paragraph of Section 3.1

that [a'] [a] in H\(M, dM), i.e. ty fixes [a]. Then by Eq. (9.3) for the action of
Dehn twists in H\ (M, dM) we get

[a] ty([a]) co ([y], [a]) ¦ [y] + [a] deg f\y ¦ [y] + [a],

whence deg f\y 0.

Sufficiency. Suppose that f\y is null-homotopic. By Lemma 11.1, / is S-
homotopic to a Morse mapping g such that g~1(c)ny 0 for some regular value c

of g. We now apply the construction of Section 3. Cutting M along g"1 (c) we obtain
a surface M M(g, c), a Morse function g: M --* [0, 1], and an SCC y <z M
corresponding to y. From the case P R1 of the Main Theorem, ty is g-admissible.
Then ty is g-admissible and therefore /-admissible.

13. Proof of (ii) of Theorem 8.5

Let / : M ->¦ S1 be a Morse mapping, let y\, yi be disjoint oriented homologous
simple closed curves in M, and let t tn o t~^ be the product of Dehn twists along
these curves. We must prove that t is /-admissible.

Since these curves are homologous, it follows that the restrictions of / to them
are homotopic. If these restrictions are null-homotopic, then by the case (i) of this
theorem t is /-admissible. Therefore we will assume that f\n y° 0.

By Lemma 11.1 we can also assume that y, transversely intersects each level-set
of g. Then the statement (ii) of Theorem 8.5 is a direct corollary of the following
lemma:
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Lemma 13.1. Let f' : M --* S1 be a Morse mapping, let y\, /2 be two disjoint
homologous SCCs in M, and let t tyi o t~^. Suppose that both of the y, transversely

intersect every level-set of f. Then f ~ / o t.

Proof. Let X c M be the closure of one of the connected components of M \ {y\ U yù
bounded by the curves y\ and yi. Since yk (k 1, 2) transversely intersects level-
sets of g, there exists an embedding <pk of S1 x [-2, 2] onto some neighborhood Nk
of yfe such that

MS1 x {0}) n, MS1 x [0, 2]) c X, (13.1)

and the following diagram is commutative:

S1 x [-2, 2]
# > Nk cM

51 ^^ S1.

Here /?i is a projection onto the first coordinate and ct is a covering mapping of degree
d deg /|yi deg f\yi defined by the formula a{z) zd¦ Thus

go4>k(z,t)=zd. (13.3)

We can also assume that N\ H N2 0. To simplify notation, for each pair a,b G

[—2, 2] we denote

Let /x: [-2, 2] -> [0, 1] be a C00 function such that /x[-2, -1] 0 and

H\\, 2] 1. Then the Dehn twist fw along y^ can be defined so that t tY1 o f^1
will have the form

^,0 K.n (13.4)
[(ze2jri>W,^), x=<t>k(z,s) &Nk,k=\,2.

Now a S-homotopy G : M x [0,1] ->¦ 51 between g and g o f can be defined by
the formula

G(x,t)

e27tidtg(x) e27tidt, x G X \ (N[°'1] U N^°'1]),

', s), x= </>k(z, s) G Nk,k 1, 2,

ieM\(lUA']K0|UiV]"1)01).

Remark 13.2. A geometrical meaning of this formula is that the mapping G "moves"
d times the part X between the curves y\ and yi "around S1" leaving the the

complement M \ X fixed.
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Let us verify, that G is in fact a S-homotopy connecting g with got.

Proof. It is clear that Go g. Moreover, it follows from (13.1) and (13.2) that 4>\

preserves orientation of S1 x [—2, 2] while 4>2 reverses it. Hence by (13.4) we get
G\ gotyi of"1.

Evidently, the continuity of G will imply its smoothness. To prove that G is

continuous we should verify that the second formula coincides with the first one on
N\h2] U N^'2] and with the third one on n\~2'~1] U N[~2'~l\

Let x (pk(z, s) g Njç for k 1, 2, then ß(s) 1, whence, using (13.3), we
get

g o </>k(Z e^i^)\ s) zd elxldt g{x) e2iridt_

r o 11

Let now x <pk(z, s) G N^ ' for k 1, 2, then ß(s) 0, whence

g o 0; (Z e2*'^» ,S)=go(f>i(Z,S) g(x).

Notice that for every point x e M there exists a neighborhood on which Gt differs
from g by a diffeomorphism of either S1 or M. Hence Gt is Morse for all t G [0, 1],
i.e. G is a S-homotopy.

14. Proof of Lemma 8.4

Suppose that h g !PM{M) is generated by {t\ : / g G} and such that the mappings /
and/o/?arehomotopic. We have to prove that his in fact generated by {ti : / g G\ßi}.

Recall that H\{M, dM) is a free module generated by homology classes of
a\, ag, ßi, ßg. Moreover, the matrix of co in this basis has the form (9.2).
Since A+ preserves this œ we may suppose that A+ G Sp2g(Z).

Notice that h*[a\\ [a\], since a\ is a level-set of /, whence A+ belongs to the

stabilizer St([ai]) of a\ in Sp2g(Z).
Let ty be a Dehn twist along a simple closed curve y. Then it acts on Hi (M, 3 M)

by the following formula:

(?y)*(x) «([y],x)[y]+x forallxGtfi(M), (14.1)

thus it is a transvection along [y], see Eq. (9.3).
Hence the products of transvections mj, raj, v\j defined by Formula (9.4) can

be realized by products of Dehn twists. It follows from Theorem 8.5 that all these

diffeomorphisms except for r\\\ m\ and v\\ are /-admissible.
On the other hand, by Proposition 9.2, ^^ is generated by the linear isomorphisms

ta;,tß;,ßij, raj, vij, exceptfor tßl r]Vl r]n and vn, where i £ j 1, g.
Hence, there exists an /-admissible diffeomorphism c of M which induces the

same isomorphism of H as A+. Then t c~l o h belongs to T(M).
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Appendix. Proof of the Main Theorem. Case P S1

We extend here our proof of the Main Theorem given in [M] to the case when M is

arbitrary and P S1.

Let /, g : M -> S1 be two Morse mappings of the same critical type, let c be

their common regular value, a f l{c), and let y g l{c). By Lemma 5.1 we
can assume that the homomorphism /* g* : H\(M) --* HiiS1) is onto and by
Lemma 3.2 that a and y are connected, i.e. SCCs.

Let us cut M along a and denote the obtained surface by M. Let also p: M —* M
be the factor-mapping, /: M -> [0, 1] the corresponding Morse function induced by
f,B0 f-\0),Bi f-\l),mdB B0UBi (we use the notations of Section 3).

Claim 14.1. Ifa y, then f ~ g.

Proof. Since/ and g are homotopic, we can assume (by small S-homotopy)thatthey
coincide near a. Then g also yields a Morse function g : M —>¦ [0, 1] which coincides

near 5 with / and K(f) K(g). By the M-case of the Main Theorem / ~ g with
respect to a neighborhood of 5. Then this S -homotopy yields a S -homotopy between

/ and g with respect to a neighborhood of a.

Suppose that a ^ y. Since / and g are homotopic, it follows that the restriction
/1 y is null-homotopic. Then by Lemma 11.1 we can additionally assume that aHy
0.

In this case y p~l(y) separates M between Bq and B\. Using the method of
Claim 11.2 we can construct a Morse function f\ : M —>¦ [0, 1 ] which coincides with

/ near Bo U B\, has the critical type of /, and such that /f1 Q) y. Then f\ yields
a Morse mapping f\ : M —>¦ S1 which coincides with / in a neighborhood of a and

such that /j"1 (p(^)) y• Thus a and y are level-sets of f\. Then by Claim 14.1
Yi Yi

we get / ~ /i ~ g.
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