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Spectral convergence of manifold pairs

Karsten Fissmer and Ursula Hamenstädt*

Abstract. Let (M;, A;)i be pairs consisting of a complete Riemanman manifold Mi and a

nonempty closed subset A,. Assume that the sequence (M;, A,-)i converges in the Lipschitz
topology to the pair (M, A). We show that there is a number c > 0 which is determined by
spectral properties of the ends of M, — A; and such that the intersections with [0, c) of the spectra
of Mi converge to the intersection with [0, c) of the spectrum of M. This is used to construct
manifolds with nontrivial essential spectrum and arbitrarily high multiplicities for an arbitrarily
large number of eigenvalues below the essential spectrum.

Mathematics Subject Classification (2000). 58J50.

Keywords. Laplace operator, spectrum, Lipschitz convergence, spectral convergence,
multiplicities.

1. Introduction

In this note we investigate the spectrum of the Laplacian acting on square integrable
functions on a complete Riemannian manifold which is not necessarily of finite
volume. Our main goal is to understand how this spectrum varies as we vary our manifold
continuously with respect to the Lipschitz topology for metric pairs.

Here we mean by a metric pair a pair (M, A) which consists of a metric space
(M, d) and a nonempty closed subspace A c M. For a number R > 0 denote by
B(A, R) the open R-neighborhood of A in M. The Lipschitz topology for metric

pairs is defined as follows (compare [G]).

Definition. A sequence of metric pairs (M,, A, converges to the metric pair (M, A)
in the Lipschitz topology if there is a sequence of numbers Rj --* oo, a sequence
of numbers e; --* 0 and for each i a (1 + £;)-bilipschitz homeomorphism Ft of
B(A, Rj) c M onto a neighborhood of B(A;, Rj) in M, which maps A to A,. We
call the sequence {Ri}t convergence inducing.

* Research partially supported by SFB 256 and by SFB 611.
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If the closed sets A, c M, and A c M consist of single points then we also

speak of the Lipschitz topology ofpointed metric spaces and Lipschitz convergence
ofpointed metric spaces (see [G]).

In the sequel we only consider metric pairs (M, A) consisting of a not necessarily
connected complete Riemannian manifold M and a closed subset A of M which
intersects every connected component of M. We call such a pair (M, A) a manifold
pair.

For every complete Riemannian manifold (M, g), the spectrum of the Laplacian A

acting on square integrable functions is a closed subset a (M) of the half-line [0, oo).
The set o (M) is the disjoint union of the essential spectrum aess (M) and the discrete

spectrum a^sc(M). The essential spectrum is a closed subset of a (M). The discrete

spectrum consists of the eigenvalues of finite multiplicity; they are isolated points
in a (M). If M is closed and connected then the essential spectrum of M is empty
and a (M) consists of an increasing sequence 0 k\ < X2 < • • • of nonnegative
numbers converging to 00.

If (Mi, gi) are diffeomorphic closed Riemannian manifolds which converge as

i -> 00 in the Lipschitz topology to a closed Riemannian manifold (M, g) then
the spectra of M, converge to the spectrum of M. However, spectra do not always

converge. Namely, consider a sequence (M,, p\)\ of pointed closed connected manifolds

which converge in the pointed Lipschitz topology to a complete connected

non-compact manifold (M, p) of finite volume.
Let v > 0 be a lower bound for the essential spectrum of M and assume that

M admits at least k > 0 eigenvalues counted with multiplicities which are smaller
than v. In [CCI] and [CC2], Colbois and Courtois show that the first k eigenvalues
of Mi converge to the first k eigenvalues of M if and only if there is a convergence
inducing sequence Ri -> 00 and a sequence n -> 00 such that for sufficiently large i

the smallest Rayleigh quotient of M, —B(pi, R{ — r, is not smaller than v. Recall that
the smallest Rayleigh quotient m (Q) of an open subset Q, of a Riemannian manifold
(M, g) is defined to be the infimum of all quotients 3l(f) f g(df, df)/ f f2 over
all nontrivial smooth functions / with compact support in Q.

We adapt this idea to our more general situation using the following definition.

Definition. Let (M,, A,) be a sequence of metric pairs converging in the Lipschitz
topology to the metric pair (M, A) with a convergence inducing sequence R\ --* 00.

A family of open subsets Qi c M, — A, is called escaping if there is a sequence

n -> 00 such that Q; contains M, - B(A;, Ri — r;).

We use here the notion of Colbois and Courtois in [CC2] even though our definition
slightly differs from theirs and our escaping sets do not necessarily "escape" in an

intuitive sense.

Denote by L2{M) the Hubert space of square integrable functions on a Riemannian

manifold M and let H1 (M) be the Hubert space of square integrable functions
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on M with square integrable differential. Let (Mi, A,-) be a sequence of manifold
pairs converging to (M,A) with convergence inducing sequence {Ri}t and

(1 + £;)-bilipschitz embeddings Ft of (B(A, R;), A) into (Mi, Ai). We say that
a sequence of functions f; e L2(Mi) converges effectively to a function / e L2(M)
if Li-BiAuSi) A2 -+ ° and if moreover fB{A>Rl)(fi ° Fl - f)2 -> 0 as i -> oo. We
show

Theorem A. Let (Mi, Ai) be a sequence of manifold pairs which converges in the

Lipschitz topology to the manifold pair (M, A). Let Q; c M, be an escaping family
of sets and let v < liminfj^oo ßi(Q;). Then the sets a (Mi) n [0, v) converge as

i --* oo in the Hausdorff topology for closed subsets of [0, v) to a(M) n [0, v).
Moreover, every function f e Hl(M) whose spectral measure is supported in [0, v)
is an effective limit of functions f; e H1(Mi) whose spectral measures converge
weakly to the spectral measure of f.

For closed pointed Riemannian manifolds (M;, p\ which converge to a complete
manifold (M, p) of finite volume we can combine our Theorem A with standard

compactness results for solutions of elliptic equations to conclude that up to passing to
a subsequence, eigenfunctions on M, for small eigenvalues converge to eigenfunctions
on M.

One can also ask about convergence properties for sequences of eigenfunctions
on our manifolds M, for eigenvalues which are uniformly bounded but bigger than

v liminfj^oo ij,\(Qi) for every escaping family of sets Q; c M,. By the results
of Colbois and Courtois, such functions might not be visible in the spectrum of the

limit manifold M. In some special cases, suitable renormalizations of these functions
viewed as functions on larger and larger subsets of M converge up to passing to a

subsequence locally uniformly to an eigenfunction on M which however is in general
not square integrable. In Section 3 we look at a rather special class of examples where
such a convergence can be deduced.

Namely, let Af be a closed two-sided hypersurface in a closed manifold M. Then
./V has a tubular neighborhood U which is diffeomorphic toiVx(—1,1). We consider
a family gs of Riemannian metrics on M which depend smoothly on s G (0, 1] and

which are warped product metrics onU N x (—1,1). More precisely, we assume
that there is a smooth family hs (s e [0,1]) of smooth Riemannian metrics on ,/V

and a smooth function p : (0, 1] x [—1,1] —>¦ (0, cxd) such that the restriction of gs

to N x (-1, 1) is of the form gs ~^idt2 + p(s, t)hs (s e (0, 1]). As s \ 0

these metrics converge uniformly on compact subsets of A^ x ([—1,0) U (0,1]) to
a complete metric go- We assume that the metrics gs can be extended to smooth
Riemannian metrics on M — U which depend smoothly on s G [0,1]. We assume

moreover that p(s, t) \ 0 as (s, t) --* (0, 0).
The following observation extends a result of Judge [J] with a similar but somewhat

shorter proof. For its formulation, we mean now by an eigenfunction a solution of
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the differential equation A — X 0 for some Xel which is not necessarily square
integrable.

Theorem B. Let s-, c (0,1] be a sequence converging to 0 and let f; be an eigen-

function on (M, gs;) with respect to an eigenvalue X;. If the sequence Xi converges
to some X > 0 then after passing to a subsequence and possibly a renormalization
the functions f\ converge uniformly on compact subsets of M - N to a nonzero

eigenfunction for go with respect to the eigenvalue X.

We also give an example which illustrates that the limit function is in general not

square integrable, even if the curvatures and the volumes of all the metrics gs are

uniformly bounded.

In Section 4 we construct manifolds of bounded nonpositive sectional curvature
and with controlled spectral properties.

Theorem C. For every n > 2, k > 0, m > 0 there is a smooth Riemannian manifold

M of dimension n and curvature contained in [—1,0] and with the following
additional properties.

(1) The essential spectrum aess(M) of M is not empty and M has infinitely many
eigenvalues below aess(M).

(2) For 2 < j < k the multiplicity of the j-th eigenvalue of the Laplacian is at
least m.

In the case n 2 we can choose M to have constant curvature — 1.

Our construction can also be used to obtain for any n > 2 and for given k > 0,

m > 0 a compact n -dimensional manifold of nonpositive curvature with the property
that for 2 < j < k the multiplicity of the j-th eigenvalue is at least k. However, in
this case a much stronger result is due to Colin de Verdière [CV2]. He showed that
for every closed manifold M of dimension at least 3 and an arbitrary finite sequence
of nonnegative numbers of the form 0 Xq < X\ < ¦ ¦ ¦ < Xm (m > 0) there is a

Riemannian metric on M whose j-th eigenvalue (0 < i <m) is just X;.

2. Proof of Theorem A

This section is devoted to the proof of Theorem A. We continue to use the assumptions
and notations from the introduction. In particular, we denote by (M, g) a complete
Riemannian manifold and by A a nonempty closed subset of M.

For functions /, h on (M, g) denote by (/, K)2 fM fh their L2-inner product
and let (Vf, V/z)2 fM g(V/, VA) be the L2-inner product of their gradients. Write
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also 11/11 V(/, f)i and ||V/|| V(v/> v/)2- We denote by Hl{M) the Hubert

space of square integrable functions on M with square integrable differential with
the inner product (/, K)2 + (V/, V/?)2- For every nonzero function / e Hl{M) the

Rayleigh quotient of /is defined by #(/) ||V/||2/||/||2.
We begin our argument with a general estimate of Rayleigh quotients for suitably

chosen functions on M.

Lemma 2.1. Fore > 0 there is a number S S(e) > 0 with the following property.
Let M be a complete Riemannian manifold, let U, V be open subsets of M with
disjoint closures and let u,v be smooth functions on M with compact supports in

U, V. If3l(u + v) < im(V) - e and \3l(u + v) - 3l(u)\ < 8 then \\v\\2 < e\\u\\2

and ||Vu||2 < £(||Vm||2 + 2s\\u\\2).

Proof. Let u, v be as in the lemma. Since v is supported in V we have 3l{v) >
IM(V) > 3l(u + v) + e.

Write
a ||Vm||2, b=\\u\\2, c=||Vu||2, d \\v\\2.

Since the supports of m and v are disjoint we have ||w+u||2 b+dand ||V(m+u)||2
a + c and consequently j 3l(v) > 3l(u + v) + e |^ + e. This implies that

llull2 d a + c a

111* II b b + d b

Thus if \3i{u) — 3i{u + u)| < 8(e) s2 then our above inequality shows that
IMI2 < «INI2-

Using again that the supports of u and v are disjoint we obtain from this that

«^ 2 «,,
Iiv«ll2 + liv»ll2 ^(m) IIVHI2

(l+e)||M||2 l+e^(l+e)||M||2
and therefore

l|Vu||2
+£2(1+£) >

and ||Vu||2 < £||Vm||2 + e2(l + £)||w||2. This shows the lemma.

For a closed subset A of a complete Riemannian manifold M and a number r > 0

let as before B(A,r) be the open r-neighborhood of A inM. In the sequel we always
assume without further mentioning that the boundaries of our sets B{A, r) are smooth.

This can be achieved with a small deformation of B{A, r) near its boundary. We also

write M B(A, oo).
The next lemma is a technical tool which allows us to find for every function

/ g H1 (M) with controlled Rayleigh quotient a function /' e Hl(M) which is
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close to / and to which Lemma 2.1 can be applied. In a less explicit form, this
lemma was used by Colbois and Courtois [CC2].

Lemma 2.2. For C > 0, p > 0 there is a number Rq Ro(C, p) > 0 as follows. If
f g H1 (M) is such that \\f\\2 1 andSi(f) < C then there is a function u u(f)
with the following properties.

(1) m has values in [0,1] and | Vm| < 1 pointwise.

(2) m mi + M2 where u\ is supported in B(A, Ro) and the support ofu2 is disjoint
from the support ofu\ and contained in M — A.

(3)

Proof Using the notations from the lemma, choose a number k > 0 such that kp/4 >
1 + C. Notice that k only depends on p, C. Form < k define Em {x \ dist(x, A) e

[6m, 6m + 6)}. Then B(A,6k + 6) — B(A, 6) is the disjoint union of the k spherical
shells Em.

Let/ G H1 (M) besuchthat || f\\2 land||V/||2 < C. Then/||V/||2 + /2 <
C + 1 and therefore, by our choice of k, there is some m g {1, k} such that

L /2<p/4.
>Em

For this number m < k, choose a smooth function mi : R —>¦ [0,1] which is

supported in (—00, 6m + 2), equals 1 on (—00, 6m] and whose gradient is pointwise
bounded in norm by 1. Similarly, let Ü2 : M. —>¦ [0, 1] be a smooth function which is

supported in (6m + 4, 00), equals 1 on [6m + 6, 00) and whose gradient is pointwise
bounded in norm by 1. Defrnew, w,(dist(A, ¦)) andw u\ +112. For Rq 6k + 6

the function u\ is supported in B(A, Ro). The support of 112 is contained in M — A
and it is disjoint from the support of mi.

The function 1 — u is supported in the shell Em and it satisfies 11 — u \ < 1,

— m)|| < 1 pointwise. Therefore we have

f (/ - fu)1 f /2(1 - m)2 < f f2< p/A
JM JEm JEm

and

I|V(/-/m)||2= f
JM JE

IIV/II2 + 2(1 - u)fg(Vf, V(l - m)) + f2

/UV/11 <3p/4.
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In other words, our function u has the required properties.

For an open subset Q, of M with smooth boundary we denote by H1 (Q) the closure
in H1 (M) of the space of smooth functions with compact support in Q. Then H1 (Q)
is a closed linear subspace of H1 (M).

The self-adjoint extension of the Laplacian A q on Q with Dirichlet boundary
conditions is the self-adjoint operator of the quadratic form (/, u) -> (V/, Vw)2.
The domain of A^/2 is the Hubert space H1(Q). We denote by a(Q) c [0, oo) the

spectrum of Aß.
The next lemma is the key technical result needed for the proof of Theorem A.

Lemma 2.3. For s > 0, C > 0, / G (0, e/2) there is a number R R(s, C, /) > 0

and a number v v{e, C, /) > 0 ämcä f/iaf the following is satisfied. Let M be

a complete Riemannian manifold and let A c M be a closed set. Then there is a
continuous linear map L: Hl{M) -> Hl{M) with the following properties.

(1) The range ofL is contained in Hl(B(A, R)).

(2) L extends continuously to L2(M), and (La, ß)2 (a, Lß)2 for all a, ß e

L2(M).

(3) If X < min{/i.i(M — A) — e, C}, r g [R, cxd] and fff/ie spectral measure of

f g H1 (B(A, r)) is contained in [k-v,k + v] then \\f-Lf\\2 < x\\f\\2 and

Let M be a complete Riemannian manifold and let A c M be a closed set.

The proof of our lemma is divided into three steps.

Step 1. We claim that for every 8 g (0, 1), C > Othereis anumberß ß(S, C) > 0

with the following property. Let / G H1 (M) be a normalized function with 3i (/) <
min{/zi(M — A), C} — S. Let p G (0, |) be an arbitrary number which is small

enough that yf^ — C < 8/2 and let u u\ + 1*2 be the function constructed in

Lemma 2.2 for / and the constants C, p/2 > 0; then /(/mi)2 > ß.

Namely, by Lemma 2.2 we have 11|/||2- ||/w||2| + |||V/||2 - ||V(/m)||2| < p
and therefore since / is normalized and u < 1 we obtain that

l|Vf||2-p
p

By our choice of p and the fact that 3l(f) < C we conclude that \3l(uf) — 3l(f)\ <
8/2 and hence fR(uf) < min{/i.i(M - A), C} - 8/2. Now
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and consequently since u2f is supported in M — A we obtain that

IIV(mi f)\\2 + im (M — A)IIu2 f\\2
min{/xi(M-A),C}-«5/2> ^—- " ' y JU Jn

-A)||M2/Il2

and hence

\\ulf\\2>8\\u2f\\2/2C.

The existence of a constant ß ß{8, C) as stated above now follows from the fact
that ||wi/||2 + ||w2/H2 > 1 - p > 1 - | by Lemma 2.2.

Step 2. Let e > 0 and let / < e/2. Let C > 1, let <5 8(x/2C) < //2 be as in
Lemma 2.1 and let ß ß(8, C) < 1 be the constant from Step 1 above. Notice that

ß only depends on e, /, C. Choose p G (0, minJx/2, 8ß/4{3 + C)}) small enough
that yf^ - C < 5/4. Let i?o ^o(C, p) be the constant from Lemma 2.2 for p;
notice that Ro only depends on e, /, C. Let r g [Ro + 2, oo] and for simplicity write
Œ B(A,r).

We use the spectral theorem in the following form (see [D]). There is a finite
measure \x on a(Q) x N and a unitary operator U : L2(Q) —>¦ L2(ct(^) x N, rfyit)

as follows. Define h(s, n) s; then / g L2(Q) is contained in the domain of
A52 if and only if hU(f) g L2(a(Q) x N, dß), and if this is the case we have

UA.Q,U~l(Uf) hU(f). The spectral measure of such a function/ is supported in
an interval [X—k, X+k] if and only if the function Uf is supported in [X—k, X+k]xN.
Since (u, q) —>¦ (Vu, Vq)2 is the quadratic form of A^ this implies that for every
q g Hl{Q) we have

\(Vf,Vq)2-MJ,q)2\ /'
< K

h(Uf)(Uq)dß-k / (Uf)(Uq)dß

(Uf)(Uq)dß

Using this inequality for u f we obtain in particular that the Rayleigh quotient
of / is contained in the interval [X — k, X + k]. Moreover, if / and q are contained
in the domain of À q and if their spectral measures are supported on disjoint subsets

of a(Q) then we have (/, q)2 (Vf,Vq)2 0.

LetÀ < min{/xi(M—A), C}—eandlet/ G H1(Q) be a normalized function with
spectral measure contained in [X — S^/ß/4, X + S^/ß/4]. Then the Rayleigh quotient
of / is not bigger than X + 8/4 < min{/i.i(M - A), C} - 3-5/4. Let u u\ + u2 be

the function for / as in Lemma 2.2; then as in Step 1 above we obtain that



Vol. 80 (2005) Spectral convergence of manifold pairs 733

and therefore by our choice of p we have \3l(uf) — 3l(f)\ < 8/4 and, in particular,
3i{uf) G [A. - 8/2, A. + 8/2] c (0, \i\{M - A) - e/2].

On the other hand, from the properties of the spectral measure for / and the fact
that / is normalized we infer that

J

for every smooth function tf/ on Q with compact support. For tf/ u\f g H1(Q)
and with the notation from the proof of Lemma 2.2 above this means that

f I|Vmi/||2 + J g(V(/(l - mi)), V(mi/)) - A. /" mi/2

Moreover we have ||mi /1| > V? by the choice of ß and Step 1.

Now the intersection of the supports of u\ and 1 — mi is contained in Em and

consequently |/g(V(/(l-mi)), V(mi/))| < fEm ||V/||2 + f2 + 2/||V/|| < 3p
and hence we conclude as in Step 1 that

< (3 + X)p + 5||mi/||2/4 < 8 y (mi/)2/2.

For the last of these inequalities, recall that A. < C, p < 8ß/4(3 + C) and hence

(3 + A.)p < (3 + C)p < ^/4<5/(Mi/)2/4bythechoiceof^.
In particular, the Rayleigh quotient 3i{u\f) is contained in [X — 8/2, X + 8/2]

Now we can apply Lemma 2.1 to the functions mi / and M2/ and deduce that

and

I|V(m/-mi/)||2<x||Vmi/||2/2C<x/2

and therefore also \\uif — f\\2 < x and ||V(mi/ - /)||2 < /. As a consequence,

wehave/M_ß(AÄo) f2 < x and/M_ß(AÄo) ||V/||2 < X-

Step 3. Let v : M --* [0, 1] be a smooth function with support in B(A, Rq + 2) and

which is constant 1 on B{A, Rq). We may choose our function in such a way that its

gradient Vu is pointwise bounded in norm by 1. For a function / g H1 (M) define
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Lf vf. Then L: Hl(M) --* Hl(M) is clearly linear, extends continuously to
L2(M) and satisfies (La, ß)2 (a, Lß)2 for all a, ß g L2(M). Since M < 1 and
|| Vu || < lpointwise the map Lis continuous. More precisely, we have ||L/-/||2 <
Im-b(a,r0) f2 and

||VL/-V/||2< f f2+ f UV/112.
Jb(A,Ro+2)-B(A,Ro) JM-B(A,Ro)

This together with Step 2 above shows the second and the third part of our lemma.
We are left with showing that the image of H1 (M) under the map L is contained

in H1 (B(A, Rq + 2)). For this observe that for every smooth function f on M with
compact support the function Lf is smooth and compactly supported in B A, Rq+2).
Since compactly supported smooth functions are dense in Hl{M) and since L is

continuous, functions with compact support in B(A, Rq + 2) are dense in the range
of L. This shows the lemma.

Corollary 2.4. Fore > 0, C > OandS < s /2 there are numbers p p(e, C,S) > 0

and k k(s, C, 8) < 8/2 such that for every complete Riemannian manifold M and

every closed subset A c M the following holds.

(1) Lefk G [0, min{/i.i (M - A), C}-e]Ha (M) and let f G H1 (M) be a function
whose spectral measure is supported in [X — k, X + k]. Then there is a function

f g H1 {B{A, p)) with spectral measure supported in [X — 8, X + 8] and such

that\\f-f\\2<8\\f\\2.
(2) LetX g [0, min{ßi(M - A), C} - e] n a(B(A, p)) and let f G Hl{B{A,p))

be a function whose spectral measure is supported in [X — k, X + k\ Then there
is a function f g H1 (M with spectral measure supported in[X — 8,X + 8] and

suchthat\\f-f\\2<8\\f\\2.

Proof. Let e G (0, 1], <5 < e/2 and let C > 1. Define k 83/(C + 1) and let

p R(s/2, C, k2) be as in Lemma 2.3. Denote by L: Hl{M) -> Hl{B{A, p)) the

linear map from Lemma 2.3.

Let v v(e/2, C, k2) < k/2 be as in Lemma 2.3 and let X g a (M) n
[0, min{/xi(M — A), C} — e]. Let / be a normalized function on M with spectral
measure supported in [X — v, X + v]. Then the Rayleigh quotient of / is not bigger
than X + v < min{/xi (M — A), C) — e/2. Moreover, since / is normalized we obtain
that

j g(Vf,Vu)-xj uf <2v\\u\

for every smooth function u on M with compact support.
By construction of the operator L, the function Lf lies in the domain of AB(a)P)-

Moreover by Lemma 2.3 we have \\Lf - f\\2 < ic2\\f\\2 and ||V(L/ - /)||2' <
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k2||V/||2. Using the spectral theoremfor the operator A b(a,p) actingonL2(5(A, p))
with Dirichlet boundary conditions we obtain that the function Lf admits an L2-

orthogonal decomposition Lf a + <p + ß where the spectral measure of a is

supported in [0, X — 82], the spectral measure of ß is supported in [X + 8, oo) and the
2 2 22spectral measure of <p is supported in [X — 8l, X + 8]. Since \\Lf — f\\ < *l

by construction, for the first part of our lemma it is enough to show that the square
norms of a and ß are bounded from above by a fixed multiple of 8.

For an estimate of ||a||2, observe that

INI2 j'a(Lf) j' af + j' a(Lf - f) < j' af + K\\a\\

since / is normalized by assumption and therefore using the fact that 3l(f)
IIV/H2 < C we obtain

(À-<52)||a||2 > ||Vcf||2 J g(Va, V(L/)) > j g(Va, Vf) - /c||Va||||V/||

> X j af - K(\\a\\ + VC||Va||) > X||a||2 - K\\a\\(X + 2 + C).

This shows that ||a || < 2/c(C + l)/52 < 5 by our choice of k and the fact that à < C.

On the other hand, the square norm of ß can be estimated as follows. By
construction and Lemma 2.3 we have

(1+K2)(A. + K)>(1 + K2)||V/||2>

Since H^ll2 + \\ß\\2 \\Lf\\2 — \\a\\2 > 1 — k2 — \\a\\2 > 1 — 2<52 we obtain from
this that

(\+k2)(X + k) > (l-2«52)(À-«52) + «5||^||2

and hence 8 \\ß \\2 < k + k2(X + k) + 82 + 282(X - 82) and ||^||2 < 8{3 + 2X). This
estimate concludes the first part of our corollary.

To show the second part of the corollary, notice that we may always increase

p without changing our estimates and therefore we may assume that the first part
of our corollary is valid for p and the constants e > 0, C > 0, 82 > 0. Let k
k(s, C, 82) < <54/8 be the constant from the first part of our corollary. Let X e

a(B(A, p))n[0,min{ßi(M -A), C}-e]andlet/ G H1 (B A, p)) be a normalized
function with spectral measure supported in [X — k X + k ]. Then / as a function from
Hl{M) admits an orthogonal decomposition / a + <p + ß such that the spectral
measure of a is supported in [0, X — 2<52], the spectral measure of <p is supported in
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[k — 282, k + 8] and the spectral measure of ß is supported in [k + 8, oo). As above

it is now enough to control the square norms of a and ß.
For this weuse our above strategy and show first that || ß ||2 < 3<5+||cf||2(À-2<52)/<5.

Namely, notice that the functions a,<p,ßare L2-orthogonal and also orthogonal with
respect to the inner product of Hl(M). Thus the Rayleigh quotient 3i(f) of our
function / can be estimated as

X + k> 3l(f) \\Va\\2 + HV^II2 + \\Vßf >(k- 282)\\(p\\2 + (A. + 8)\\ß\\2.

Since 1 - ||a||2 |M|2 + ||ß||2 we obtain from this that

andhence<5||/î||2 < k+2<52+(k—2<52)||ctf||2 from which our above claimis immediate
(recall that k < 84 by assumption).

We are left with estimating \\a\\2. ForthisletL: Hl(M) -> H1(B(A, p)) be the

operator as in Lemma 2.3. Since the spectral measure for / as a function on B(A, p)
is contained in [k — k, X + /c] we deduce from Lemma 2.3 that \\Lf — f \\2 < 82.

The function a can be decomposed into a finite orthogonal sum of functions with
spectral measure supported in a subinterval of [0, X — 282] of length smaller than k.
We apply the first part of our corollary to these functions and obtain a decomposition
La f i + & where the spectral measure of £1 is supported in [0, X — 82] and we have
||£2||2 \\La — £i||2 < (52||cf||2. However the spectral measure of / as a function
in Hl{B{A, p)) is supported in [X — k, X + k] and therefore £1 is orthogonal to /.
Thus (La,f)2 (X2,f) < 8\\a\\. On the other hand, (La, f)2 (a, Lf)2
(«, f)i + («, ^/ - /)2 > II«II2 - ^11«II- Together with the above this shows that
2<5||a|| > ||a||2 which is only possible if ||a||2 < 482. Then ||^||2 < 8(4 + k) which
finishes the proof of the corollary.

Now we are ready to show the main result of this section.

Proposition 2.5. Let (Mi, Ai) be a sequence ofmanifold pairs which converges in the

Lipschitz topology to the manifold pair (M, A) with convergence inducing sequence
Ri --* 00. Assume that there is an escaping family of sets Qi c M, such that

liminff^ooMi(^f) > c > 0. Let a (Mi) c [0, 00) be the spectrum of M; and let
a(M) be the spectrum of M. Then the following is satisfied.

(1) The sets a (Mi) n [0, c) converge in the Hausdorff topology for closed subsets

of[0,c) toa(M)n[0,c).
(2) Every function f g H1 (M) with spectral measure supported in [0, c) is an

effective limit of a sequence offunctions fi e H1(Mj) with spectral measures

supported in [0, c).
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(3) For every X e [0, c) n <j&sc(M) and every eigenfunction f with eigenvalue
X there is a sequence of eigenfunctions ft on Mi with respect to eigenvalues

h e <?disc(Mi) n [0, c) which converge effectively to f.

Proof. With the assumptions in the statement of the proposition, let Ri -> oo
be a convergence inducing sequence for our convergent sequence {Mi, Ai) of
manifold pairs. We choose an escaping family of sets Q\ with the property that

liminff^ooMi(^f) > c > 0. Furthermore, there is a sequence r\ --* oo such that
Qi D M - B(Ai,Ri -ri).

For each R > 0 the Laplacian acts on the Hubert space H1{B{A, R)). AsR --* oo
its spectrum o{B{A, R)) converges in the Hausdorff topology for closed subsets of
[0, cxd) to the spectrum a{M) of M. Since there is a (1 + e,)-bilipschitz map F\ of
B{A, Ri) onto a neighborhood of B{A;, Ri) in M;, this means that as i -> oo the

spectrum of the Laplacian on B(A,-, Rj) converges in the Hausdorff topology to the

spectrum of M.
Let e > 0 and for S > 0 let p p(e/2, c, 8) be as in Corollary 2.4. If i is

sufficiently large then we have m {Q;) > c — e/2 and Ri — r\ > p. By Corollary 2.4,
the intersection CT(M,)n[0, c—e] is contained in the <5-neighborhood of a(B( Ai, Ri)),
and a(B(Ai, Ri)) n [0, c — e] is contained in the 8 -neighborhood of a {Mi). Since
e > 0 and 8 > 0 were arbitrary we conclude that as i --* oo (and possibly after

passing to a subsequence) the spectrum of M, converges in the Hausdorff topology
to a closed subset B of [0, oo) with the property that B n [0, c) a{M) n [0, c).
This shows the first part of our proposition.

To show the second part, let / be a function on M with spectral measure supported
in [0, c — e]. We have to show that / is an effective limit of functions on M; whose

spectral measures converge to the spectral measure of /. But this follows once again
from Corollary 2.4. Namely, every function / on M with spectral measure contained
in [0, c — e] can be approximated in H1 {M) by functions supported on B{A, R) for
larger and larger R and with spectral measure as elements of H1 {B{A, R)) supported
in [0, c —e/2]. On the other hand, for every k > 0, every function on B{A, R) whose

spectral measure is supported in [0, c — e/2] admits an orthogonal decomposition
into finitely many functions whose spectral measures are supported on intervals of
length smaller than k. If ç e H1{B{A, R)) is such a function and if i > 0 is large
enough that Ri > R then we can apply Corollary 2.4 to the function <p o F~l on Mi
to obtain the required approximation.

We are left with showing the third part of our proposition. For this let / be an

eigenfunction on M with eigenvalue k e [0, c). Then there is a number 8 > 0 such

that the space of functions with spectral measure supported in [X — 8, X + 8] is finite
dimensional. Our above argument immediately implies that for sufficiently large i

the dimension of the space of functions on M, with spectral measure supported in
[X — 8/2, X + 8/2] is finite as well. This completes the proof of our proposition.
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For an integer k > 1 and a nonempty open subset Q of a Riemannian manifold
the k-th Rayleigh quotient ßk(Q) of Q is defined to be the infimum of all numbers

a > 0 with the following property. There are k smooth functions fi, ¦ ¦ ¦, fk with
compact support in Q which are orthonormal with respect to the L2-inner product
(/> h)2 fM fh on M and such that their gradients V/j satisfy the inequality

W«)= /" II V/i-1|2/ \ ff <a.

As an immediate consequence of Proposition 2.5 we obtain

Corollary 2.6. Lef (M,-, A,-) /?<? a sequence of manifold pairs converging to the

manifold pair (M, A) and Zef Œ; c M, - A,- /?<? a sequence of escaping sets. If
ooMi(^f) > minCTeSs(^) then ßkiMi) --* ßk(M) for every k > 1.

Let vo G [0, cxd] be the minimum of the essential spectrum of M. If vo co
then our corollary is immediate from Proposition 2.5, so we may assume that vo < oo.

Using again Proposition 2.5 it is enough to show that limsup,^,^ /^(M,) < vo for
every fixed k > 0. Since vo is contained in the essential spectrum of M there is for
every k and every e > 0 an orthonormal family /i ,...,/& of functions in L2(M)
with support in a fixed compact ball B c M and Rayleigh quotients 3l(fj) <
vo + e. For i sufficiently large the set B is contained in the domain of our (1 + e,)-
bilipschitz map Fj. Since e, —>¦ 0 (i --* cxd) this means that for large i we can find
an orthonormal family f\, flk of functions on M, with 3l{f1-) < vq + 2e. This
shows that lim sup,-^,^ n-kiMi) <vq.

We conclude this section with an example which illustrates how our Proposition

2.5 can be applied. We consider non-elementary torsion free Kleinian groups,
i.e. finitely generated torsion free discrete subgroups of the isometry group PSL(2, C)
of hyperbolic 3-space H3 which do not contain an abelian subgroup of finite index.
The limit set A of such a Kleinian group V is the smallest closed F-invariant subset of
the ideal boundary of H3. The closure in H3 of the convex hull of A is invariant under
the action of F and projects to the convex core C{M) of M H3/ F. A sequence
{F,}, of Kleinian groups converges algebraically to a Kleinian group F if for almost

every i there is an isomorphism px; : F ->¦ F, such that p?(f -> f for every fixed

f g F. The sequence {F,} converges geometrically to F if the quotient manifolds

Mi H3/ F,- converge in the pointed Lipschitz topology to M H3/ F. The

sequence {F,} converges strongly to F if they converge algebraically and geometrically
tor.

A torsion free Kleinian group F is called geometrically finite if the volume of the

one-neighborhood of the convex core of H3/ F is finite. We then call the quotient
manifold H3 / F geometrically finite as well. Generalizing earlier work of Comar and
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Taylor [CoT], Canary and Taylor show in [CT] that the bottom of the spectrum of
geometrically finite hyperbolic 3-manifolds is continuous with respect to the strong
topology. We state a slight extension of their main result as a corollary and show how
it can be deduced from Proposition 2.5 and an observation of McMullen.

Corollary 2.7. Let {F,-} c PSL(2, C) be a sequence of Kleinian groups which
converges strongly to a geometrically finite Kleinian group F. Then the intersection
with (0,1) of the spectrum o/H3/T; converges in the Hausdorff topology to the

intersection with (0,1) of the spectrum o/H3/ F.

Proof. Let F;, F be as in the corollary. We write M\ H3/T; and M H3/F.
Let C(Mi) be the convex core of Mi, and for e > 0 let M;<e denote the e-thin part
of Mi where the injectivity radius is less than e. The truncated core is defined by
Ce(Mf) C(Mi) —M(<e. The truncated core of every geometrically finite manifold
is compact.

Now if F, —>¦ F strongly and if F is geometrically finite then the same is true
for almost all of the groups F, [T]. Moreover, by Theorem 4.1 of [MM], for each

e > 0 the truncated cores CE{M{) of the manifolds M, converge strongly to the

truncated convex core CE{M) of M. This means that for the (1 + e,)-bilipschitz
homeomorphisms F;: B(x, R;) c M —* F;(B(x, /?,•)) c M, as in the definition of
geometric convergence and for large enough i the truncated core CE {Mi is contained
in the e,-neighborhood of F{ (CE(M)).

Now it is well known (and explicitly explained in [H]) that for sufficiently small e

and for every 8 > 0 there is a number R > 0 such that for every geometrically finite
manifold N the smallest Raleigh quotient of N — B(CE(N, R)) is not smaller than
1 — 8. Thus we can apply Proposition 2.5 for A CE(M) and deduce that indeed
the intersection of the spectrum of M, with (0, 1) (which consists of finitely many
eigenvalues, compare [H]) converges in the Hausdorff topology to the intersection
with (0, 1) of the spectrum of M. In particular, the bottom of the spectrum of M;
converges as i ->¦ oo to the bottom of the spectrum of M.

3. Development of cusps

In this section let always M be a closed manifold of dimension n > 2 and letNcM
be a smooth closed 2-sided hypersurface in M. Then there is a tubular neighborhood
U of N which is diffeomorphic to A^ x [—1, 1].

For s G [0,1] choose a smooth Riemannian metric hs on ./V which depends

smoothly on s and let p : (0, 1] x [-1, 1] U {0} x ([-1, 0) U (0, 1]) -> (0, oo) be

a smooth function. Using the metrics p(s, t)hs on ./V we define for each s > 0

a smooth metric gs on Af x [—1, 1] by gs -prr^dt1 + p{s, t)hs. As s \ 0 these



740 K. Fissmer and U. Hamenstädt CMH

metrics converge uniformly on compact subsets ofiVx([—l,0)U(0, 1 ]) to a complete
metric go- We assume that the metrics gs can be extended to smooth Riemannian
metrics on M — U which depend smoothly on s G [0,1]. We denote these metrics

again by gs, and we write Ms for the manifold M with the metric gs (for s 0 we
replace M by M — N). We allow M — N to be disconnected.

Lemma 3.1. The manifold pairs (Ms, Ms — U) converge as s —* 0 to the manifold
pair (Mo, Mq — U).

Proof. By construction, the distance in Mo between the subsets Mo — U and JV x
([—(5, 0) U (0, <5]) goes to infinity as S \ 0. Since by our hypothesis the metrics

p(s, t)hs on N converge as s \ 0 locally uniformly in t G [—1, 0) U (0, 1] to the

metrics p(0, t)ho our lemma follows.

Example 3.2. Let M be a smooth connected noncompact orientable n -dimensional

hyperbolic manifold of finite volume. Then M has a finite number k > 1 of standard

cusps. These cusps are given by a two-sided closed embedded hypersurface N c M
which consists of k connected components and divides M into a manifold M and

the cusps E\, Ek. The metric h on N induced from the hyperbolic metric is flat
and therefore JV is a finite quotient of a collection of k tori of dimension n — 1. The
union u£=1 E\ of our ends E\,..., E^ is diffeomorphic to N x [0, oo) and carries the

warped product metric dt2 + e~2th.

Choose a fixed smooth convex function a : R -* (0, oo) with the property that

a(t) e ' for t < 0, a(t) e~l for large t and such that a' > —a and a" < a. For
each fixed s g (0, 1] define a new metric gs onN x [0, oo) by gs dt2 + s2a{t +
log s)2h. Then the metric gs coincides with the hyperbolic metric on A^ x [0, — log s]
and extends to a complete smooth metric on all of M which coincides with the

hyperbolic metric on M. We denote this metric again by gs. The sectional curvature
of gs is contained in [—1, 0]. There is a number to > 0 not depending on s such that the

restriction of gs to ./V x [- log s + to/2, oo) is the flat product metric e~ls2h x [0, oo).
Write Es N x (- logs + to, oo). We can glue two copies of M — Es along

the boundary with the natural isometry between the two boundary manifolds ./V x
{- log s+to} to obtain a compact connected Riemannian manifold Ms. This manifold
contains two isometric copies of M and a totally geodesic embedded flat hypersurface
which corresponds to the boundary components of the ends Es. Ifwe denote by As the

union ofour two copies of M in Mythen as s \ 0 the manifold pairs (Ms, As) converge
in the Lipschitz topology to the disconnected hyperbolic manifold pair (Mo, Aq)
which consists of two copies of the pair {M,M). We call such a converging sequence
of manifolds a standard cusp convergence. With respect to a suitable parametrization
of the cylinders Ms — As in Ms our family of metrics can be represented as a 1-

parameter family of warped product metrics of the above form.
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Recall that the bottom of the spectrum of a standard hyperbolic cusp of dimension

n equals (n — l)2/4. From Proposition 2.5 we therefore obtain that as s \ 0 the

intersection with (0, {n — l)2/4) of the spectrum of Ms converges to the intersection
with (0, (n — l)2/4) of the spectrum of Mo. Since Mo is disconnected and each of
its two components is of finite volume, the eigenvalue 0 of Mo has multiplicity 2 and

therefore the second eigenvalue of the manifolds Ms converges as s \ 0 to 0.

Assume from now on that the second eigenvalue of the metric p(s,t)hs on N goes
to oo as (s, t) --* (0, 0). Since the metrics hs are defined for every s e [0,1] this is

equivalent to requiring that our function p extends continuously to 0 at (0, 0). Notice
that the volume of Mo may be infinite.

Let vs(t) be the volume element of the metric p(s, t)hs on N. For s G [0, 1] let
Ws c Hl{Ms) be the closure in Hl (My) of the space of smooth functions / on Ms
which satisfy /Wxm fdvs(t) 0 for all t g [-1/2,1/2]. Denote by \.is the volume

element of the metric gs on M. In the sequel we write / \\Vf\\2dfA.s to denote the

integral of the square norm of the differential of / with respect to the metric gs.

Lemma 3.3. For every e > 0, c > 0 there exists a number 8 S(e, c) > 0 with the

following property. Let s < 8 and let f e Ws be a function with

f \\Vf\\2dßs<c f f2dßs.
JNx[-l/2,l/2] J

Then we have

L f2dßs<e\\f\\2.
!Nx[-S,S]

In particular, the Hubert space Ws c Hl{Ms) is compactly embedded in L2{MS).

Proof. Let yu^Cs, t) be the second Rayleigh quotient of the metric p(s, t)hs on N.
By our assumption we have M2CM) ~* °° as (s>f ~* (0, 0) and therefore for every
k > 0 there is a number r t(£) G (0, 1/2) such that n-2(s,t) > £ for all s < r,
all f with \t\ < x.

Now if / G Ws then for every t G [—1/2, 1/2] the restriction of f to N x {t} is

orthogonal to the constant functions. Moreover the measure [is can be represented
in the form dvs(t) x a(s, t)dt for a smooth function a > 1. Consequently for s < x

we have

\\Vf\\2dßs> [ (f ,x2{s,t)f2dvs{t)]dt
-1/2 \JNx\t]

JNx[-x,x]
> k I fzdßs.

r]
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If Inx\-1/2 1/21 ll^/ll2^^ < c / f2dßs for some c > 0 then we deduce from this

that /Wx[_T T] f2dßs < § / f2dßs which shows the first part of our lemma.

Compactness of the embedding W^ c Hl(Ms) -> L2(MS) then follows from standard

compactness results.

The following proposition generalizes an earlier result of Judge [J] and shows our
Theorem B. Its proof uses the ideas of Judge [J], with our simple Lemma 3.3 as the

main new ingredient. We include the (rather short) proof for the sake of completeness.
In contrast to Section 2 we now mean by an eigenfunction a solution of an equation
A - X 0 for some X g R which is not required to be square integrable.

Proposition 3.4. Assume that p(s, t)\0 as (s, t) ->¦ 0. Let c > 0 and let {s;}i c
(0,1] be a sequence converging to 0. Let f; be an eigenfunction on MSi with respect
to an eigenvalue k\ < c. Then up to passing to a subsequence and renormalization,
the functions f; converge locally uniformly on M — N to a nontrivial eigenfunction

f on Mo with respect to the eigenvalue Xç, lim^oo A.,.

Proof. Define a linear projection Ps : L2(U c Ms) -> L2(U c Ms) by

Psf(x,t)=f fdvs(t).
JNx{t}

In other words, Psf is the function which is obtained by integration of / along the

manifolds M x {t} with respect to the volume form of the metric p(s,t)hs.
For i > 0 let /, be an eigenfunction on MSi with respect to the eigenvalue À,.

We assume that these eigenvalues are bounded from above by some c > 0. Let
S (5(1/2, 2c) be as in Lemma 3.3. Using an idea of Judge [J] we define

[ fi - Ps; fi) (x, t), otherwise.

To simplify our notation we assume that the functions f\ are normalized; this only
depends on the normalization of f\.

Let a: (-1,1) -> [0,1] be a smooth function supported in [-3/4, 3/4] with
a(t) 1 for t G [-5/8, 5/8] and define uj(x, t) fi(x, t) - a(t)Ps.fi(x, t). By
our normalization assumption the L2-norm of the function u\ is not bigger than 1,

moreover u\ is contained in Ws;.

We claim that the L2-norm of the gradient of u\ is bounded independent of i. To

see this recall that our metrics gs are warped product metrics on A^ x [—1,1] and

therefore for each fixed s e (0,1], t e (—1,1) and every smooth function ç on Ms
we have /Wx{(} gs(^((P — Ps<p), V(Ps(p))dvs(t) 0. Namely, since our metric is

a warped product the normalized volume forms of the metrics p(s, t)hs on ,/V are
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independent of t e (—1,1). This implies that the gradient V(Ps<p) of Ps<p is of the

form V(Ps(p)(x, t) f (f) Jy where f only depends on t and V(</9 - Psq>) X + x§^
where/Wx{(} xdvs{t) 0 and X is tangent to the first factor foliation of JV x [—1,1].

Let/3: (—1, 1) —>¦ [0, 1] be a smooth function with compact support which equals
1 on [-3/4, 3/4]. Define v;(x, t) ß(t)(f} - PsJi){x, t); then ||uf||2 < 1. Since

fi is an eigenfunction with respect to the eigenvalue X;, by the definition of v-, and

the above we have

X; >X; / ViUidiJ,Si X; / Vifid/j.Si / gs;(VvuVfi

f f (1)
> / l|V(/f - PS;fi)\\2dlJ,S; > / \\Vui\\2d[Xsr

J»x [-3/4,3/4] J»x[-5/8,5/8]

Notice that this estimate relies in a crucial way on the fact that the normalized volume
element of p(s, t)hs is independent of t.

On the other hand, let yö : [—1,1] —>¦ [0, 1] be a smooth function supported in
[-1, 1/2] U [1/2,1] which is constant 1 on [-1, -5/8] U [5/8, 1]. Write v(x, t)
ß(t)fi (x, t). As before we deduce that

i >Xt f difidßs; > f
J JM

f
M-»x [-5/8,5/8]

Now for 5/8 < \t\ < 1 we have

Vui{x,t) Vfi{x,t) - a'{t)PSifi— - a{t)V{PSifi)
at

and therefore there is a constant a > 0 not depending on i such that

r-»x[-5/8,5/8]

<af \\Vfi\\2dßSi+a f f2dßsr
JM-»x[-5/8,5/8] J»x[-l,-5/8]U[5/8,l]

From this and inequality (1) above we conclude that the L2-norm of the gradient of
u\ is bounded independent of i.

We claim that after passing to a subsequence the functions u\ converge in the

space of locally square integrable functions on Mç, to a function uç, with ||woll2

lim^oo \\u; ||2 < 1. This is obvious if the L2-norms of the functions u\ converge to
0 as i -* oo, so assume that there is some c > 0 such that ||w, ||2 > c for all i. Since
the L2-norm of the gradient of u\ is bounded independent of i, the Raleigh quotients
of u\ are bounded independent of i. Lemma 3.3 then shows that after passing to a

subsequence we may assume that the functions u\ converge locally in L2{Mq) to a

function mo with ||woll2 lim^oo ||mj||2-
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Next we observe that after passing to a another subsequence we may assume
that the restrictions to N x ([—1, —<5] U [8, 1]) of the functions f\ — u\ converge in
L2(Mo) to a function /. Again this is obvious if the L2-norm of f\ — u\ tends to
0 with i. Otherwise observe that the function f\ — u\ can be viewed as a function
on [—1, —8] U [8, 1]. Its L2-norm with respect to a measure which is uniformly
equivalent to the standard Lebesgue measure is at most 1. Our above consideration

implies that the L2-norms of the derivatives of f; — u\ are bounded independent of i.
Thus we obtain convergence from compactness of the embedding Hl(I) --* L2(I)
for a compact interval / ci. In particular, the functions f\ converge in L2(Mo) to
the function mo + X-

Consider again inequality (1) above. By Lemma 3.3 and our choice of 8 we
either have \\u\ ||2 < 1/2 or fNx[_s Ä] ufdfj,Si < f ufdßSi/2 for all sufficiently large

i. In both cases we conclude that fNxr_s ^ u\d[iH < 1/2 for large i. Thus our

function wo necessarily satisfies fNxr_s 0)Um s-, u^dßo < 1/2. Since the function /
is supported in M — N x [—8, 8] and \\x + «oil2 1 we conclude that after passing
to a subsequence the restrictions to M — N x [—8, 8] of the functions fi converge in
L2(M0) to a function f0 with ||/0||2 £ [1/2, 1].

The function f\ is a solution of an elliptic equation with smooth coefficients.
With respect to the reference metric go on M — N x (—8/2, 8/2) the C2-norms of
these coefficients are uniformly bounded. Since the L2-norms of the restrictions to
MSi — N x [—8, 8] of the functions f\ are uniformly bounded as well, standard elliptic
theory implies that for every e > 0 there is a constant c(e) > 0 which bounds the
C2-norm of the restriction of /;: to M — N x [—S — s, 8 + e]. Thus after passing to
a subsequence the functions /, converge locally uniformly on M — N x [—5, <5] to

/o. This implies that for Xç, lim,^,^ À, the function fç, is a nontrivial solution of
the differential equation Ao — Xo 0.

Our above argument also shows that the function fç, is the restriction to M — N x
[—8, 8] of an eigenfunction on Mq which is a locally uniform limit of a subsequence
of our functions f\. Namely, for k > — log 8 + log 2 define

fk(x f) {
l'k '

[(/; - PSifi)(x,t) otherwise

and write a\^ l/||/f,^||. For each fixed i the sequence {ai^}k is monotonously
decreasing. As before we conclude that after passing to a subsequence the restrictions
of ai,kfi,k to M — N x [2 k, 2~k] converge locally uniformly to a solution /o^ ^ 0

of the equation Ao - ^o 0. Its restriction to M — N x [—2k, 2~k] necessarily
coincides with a nonnegative multiple of fo,k-i- Since no nontrivial solution of the

equation Ao — Xo 0 can vanish on a nontrivial open set the restriction of our
function to M — N x [—2k, 2~k] is in fact a positive multiple of fo,k-i- With a

standard diagonal sequence argument we conclude from this that after passing to a
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subsequence our eigenfunctions f; converge locally uniformly to an eigenfunction
/o on Mo.

The following example shows that the limit function obtained in Proposition 3.4

is in general not square integrable, even if the curvature of all our manifolds as well
as their volumes are uniformly bounded.

Example 3.5. Consider a closed hyperbolic surface S of genus 2 which consists of
two bordered tori T\, T2 glued at the boundary. Choose a simple closed geodesic y
on T\ which cuts T\ into a pair of pants. We denote by gs the hyperbolic metric on
S which we obtain by leaving the torus T2 and the twist parameters for the glueings
fixed and replacing the torus T\ by a torus for which the length of the geodesic y
equals s. For a fixed point q g T2 the pointed surfaces ((S, gs), q) degenerate as

s \ 0 to a twice punctured hyperbolic torus (So, go) with two finite volume cusps.
The essential spectrum of So is bounded from below by 1/4 and the second Rayleigh
quotient ß2(So) of So is positive. The metrics gs are warped product metrics in a

tubular neighborhood of y.
Choose a number k > 0 such that there is a smooth nontrivial compactly supported

function / on the interval (0, k) satisfying fokf O and fok(f)2 < ß2(So) Jo f2/2-
For a > 0 and r g [0,k] denote by CaT the cylinder S1 x [0, r] with the metric
a2ds2+dt2 (where ds2 is the length element of total length 1 on S1 For every a > 0

the function / can be viewed as a function on the cylinder Ca, k which only depends on
the second coordinate. We have fCak f 0 and fCak ||V/||2 < /j.2(So) fCakf2/2
for all a > 0.

For s G (0, 1] and r g [0, k] we replace the metric gs near y by a metric gs%x

which is obtained from gs by cutting S open along y and inserting the cylinder Cs>x.

We slightly modify the resulting metric near the boundary of Q.jT in such a way that

we obtain a smooth metric gSit depending smoothly on s, r and such that gSio gs-
We may assume that there is an tubular neighborhood Z ~ S1 x [—1, 1] about y in
S such that the restrictions of the metrics gSit to Z are warped product metrics. The
metrics can be constructed in such a way that their curvature is contained in [-1, 0]
and that their volumes are uniformly bounded.

For fixed s > 0, the second Rayleigh quotient of gS)T depends continuously on

r g [0, k]. For x k this Rayleigh quotient is not bigger than /j,2(So)/2. Moreover,
if s is sufficiently small then the second Rayleigh quotient of gS)o equals at least

3m2(So)/4 [CC2]. Thus there is some x(s) G [0, k] such that this Rayleigh quotient
equals exactly /j,2(So)/2. We may assume that r(s) depends continuously on s.

Define hs gs,r(s)- Then there is an eigenfunction cps on (S, hs) with respect
to the eigenvalue /j,2(So)/2. Moreover the metrics hs satisfy the assumptions in
Proposition 3.4.

By Proposition 3.4, after renormalization and passing to a subsequence we may
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assume that the eigenfunctions <ps converge uniformly on compact sets to an eigen-
function <p on So with respect to the eigenvalue /z2(Sb)/2. But then <p can not be

square integrable.

Remark. The considerations in Example 3.5 can also be used to construct for every
noncompact hyperbolic surface S of finite volume and every X e (0,/X2(51)) an

eigenfunction ç on S with respect to the eigenvalue X. This function <p is not square
integrable.

4. Manifolds with controlled spectral properties

In this section we apply the results from Section 2 to construct complete Riemannian
manifolds of an arbitrary dimension n > 2, with curvature in the interval [—1, 0],
infinite volume, nonempty essential spectrum, infinitely many eigenvalues below
the essential spectrum and with arbitrarily large multiplicities of an arbitrary finite
number of eigenvalues. In the case n 2 we can choose our manifolds to be of
constant curvature — 1.

Our manifolds will be constructed from building blocks which consist of complete
manifolds of curvature contained in [—1, 0] with a fixed even number 2k > 2 of
standard constant curvature cusps as in Example 3.2. We describe these building
blocks in the next lemma which is a modified version of Example 4.1 of [BCD].

Lemma 4.1. For every n > 2, k > 1 there is a complete n-dimensional Riemannian

manifold X of infinite volume with the following properties.

(1) The curvature ofX is contained in [—1, 0].

(2) X has 2k standard cusps of curvature -1 which are mutually isometric.

(3) The essential spectrum <7ess(X) of M is not empty, and there are infinitely many
different eigenvalues below aess(X).

Proof. Let F c SO(«, 1) be a non-uniform lattice. Then Vq W/ V is a hyperbolic
manifold of finite volume with at least one end C. This end is a standard cusp.

The group V is residually finite and therefore there is a finite covering V\ of Vq

such that the cusp C has at least 2k preimages in V\. We choose 2k of these preimages
and label them by C\, C2k- If C\, Ü2k are the only cusps of V\ then we define
No Vi.

Otherwise, i.e. if V\ has additional cusps, then we modify the metric on each of
these additional cusps as in Example 3.2. These cusps then become flat cylinders
which we cut along a totally geodesic hypersurface. We obtain a manifold V[ with 2k

cusps and a finite number of totally geodesic boundary components. Choose a second

copy V" of V[ and glue V" to V[ along corresponding boundary components. The
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resulting manifold V2 is connected, its curvature is contained in the interval [—1,0]
and it has precisely 4k mutually isometric ends which are the cusps C\, C2k of
V\ and the corresponding cusps C", C'2'k of V". Since the cusps C" are mutually
isometric we can replace them as before by isometric cylindrical ends which we cut
and glue in pairs to k compact handles. We obtain a manifold JVo with precisely 2k
ends. It carries a complete Riemannian metric of finite volume with curvature in the

interval [—1,0] in such a way that each of its ends is isometric to a fixed standard

cusp of constant curvature — 1.

Let Fk be the free group with k generators y\,..., Yk- We label each of the

Ik ends of JVo by one of elements y\, yt, Y\l, ¦ ¦ ¦, Y^1 of F^. For s > 0

replace the standard cusps of JVo by a compact end with boundary equipped with
the metric gs from Example 3.2. The resulting manifold Ns has 2k totally geodesic
boundary components which we label as before by the generators of Fu. Choose

one copy of Ns for every element of Ft and label it by this group element. Glue
the boundary component with label y, of the copy of JVy with label tp e F^ to the

boundary component with label y.
l of the copy of JVy with label y, f with the obvious

isometry. We obtain a smooth manifold M with a complete Riemannian metric gs

of curvature contained in [—1, 0] and which depends smoothly on s e (0, 1]. The
free group F^ acts freely and properly discontinuously on M by right translations

on the labels of our basic building blocks. The metrics gs are invariant under this
action. The quotient (M, gs)/Ft is compact and can be obtained from Ns by glueing
pairwise the boundary components.

Since (M, gs) admits a free and properly discontinuous isometric action of Ft
with a compact quotient, the discrete spectrum of (M, gs) vanishes and its essential

spectrum is bounded away from 0 (see the discussion in Example 4.1 of [BCD]).
The bottom Vy of this essential spectrum depends continuously on s and goes to 0 as

s -+0.
Following [BCD] we fix a number r > 0 such that vT < (n — l)2/4 and a

sequence r, c (0, r such that r, < tj and vXi < vX] for i < j. We use this sequence
to construct inductively our building block.

There is a natural word norm on the group F^ defined by our choice of generators.
For m > 1 we denote by B(m) the connected submanifold of M which consists of
precisely those copies of our manifold JVy which are labeled by elements of F^ of
word norm at most m. Then B(m) is a smooth submanifold of M with boundary.
Each of its boundary components is totally geodesic with respect to gs. The set 5(0)
is just the copy of Ns which corresponds to the unit element in Ft.

In our first step we determine a number mi > 0 such that there is a function f\
on (M, gXl) which is supported in B{m\ — 1) - 5(1) and with Rayleigh quotient
3l(ir\) < vt2. Modify the metric of B{m\) near the boundary so that the new metric
coincides with gtl on 5(mi - 1) and with gt2 near the boundary. Glue the resulting
manifold along its boundary to (M, gXl) — B(m\). We obtain a new manifold M\.
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Since the essential spectrum of any Riemannian manifold does not change under a

compactly supported change of the metric, the bottom of the essential spectrum of
Mi equals vT2. But the Rayleigh quotient of the function f\ on 5 (mi - 1) c Mi is

smaller than vt2 and hence Mi has an eigenvalue below its essential spectrum.
We can now iterate this construction. In our f-th step we begin with a metric

gi on M which coincides with the metric gVl on M — 5(m,) for some m, > 0 and

such that there are i functions on (M, gi) with pairwise disjoint support contained in
B(m\ — 1) - 5(1) and with Rayleigh quotients smaller than vXi. There are at least i

distinct eigenvalues below the essential spectrum. Choose a function i/^+i supported
on B(m;+i — 1) — B(m;) for some mi+i > m, with Rayleigh quotient smaller than

vVl+1. As before we change the metric outside 5(mi+i) to gVl+1 to obtain anew metric

gi+i which admits at least i + 1 distinct eigenvalues below the essential spectrum.
We can repeat this construction infinitely often to obtain a complete manifold Xo

with infinitely many eigenvalues below the essential spectrum. The lower bound vo

of the essential spectrum of Xo is strictly smaller than (n — l)2/4.
Remove 5(0) from Xo and replace it by a manifold with 2k standard cusps. We

claim that the complete Riemannian manifold X which we obtain in this way has

the properties stated in our lemma. To see this recall that the bottom of the essential

spectrum of a standard hyperbolic cusp equals {n — l)2/4 > vo. Since the essential

spectrum of a complete Riemannian manifold equals the essential spectrum of its

ends, the bottom of the essential spectrum is vo. The functions on Xo which we
constructed above are supported outside 5(1) and hence can be viewed as functions

on X. This implies that there are infinitely many distinct eigenvalues below the bottom
of the essential spectrum on X.

Using pairs of pants as in [BCD] it is clear that for n 2 we can choose our
manifold to have constant curvature — 1.

Consider now an arbitrary finite group F. We call F admissible if F can be

generated by elements of order at least 3. A set of generators y\,..., Y2k of F is

called admissible if it consists of elements of order at least 3, contains with each

element also its inverse and is minimal with this property.
Let G be the Cayley graph for F with respect to our generators. Then G is a finite

connected graph whose vertices correspond to the elements of F. By our choice of
generators the graph G is simple (i.e. no multiple edges and no loops) and 2^-regular
[dH]. Two vertices a,b e F of G are connected by an edge if and only if there is

some i such that b y\a. Right multiplication in F induces an action of F as a group
of automorphisms of G which is transitive on the vertices.

Assume that /2; J^T-i f°r 1 <*'<&• Let X be a manifold as in Lemma 4.1

with 2k standard cusps. We label each of these cusps by one of our generators y,
of F. For a £-tuple a {s\, su) & [0, l]k we construct a complete Riemannian
manifold M (a) as follows: Choose |F| copies of X and label each of these copies
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with a different element of F. For 1 < i < k replace the standard cusps of X
which are labeled by yn-i, yn by a compact end with boundary equipped with the

metric gSi. The boundary components of the resulting manifold correspond to our
generators y\,... ,yik- Glue the boundary component y, of the copy of X with label

f G F to the boundary component y~l of the copy of X with label y, f by the obvious

isometry as before. We obtain a complete Riemannian manifold M(s\, s^) which
consists of |F| copies of X glued at their boundaries. It contains a distinguished
collection of totally geodesic embedded hypersurfaces, and its curvature is contained
in [—1, 0]. The essential spectrum of M (si, sk) is bounded away from 0 and

there are infinitely many eigenvalues below the essential spectrum. The manifold
M(0) consists of |F| copies of X. We call the manifold M (si,..., sk) a F'-graph
manifold, and its metric a Oi,..., sk)-graph metric.

Lemma 4.2. For each a e [0, l]k the group F acts freely and isometrically on M (a).
For every fixed q > 1 the assignment a e [0, l]k --* fiq(M(a)) is continuous.

Proof. Every element of F acts on the Cayley graph G by an automorphism which

permutes the edges with a given label. For each a e [0, l]k this automorphism induces

an isometry of our manifold M (a) which permutes our copies of X and preserves
each of the k collections of hypersurfaces corresponding to one of our generators or
its inverse. Since the action of F on G is free the same is true for the action of F on
M (a). Continuity of the assignment a e [0, l]k --* fiq(M(a)) is immediate from
Corollary 2.6.

Let again F be an admissible finite group with an admissible set yi,..., y2k of
generators and corresponding Cayley graph G. By definition, this set of generators is

minimal with the property that it consists of elements of order at least 3 and contains
with each element its inverse. Thus if we fix some i < 2k and if we delete all the edges
in G which are either labeled by y\ or by y~l then the resulting graph is disconnected.

Recall that for every complete Riemannian manifold which has eigenvalues below
the essential spectrum the multiplicity of the smallest eigenvalue is one. Following
the basic idea of [BC] we use isometric actions of finite groups to construct complete
manifolds of bounded curvature with infinitely many eigenvalues below the essential

spectrum and such that the multiplicity of the second eigenvalue is bigger than 1.

Lemma 4.3. Let F be an admissible group with an admissible set of generators

Yi, Y2k- Let m > 2 be the minimal dimension of a nontrivial irreducible orthogonal

representation ofT. Then for every a e (0, l]k which is sufficiently close to 0,

the multiplicity of the second eigenvalue of the V-graph manifold M (a) is at least m.

Proof. By our assumption, for each a e [0, l]k the quotient M (a)/ F is a complete
manifold, and the projection M (a) -> M (a)/ F is a smooth q -sheeted covering where

q is the cardinality of F.
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The pair /2?-i> Yn of generators of F defines a F-orbit of edges in the Cay ley
graph G. Ifs, > 0 then this orbit of edges corresponds to a F -orbit of totally geodesic
embedded closed hypersurfaces in M (a) which projects to a closed totally geodesic
embedded non-separating hypersurface in M (a)/F. As s; \ 0 this hypersurface in
M (a)/ F degenerates to a pair of cusps.

For each a e (0, l]k the manifold M (a) is connected. The bottom of the spectrum
of M (a) is not contained in the essential spectrum and therefore it is an eigenvalue of
multiplicity 1. The isometric action of F on M (a) induces an orthogonal representation

of F on the corresponding eigenspace. Since the dimension of this eigenspace is

1, this representation is trivial and every eigenfunction with respect to this eigenvalue
is F-invariant and projects to an eigenfunction on M (a)/ F. In particular, the smallest

eigenvalue of M (a) coincides with the smallest eigenvalue of M (a)/ F.

Now let a (0, S2, ¦ ¦ ¦, Sk) £ [0, l]k where s-, > 0 for i > 2. By minimality
of our set of generators for F, M (a) consists of at least two isometric components
which are permuted by the action of the group F. Thus the multiplicity of the smallest

eigenvalue of M (a) (which equals the number of connected components of M (a)) is

at least 2.

By Theorem A from the introduction, as s \ 0 the small eigenvalues of Q(s)
M(s, S2, ¦ ¦ ¦, sk) converge to the small eigenvalues of M (a). The multiplicity of the

first eigenvalue of Q (s is 1 and hence for sufficiently small s the second eigenvalue of
Q 0) is strictly smaller than the second eigenvalue of M {a) / F. Then an eigenfunction
for this eigenvalue can not be F-invariant. This means that the natural orthogonal
representation of F on the eigenspace of Q{s) with respect to the second eigenvalue
does not contain a trivial component and the dimension of this eigenspace equals
at least the minimal dimension of a nontrivial irreducible orthogonal representation
of F. This finishes the proof of our lemma.

We can now iterate this construction as follows. Assume that F is a finite group
which contains a nested sequence F > H\ > - - - > Hm of admissible subgroups H.

Define a set of generators y\, y2k of F to be (F, H\, Hm)-admissible if
the following is satisfied.

(1) For every i < m there is some j (i) < k such that y\, Y2j(i) is an admissible
set of generators for //,.

(2) For each i the subgroup of F which is generated by those of our generators
which are not contained in Hf intersects Hf only in the unit element.

We call (F, H\,..., Hm) an admissible sequence of groups if it admits a

(F, H\, Hm)-admissible set of generators and if moreover for every i > 1 the

group H;+i is a proper normal subgroup of Hi. We do not require that Hi is a normal
subgroup of F.

Now let (T, Hi,..., Hm) be an admissible sequence of groups. For a given
choice of a basic manifold X with 2k standard cusps as in Lemma 4.1 we constructed
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above from the Cayley graph of an (F, H\,..., Hm)-admissible set y\, Yik of
generators a connected smooth manifold M which admits a natural free action of F by
diffeomorphisms and a natural family of F-invariant metrics. We call our manifold

Ma(r,ffi,..., Hm)-graphmanifold.

Corollary 4.4. Let (F, H\, Hm) be an admissible sequence ofgroups. Letq > 2

be the minimal dimension of an irreducible orthogonal representation of F whose

restriction to H\ is non-trivial. Then there is a family of {T,H\, Hm)-graph
manifolds for which the multiplicity of the j-th eigenvalue for j 2,..., m is at
least q.

Proof. Let M be a (F, H\, //m)-graph manifold. The group F acts on M freely
as a group of diffeomorphisms and M --* M/ F Mo is a |F|-sheeted covering.
Every complete metric on Mq lifts to a F-invariant complete metric on M.

Let y\, Y2k be a (F, H\, Hm)-admissible set of generators for F. Let
t < k be such that the set y\, Yit generates H\. Denote by E the subgroup of F

generated by Y2e+i, ¦ ¦ ¦, Yik- Then £ is an admissible finite group which intersects
H\ trivially. The Cayley graph G' of E with respect to the generators Y2t+\, ¦ ¦ ¦, Yik
is a connected subgraph of G. If we remove from G all the edges corresponding to
the generators y\, ...,yu then the resulting graph consists of \H\\ disjoint copies
of G'.

Fix some sq > 0 and for {s\, sm) G [0, l]m let Q{s\, sm) be the F-graph
manifold M (a) where a (a\, a^) is the £-tuple defined as follows: For each

j let i < j be such that the generator y, is contained in the group Hf but not in
the group Hi+\ (where we put Hq F) and define a-} s;. The group H\ acts on

Q{s\, sm) as a group of isometnes. The manifold Q(0, ,Q)/H\ is connected.

Now apply the considerations in the proof of Lemma 4.4 to the graph manifolds

Q(s, 0, 0). Since the subgroup of F generated by those elements of y\, Yik
which are not contained in H2 intersects H2 trivially, the covering Q(0, 0)/H2
of 0(0, ¦ ¦ ¦, 0)/Hi with deck group H1/H2 is disconnected and for s > 0 the

covering Q(s, 0, 0)/H2 of Q(s, 0, 0)/Hi with deck group Hi/H2 is
connected. By the considerations in the proof of Lemma 4.4, for sufficiently small
s the quotient Q{s, 0,..., 0)/i?2 is a complete connected manifold with H1/H2-
invariant metric for which the second eigenvalue is strictly smaller than the second

eigenvalue of Q(s, 0, 0)/H\. Proceeding inductively we obtain in m — 1 steps a

(F, Hi, Hm) -graph manifold of the form Q{si, sm) such that they-th eigenvalue

for 2 < j < m is strictly smaller than the second eigenvalue of the quotient
Q{si, sm)/Hi. This then implies that the restriction to Hi of the representation
of F on each of the corresponding eigenspaces is nontrivial. This shows the corollary.

D
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It remains to find admissible finite groups F with arbitrarily long nested sequences
of admissible subgroups H and for which the smallest dimension of an irreducible
representation which is nontrivial on H\ is arbitrarily large. This is satisfied for the

groups which were already considered by Burger and Colbois [BC].
Namely, let p > 3 be an odd prime and for some n > 1 let ¥q be the field with

q pn elements and multiplicative group F* ¥q — {0}. For a divisor r of n write
m (pn- !)/(// - 1) and define

G q,m a G

Then G?m is the semi-direct product of ¥q with the cyclic group A?m {am \ a e

F*} of order pr — 1 which acts on ¥q by multiplication. Its commutator subgroup
H\ is the cyclic group

of order q which can naturally be identified with the additive group ¥q.
Let § be a generator of the cyclic group F*. Then the dimension of ¥q as a vector

space over the field ¥q[Çm] equals n/r. Choose a basis gi, gn/r C ¥q for this
vector space. For each i the element g; e ¥q generates a cyclic subgroup of ¥q ~ H\
which is invariant under the action of the group Aq t m. The flag of n /r linear subspaces

of ¥q determined by this basis defines a nested sequence Hn/r < ¦ ¦ ¦ < H\ of normal

subgroups of H\, and gi, g11,..., gn/q, g~}q, Km, £~m is a (Gq>m, Hi,..., Hm)-
admissible set of generators for F.

Now since H\ equals the commutator of G?m, every character of G?m (i.e. a

one-dimensional unitary representation of G?m) factors to a character of Gq%m/H\.
On the other hand, it is well known [M] that the dimension of every irreducible

representation of G?m which is not a character is at least (q — \)/m. Thus by
Corollary 4.5 the group G?>m gives rise to manifolds for which the y'-th eigenvalue
for 2 < j < n/r has multiplicity at least {q — \)/m. Since n/r and {q — \)/m can
be chosen arbitrarily large our Theorem C from the introduction follows.
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