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The canonical subgroup: a "subgroup-free" approach

Eyal Z. Goren and Payman L. Kassaei

Abstract. Beyond the crucial role they play in the foundations of the theory of overconver-

gent modular forms, canonical subgroups have found new applications to analytic continuation
of overconvergent modular forms. For such applications, it is essential to understand various
"numerical" aspects of the canonical subgroup, and in particular, the precise extent of its over-

convergence. In this paper, we develop a theory of canonical subgroups for a general class

of curves (including the unitary and quaternionic Shimura curves), using formal and rigid
geometry. In our approach, we use the common geometric features of these curves rather than
their (possible) specific moduli-theoretic description, it allows us to reproduce, for the classical

cases, the optimal radii of definition for the canonical subgroup, usually derived by employing
the theory of formal groups.
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1. Introduction

Canonical subgroups are essential to the theory of overconvergent modular forms.
An elliptic curve E with an ordinary reduction modulo a prime p has a distinguished
subgroup of rank p, which is the kernel of multiplication by p on its formal group. This
subgroup is a canonical lift of the kernel of Frp on E modulo p. The overconvergence
of the canonical subgroup, i.e. the fact that it can also be defined for elliptic curves
with a "not too supersingular" reduction modulo p, allows one to define and study
the Up operator for overconvergent modular forms (See [Kat, §3.11].). Recently, in
[Buz2], [Kas3], this theory has found new applications to the problem of analytic
continuation of overconvergent modular forms. In these applications it is essential

to understand the precise extent of overconvergence of the canonical subgroup, and

to determine the "measure of supersingularity" of a quotient of an elliptic curve by
a subgroup of order p (including the canonical subgroup). These results appear in
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[Kat, Thms. 3.1, 3.10.7], where they are attributed to Lubin. A slightly more general
version can be found in [Buz2].

Classically, the canonical subgroup of an elliptic curve (when it exists) is
constructed by a close study of the power series of multiplication by p in its formal group.
In [Kasl], [Kas2] this approach was used to develop a similar theory over certain PEL
Shimura curves. Generalizing this approach to higher dimensions seems to pose a

serious challenge, because it uses the one-dimensionality of the formal group in an
essential way, including the existence of Newton polygon for power series in one
variable.

The problem of constructing a canonical subgroup for each elliptic curve belonging

to a certain region of a modular curve X(T) can be rephrased as finding a partial
section to the forgetful morphism of rigid analytic curves n : X(Fo(/?)nr) —>¦ X(T)
whose moduli-theoretic description is (E,y, H) i-> (E,y) where {E, y) is an elliptic

curve with level F-structure and H c E[p] is a finite flat subgroup of order p.
Our approach ignores this moduli-theoretic description and just takes into account
the geometry of the morphism n. This is what we call the "subgroup-free" approach.

It has been known for a while that one can prove, using a general principle of rigid
geometry due to Berthelot [Ber], that such a section defined over the ordinary locus

overconverges (to an a priori non-tractable extent) beyond the ordinary locus. This

approach, which is expected to work in other situations, was used in [KL] to prove
the overconvergence of canonical subgroups in the case of Hubert modular varieties.
However, other aspects of the theory, which were discussed in the opening paragraph,
remain unsettled even in the case of Hubert modular varieties. These aspects are also

not fully covered by other recent approaches [AM], [AG], [Con], [Nev].
The purpose of this article is to derive all aspects of the theory of canonical

subgroups via the"subgroup-free" approach. Our thesis is that the rigid geometric (or
formal schematic) picture that arises in the familiar setting of the relevant Shimura
varieties suffices by itself to guarantee the existence of the canonical subgroup and

many of its properties. In this manuscript we demonstrate that for Shimura varieties
of dimension one, even if they do not possess a natural modular interpretation. In
fact, this lack of a moduli interpretation can be taken as a further motivation for our
approach. Notice that our approach is such that inspires generalization to higher
dimensional settings. More specifically, one constructs a section over the ordinary
locus by lifting a section from characteristic p. One separately studies sections over
the non-ordinary locus by using the theory of local models for the special fibre of
the Shimura variety in question, and finally these two sections are glued together by
using the above-mentioned principle ofrigid geometry along with a certain uniqueness
result. The authors hope to pursue this subject in a future publication.

Let p be a prime. Let G Ok be the ring of integers of a finite extension K
of Qp, zu a uniformizer of 6, k G /{tu) the residue field, and val vala: be

the valuation normalized so that val(or) 1. By a "curve" X over G we mean a
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flat finite-type morphism / : X --* G of relative dimension 1 of a reduced separated
scheme X, such that the geometric fibres of / are connected; / need not be proper.

Let X, Y be curves over 6. We assume that X, Y are regular schemes, X ->
Spec(ö) is smooth and n : Y --* X is a finite flat morphism of degree e + 1. Moreover,

we assume that (i) there exists a section s: X ® k -> Y ® k to it ® k, that

(ii) the special fibre Y ® k is a reduced normal crossing divisor with two components,
and (iii) the set theoretic preimage (it ® k) ~l (it ® k) Q) is equal to Q for any singular
point Q G Y ® k To remove any doubt, we assume that Y ® k is singular and by a normal

crossing divisor we mean that each intersection is defined over k and its completed
local ring is isomorphic to icgs, t]\/(st). We define (70/c)00 s(X®K)\(Y®ic)smë,
and (Y ® k)° (Y ®k)\ s(X ® k).

From the point of view of a general theory this is a very specific situation, nonetheless

it (and its appropriate generalization) is the one that occurs for Shimura curves

(respectively, higher-dimensional PEL Shimura varieties); see §5. In fact, condition

(iii) is only put to have "cleaner statements"; it holds in the case of Shimura curves.
Under these conditions, we prove in §3 the following result.

Let X, 2) be the formal schemes obtained, respectively, by completing X, Y

along their special fibres. The induced morphism 2) —>¦ X is still denoted by n.
Let 7Trig : SJrig -> Xrig be the induced morphism of rigid K-spaces à la Raynaud;
cf. §2.1. In §2.3 we define a "measure of singularity" v%(P) e Q-° (respectively,

V2)(<2) G Q-°) of a point P of %ng (respectively, 2)rig); the definition is

modelled over the notion of measure of supersingulanty for modular curves. For

every interval / clwe have an admissible open set 2)rig./\ whose closed point
are {Q g 2)rig : v<y(Q) g /}. The set Xrig/ is defined similarly. The following
theorem is proven in §3.

Theorem A. Assume e > 1. The morphism nrig : 2)rig —>¦ Xrig admits a section

This section is maximal, namely, it can not be extended to any connected admissible

open properly containing Xrig[0, e/(e + 1)).

The reader acquainted with the theory of canonical subgroups will recognize that
this theorem implies the classical existence theorem for canonical subgroups over
modular curves, including the further statement (that to the best of our knowledge is

not recorded in the literature) that the region over which one defines the canonical

subgroup is the maximal possible, even from the point of view of maps of rigid spaces.
The following theorem, proven in § 4, will also be familiar to that reader as giving the

behavior of the measure of supersingularity upon passing to a quotient by a subgroup
of order p. We introduce the following terminology: Let Q G 2)rig. We say that Q
is (i) canonical if v^(Q) < e/(e + 1); (ii) anti-canonical if v^(Q) > e/(e + l);and
(iii) too singular if v^(Q) e/(e + 1).
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Theorem B. Let w be an automorphism of 2) that permutes the two components

ofïï). We denote by w also the induced automorphism ofïï)ng and its effect ofpoints

byQ^ Qw.

(1) vx(7TngQ) 00 vx(7TngQw) 0. In this case Q is canonical if and only

if Qw is anti-canonical.

(2) // vx(7Trigß) < (e + I)"1 and Q canonical, then vx(7tngQw) e ¦ vx(7tngQ)
and Qw is anti-canonical.

(3) If vx(7TngQ) (e + I)"1 and Q is canonical then Qw is too singular.

(4) If (e + l)~l < vx(7TngQ) < e{e + l)~l and Q is canonical, then vx{nrigQw)
1 - vx(7TngQ) and Qw is canonical.

(5) If vxi^ngQ) < e(e + I)"1 and Q is anti-canonical, then vx(nngQw)
e~lvx{nrigQ), and Qw is canonical.

(6) If Q is too singular then vx(xngQw) (e + I)"1 and Qw is canonical.

Acknowledgments. The authors benefited from an example of R. Coleman (private
communication) that inspired the proof of Proposition 3.8. We also wish to thank the
referees for a very careful reading of the manuscript and useful suggestions.

The first-named author was partially supported by an NSERC grant no. 227040.
The second-named author would like to thank CICMA and the department of
mathematics at McGill university for their support and hospitality.

2. Background material

2.1. Rigid analytic varieties and formal schemes. We recall here the connection
between rigid analytic varieties and formal schemes as developed by Raynaud and

Berthelot. Our exposition follows [BLI], [BLII], [Ber], [deJ2].

Let R be a valuation ring of Krull dimension 1, complete and separated with
respect to the 3-adic topology, where 3 (et) is contained in the maximal ideal
of R. Let K be the field of fractions of R. For free variables § (§i ,...,§„) we
let R(i=) {J2V cvÇv ^ R^l ¦ limcv 0} be the strictly convergent powerseries,
i.e. precisely those that converge on the polydisc {{a\, an) : \a\ | < 1 for all i}.

Recall that for a general commutative ring B and an ideal J of B one defines the

J-torsion of B as the ideal {b e B : Jnb 0 for some n e N}. If / (gi,..., gr),
the /-torsion is the kernel of the canonical homomorphism R —>¦ YYi=i ^[g;"1]- ^
this ideal is {0} we say that B has no /-torsion.

An admissible R-algebra is an i?-algebra with no 3-torsion (equivalently, flat
over R) that is isomorphic to R{^)/a, where § (§i ,...,§„) for some integer n; it
implies that a is a finitely generated ideal. For us, the admissible i?-algebras are the
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building blocks of two different categories - a category of rigid spaces and a category
of formal schemes.

An affine formal .ft-scheme X is called admissible if it is of the type X Spf (A),
where A is an admissible i?-algebra. We may then write X lim Xx, where

X^oo
Xx := X®(R/(mk)),X e N, can be identified with the scheme Spec(A® R/(mk)).
Being admissible is a local property and so one gets a natural definition of an admissible

formal R-scheme.

The notion of admissible blow-up is needed to define an equivalence of categories
between a category of formal schemes and a category of rigid spaces. The definition
of admissible formal blow-up is designed to be local on the base. We review, thus,

only the affine case. Let X Spf (A) be an affine admissible R -formal scheme,
A R{t;)/a. Let srf be an open ideal, i.e., containing (mk) for some X > 0. The
admissible formal blow-up of X at stf is X' lim Proj 0^o (V" ® Ox/(mk))

a—y oo

with the canonical map q> : X' —>¦ X. Then X' is an admissible formal .R-scheme over
which &/&£/ is invertible.

Let srf (/o,..., fm) and let <p: X' -> X Spec(A) be the usual scheme fhej
ory blow-up of A at the ideal stf. Then, upon taking (m)-completion of <p: X' --* X
we get <p: X' _j> X. On the other hand, <p: X' -> X admits a local description.
The scheme X' has an affine cover by {Spec(A-) : i 0, l,...,m}, where

To clarify, in the definition of A- (and similarly below), the notation (/; - torsion)
refers to the /-torsion ideal, where / is the principal ideal (/,). Then the (uj)-completions

of A\, A'! are given by A'. AHjUx -torsion) and A'! A(&, f-f)

A(^, jr)/{fij: ~ //); they give rise to an affine covering {Spf(Ai) : i

For an admissible i?-algebra A R(Ç)/a, let Ang := A®RK
this is an affinoid K -algebra. This construction extends to provide a functor

rig : {admissible formal .^-schemes} —>¦ {rigid ^-spaces}, X \--* Xrig.

One calls Xrig the generic fibre of the formal .R-scheme X.

Theorem 2.1 (Raynaud). The functor rig is an equivalence of categories between

(i) the category of quasi-compact admissible formal R-schemes, localized by admissible

formal blow-ups, and (ii) the category of quasi-compact and quasi-separated
rigid K-spaces.

It is easy to see from the construction that a flat morphism of formal schemes

induces a flat morphism of rigid spaces. The converse is also true [BLII, Thm. 5.2]:

every flat morphism of rigid /iT-spaces comes from a flat morphism of suitable formal
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schemes yielding the given rigid spaces. A flat morphism in the category of rigid
spaces has image which is a finite union of affinoids, in particular, it is open [BLII,
Cor. 5.11].

We will need to use the specialization map. In the affine case, the points of Xrig are
the maximal ideals of the algebra A®R K; these are in bijection with quotients of A
that are integral, finite and flat over R. If T is such a quotient (it is the valuation ring of
a finite extension of K), corresponding to a point t e Xng, we get a closed immersion
of formal i?-schemes Spf(T) —>¦ Spf(A), whose image is supported on a closed point
of X that we denote by sp(f • The definition can be extended to any formal ^-scheme.
We get a morphism of ringed spaces sp : Xvig -> X [SGA4, IV 4.9]. For every affine

open U Spf (B) c X, we have sp-\U) Ung.
Assume that R is a discrete valuation ring with residue field k. In [Ber] Berthelot

generalizes the above construction to associate a generic fibre to any locally noetherian
formal scheme X flat over R that satisfies a condition weaker than admissibility: that
the special fibre of X, denoted by Xo and defined by the ideal of definition y, is

a scheme locally of finite type over k. This condition is independent of the choice

of ,J^ and coincides with admissibility if m &% is an ideal of definition for X. We will
describe the construction in the affine case. Let X Spf (A) and / H°(X, J^)
with generators gi, gr. For n > 1 define

An=A(Ti,..., Tr)/(g1 -TuTx,...,gnr- mTr).

The condition on X implies that An /m An is finitely generated over k and hence Xn

Spf An is an admissible formal scheme over R. Applying Raynaud's construction we
obtain a rigid analytic space £"ig. For m > n we have a homomorphism Am ->¦ An,

defined by sending 7} to g™~nTi, inducing a morphism of rigid spaces £"ig -> %™lg.

It is easy to see that this morphism is an open immersion and identifies £"¦ with the

subdomain of X™ over which |g,(x)| < Inrl1/". The generic fibre of X, denoted as

before by Xrig, is defined to be the union of £"ig via the above inclusions. The rigid
spaces £"ig form an admissible cover of Xrig. The construction yields a functor rig
whose target is the category of quasi-separated rigid ^-spaces.

As an illustration, take X to be Spf(/?[[§i,..., i-rJ) with the ideal of definition
/ (m, §i,..., §r). Then Xrig is simply the open unit polydisc of dimension r,
which is not quasi-compact, and £"ig c £rig is the affinoid subdomain over which

l£?l < |ro-|1/n, which is isomorphic to a closed unit polydisc, and hence is quasi-
compact. Similarly, for X Spf (R^_x\, X2^/(x\X2 — a)), where a e R, one sees that

%ng is the open annulus over K with radii (\a\, 1).
As in the admissible case, one can define a specialization map sp : Xrig —>¦ X by

taking the direct limit of the maps £"¦ —> Xn --* X. The following is Proposition

0.2.7. of [Ber].
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Proposition 2.2. Let notation be as above. Let 3 ^ %o be a closed subscheme.

Let %A3 denote the formal completion ofX along 3- Then sp~1(3) is an admissible

open subset of Xrig and the canonical morphism 3^g ~* ^rig induces a functorial

isomorphism X^z sp~1(3)-

2.2. Algebraic geometric input. As in the Introduction, let 0 be the ring of integers
of a finite extension K of Qp, zu a uniformizer of 0 and k 0 /{zu) the residue
field. Let X, Y be relative curves over 0. We assume that X, Y are regular schemes,
X -> Spec(ö) is smooth and n : Y -> X is a finite flat morphism of degree e + l.
Moreover, we assume that (i) there exists a section s: X®k --* Y <g> /c to n <g> /c, that

(ii) the special fibre Y ® k is a reduced normal crossing divisor with two components,
and that (iii) the set theoretic preimage (n ® k) 1(n ® k){Q) is equal to Q for any
singular point Q e Y ® k.

The following lemma must be known to the experts; for lack of a reference we
provide a proof.

Lemma 2.3. Let (A, m) be a regular two-dimensional complete local ring containing

0, such that 0 is integrally closed in A, m n 0 (uj), and k ç A/m is an
algebraic extension.

(1) If A ® k is regular then A ö[[x]].

(2) IfA®K kIs, tj/(st) then A 0gx, yj/(xy - zu).

Proof. First note that A/m 2 ^ and so the local homomorphism W(A/xn) --* A
has image containing W(k) viewed as a subring of 0. Since A/m is an algebraic
extension of k, W(A/xn) is integral over W(k). Since 0 is integrally closed in A it
follows that W(A/m) is contained in 0. In particular, A/m /c.

If A ® /c is regular it follows by Cohen's Theorem that A ® /c /cfl)c]]. This gives
a morphism 0 Q>]] -> A which is surjective by Nakayama's lemma; since both rings
are domains of the same dimension, we conclude that 0fxj --* A is an isomorphism
(the kernel is a prime ideal of height 0).

Assume then that A ® k k^s, tj/(st). Let x', y' e Abe elements reducing
to s, t, respectively. The homomorphism ö|[x, y]] --* A, taking x, y to x', y'
respectively, is surjective by Nakayama's lemma. Let p be the kernel; it is a prime
ideal of height 1. In fact p is a principal ideal, because 0 |[x, y ]] is a factorial ring and

by a theorem of Krull every prime ideal of height 1 is principal. We may therefore
write p (h(x, y)), where h(x, y) xyv — zuz for some v, z € ÖQx, yj. It
follows that A ® k k^x, yj/(xyv), where v is the reduction of v modulo zu.
Since k\[x, y]\/(xyv) k\[s, t]\/(st) by the map taking x \-+ sandy i-> f, it follows
that v is a unit. This implies that v itself is a unit and so A ö[[x, yj/(xy — zuz).

We next claim that the ring A is regular if and only if z is a unit. Indeed, if z

is a unit then A 6>[[x, yz~1^/(x ¦ yz~l — zu), which is easily checked to be
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regular. Assume now that A is regular. Then (zu, x, y)/I is a 2-dimensional k
A/rn vector space, where / (zu,x, y)2 + (xy — mz) and m, the maximal ideal
of A, is the image of (zu, x,y). So, for some c\, C2, C3 G A, not all in m, we have

c\tu + C2X + ciy g /. Such a relation gives modulo m the relation C2X + c^y g

(x, y)2. Since the cotangent space at the singular point is two dimensional with
basis {x, y}, it follows that modulo m we have C2, C3 G (x, y). Thus, we must
have C2, C3 g m. Therefore, A is regular implies that zu & I. Thus, m (mod m2) G

//m2 (mz)/xn2. It follows that z is a unit modulo m2 and hence is a unit.

Lemma 2.4. Let Q G Y be a singular point and P n(Q). There is a choice of
local coordinates at Q and P giving &yQ ÖQx, yj/(xy - zu) and &£p 0Q>]],

respectively, such that on the level ofcompleted local rings at Q and P the morphism n
is given by

t^x + (yu)e + f(y) + ujg, (2.1)

where f(y) 0 (mod (ye+l)) and u is a unit congruent to 1 modulo vu.

Proof. It follows from Lemma 2.3 that the map Y ->¦ X can be written at a singular

point Q G Y in the form of an & -algebra local homomorphism n* : &ftj --*

&lx,yj/(xy — zu). Now, upon reduction modulo m, we get a homomorphism of k -

algebras n* ® k : ic\t\ -^- k\x, y]\/(xy). By our assumptions on n ® k, the compositions

KltJ -> kIx, yj/(xy) > kIxJ and/c^I -> kQx, yV(xy) > iclyl are
0 XhH>-0

given, w.l.o.g., by t \-+ x and 1^/ + f\(y), where /iCy) 0 mod (ye+l) (the
existence of the section implies that every ramification index is equal to e). Thus, the

map 7T* ® k is determined by the image of f which has the form x + ye + f\ (y) +
xyf2(x,y).

Our goal now is to change coordinates on A := 6>[[x, yl/C^y — &?) so as to
simplify this map and still have the same presentation, namely, find x, y G A such

that 6>Qx, yl/Cxy — zu) O][x, y]\/(xy — zu). First note that since A is m-
adically complete the map of units Ax -> (A ® /c)x is surjective. Let m'

(1 + yfi{x, y)) G (A ® k)x and û any lift of it to Ax. Let x xû, y yû 1.

Then we have &lx, y"R(xy - zu) Glx, yj/(xy - zu) and the map ö[f] ->
0p, yJ/Cxy - ro-) has the form f h^ x + (jm)8 + /(y) + rug, where / is a lift
of /1 satisfying /(y) 0 (mod (ye+1)).

2.3. A measure of singularity. Let n : f^Ibea morphism of curves as in §2.2.
We denote by X, 2) the formal schemes obtained from X, Y by completion along
their special fibres. Let ß\, ßh be the singular points of Y. Let a\ n(ßi)
for i 1, h. Recall that by assumption the ai's and ßi's are defined over k.
Let DUi (respectively Dßt denote the inverse image of a\ (respectively ß\ under the

specialization map sp: Xrig —>¦ X (respectively sp: 2)rig --* 2J).



Vol. 81 (2006) The canonical subgroup: a "subgroup-free" approach 625

By Proposition 2.2 Dai is the rigid space associated to Spf (ö£a£) Spf (ö[f]),
using Lemma 2.3. Therefore Dai is an open disc of radius 1 with parameter t. This

parameter is unique up to t i-> t' te + nrz, where e e Ox and z G Ön>]].
For a general closed point P g Dai the value val(f(P)) depends on f, however,
if val(f (P)) < 1 then val(f (P)) yal(t'(P)) for any t' as above. We abuse notation
and define

bearing in mind that this is well defined only if val(f (P)) < 1.

Similarly, DA is the rigid space of Spf (ö^ft) Spf(0[[x, yl/Cxy-nr)). Therefore,

DA- is an open annulus of radii | m \, 1 with parameter x. For any closed point Q
in Dß;, define

V2)(Ô)=val(x(Ô)).

This definition is independent of the choiceof the parameters if chosen as in Lemma 2.4.

The reason is that any other such parameter x' is of the form x' xe + ujz,
where e G Ox andz G Glx,y^/(xy - m), and val(x(ß)) < 1.

Let S3 denote the complement in £rig of sp~l {ai, ah}). For a closed point P
in if we define vx(P) 0. By Proposition 3.1 below, the complement in 2)rig
of sp"1 {{ß\,..., ßh}) has two connected components,

^ sp"1 ((7 ® k)° - {ßi,..., ßh}),
and

For points in if00 we define v<q to be 0, and on if°° we define v<q to be 1. We
refer to v% and v«j) as measures of singularity. For an interval / of real numbers, we
define Xrig / to be the set of points of %ng where vx belongs to /. For U an admissible

open subset of Xrig we set UI U n Xâgl. We use a similar notation for 2)r;g.
We call if the ordinary locus of Xrig and its complement sp l({a\,..., a%})

Xng(0, oo) the singular locus of %ng. We have ^^"^^(O, oo)) 2)ng(0,1)
sp 1({ßi, ¦ ¦ ¦, ßh}) which we call the singular locus of 2)rig.

3. Main theorem

In this section we prove Theorem A of the Introduction, using the same notation.
Our strategy is to construct sections separately on the ordinary locus and the singular
locus and glue them by means of a general principle of rigid geometry. We start by
constructing a section to Jtng over the ordinary locus of %ng.
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Proposition 3.1. The map nrig induces an isomorphism between if00 and 2£. Therefore

there is a unique section s™ : if —>¦ 2)rig to nrig whose image is if00. Furthermore,

both S300 and f?° are connected. If e > I, then any section to nrig on 2"
coincides with s£°.

Proof. We show the existence of the section on the level of the formal schemes. The

curves (Y ® k)00, (Y ® k)° are connected reduced affine curves. Let U be the open
subset of 2) equal to the underlying set of (Y ® k)00 U (Y ® k)°. Then U is affine
in the formal schemes sense, namely, we have an open immersion Spf (B) --* 2)

whose set theoretic image is U. Under the specialization map sp: 2)rig -> 2) we
have sp-HU) 3?° U S300 and, moreover, J^0 U ^°° Ung (cf. the discussion
in § 2.1). We conclude the following: We have a morphism Spf (B) --* Spf (A),
induced by a homomorphism of nr-adically complete 0 -algebras A -> B, that yields
the morphism 2fQ U if00 —>¦ if and reduces to the morphism 7 ® k \ {A}?=i —>¦

X ® /c \ {«;}f=1 - It transpires that B ® k (A <g> k) @ B\. Using Hensel's lemma

to lift idempotents, we conclude that we have B A+ © 5+, with A+ ® k
A® k, Bf ® k B\. Using that A -+ A+ is a finite flat homomorphism reducing
to an isomorphism after ®k, we conclude that A A+. This gives the existence

of the section s00 : Spf (A) -> Spf (5), the analytification of which is the desired

sections^: if —>¦ if°°U if00 with image if00. In particular, if00, being isomorphic
to S3, which is a curve minus finitely many residue discs, is connected.

Furthermore, the morphism Spf (5+) -> Spf (A) is finite flat of degree e. To

show £jf° is connected it is enough to show that Spf(5^) is flat over Spf(0),
and has a reduced and connected special fibre (see Remark 3.2). But this is clear
since Spec(5j+ ® k) (Y ® k)°.

For the final assertion, note that the image of any section to nrig on if must be a

connected component of TTrig"1 {2f) ^°° U £?°, and hence it must be either £?œ

or £jf°. The latter cannot happen since nrig : £jf° --* 2£ is e-to-1 and e > 1.

Remark 3.2. Let 03 Spf (B) be an admissible formal scheme, with associated rigid
space 2$rig. It is possible that 2$rig is disconnected, yet the underlying topological
space of SB is connected. An example is provided when 0 is a ramified extension
of "Lp and we let B 0{x, y, T)/(xy — p, (x + y)T — uj). The associated rigid
space is a disjoint union of two annuli. The special fibre is three lines meeting at a

single point. Note though that B ® k k[x, y, T]/(xy, (x + y)T) in which xT is

nilpotent.
On the other hand, assume 53 is an admissible formal scheme over 0 such that 53rig

is affinoid (in particular 53ng Spm(5 ®& K) where B i7°(SB, 0©)). If 53 ® k
is reduced, then the connectedness of 53 implies the same for 53rig. Indeed, if not,
then there is a non-trivial idempotent element e e B ®& K. We show that e G B.
Note that by flatness of 53 over 0 we know that B <-^ B ® K. If e <£ B, we can
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write e f/urn, where n > 0 is minimal, and / e B. Then we have f2 m11/.
Reducing modulo m, we get / ^ 0 and f2 0 which contradicts our assumption
on <B ® k. Therefore e g B. It then follows that the decomposition of the "generic
fibre" 5 ® K, namely of the rigid space, induces a decomposition of the formal
scheme Spf (5).

Let X be a K -rigid analytic space, and U c X be an admissible affinoid subdo-

main. An affinoid subdomain U c V c X is called a strict neighborhood of U in X
if the reduction of the inclusion i : U --* V factors through an affine scheme which is

finite over Spec(/c). See [CGJ, §3] for more details. Any strict neighborhood of S3

in Xrig contains a domain of the form £rig[0, a] for some positive a g Q; cf. [KL,
Prop. 2.3.2]. The following is Lemma 6 of [CGJ]. See also [Ber].

Lemma 3.3. Let f: % ->¦ Xbe a finite flat morphism ofrigid analytic curves. Let U
b e an affinoid sub domain of "X, and s : U --* % a section to f. Then s can be extended

to a strict neighborhood of U in X.

Corollary 3.4. The section s°° extends to a section sj- over Xrig[0, a] for some

positive aeQ.

Next we discuss sections to nrig over the singular locus, i.e. where v% > 0.

Proposition 3.5. The map nrig: 2)rig(0, 1) --* £rig(0, oo) admits a section t on

£rig(0, e/{e + 1)) whose image is 2)rig(0, e/{e + 1)). Such a section is unique. If
e > 1, then we have the following stronger uniqueness result: any section to nrig on

a connected admissible open subset of %ng(0, e/{e + 1)) which contains some circle

Dai [a, a] is obtained by the restriction oft

Proof. We have 2)ng(0,1) LI; Dßt md £rig(0, oo) ]_[i D«t- Since bY 0ur
assumptions n 1(aj) {ß;} as sets, wehaveTrrig"^^) Dß., and hence, for the

first assertion, it suffices to show that for each i the map 7rrig : Dßt -> DUi admits a

section on 7)^(0, e/(e+l)) whose image is D^(0, e/(e+l)). The map nYig : Dßt ->

Dai isfheanalytificationofthemapTr: Spf(öyft) -* Spf(ö^) by Proposition 2.2.

By Lemma 2.4, choosing local coordinates, this map is given by

> Olx, yH/(xy -m), t ^ x + uye + f{y) + mg,

where f{y) 0 (mod ye+l), u, g e (9|[x, yj/{xy — zu), and m is a unit. Let ù, g
denote arbitrary liftings of u, g to 6>[[x, yl and define go(x) g(x, m/x), uo(x)
u(x, uj/x), and fo(x) f(ur/x). Then the map 7rrig : Dßt --* Dai is the map
characterized by

t(nngQ) x{Q) + uo(x(Q))(m/x(Q)r + fo(x(Q)) + mgo(x(Q)).
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Lemma 3.6. Let Q £ 2)ng-

(1) // VÔ) < e/(e + 1) then vx(nngQ)

(2) // vyiQ) > e/(e + 1) then vx(nngQ) e(\ -
(3) // vfB(Q)= e/(e + 1) then vx(nngQ) > e/(e + 1)

<e/(e + \).

0 a e/(e + 1) 1-a/e 1

Figure 3.1. The effect of jrrig on measures of singularity.

Proof. The statement is clear for Q e S300 U 5°. If ß e DA satisfies v^(Q)
val(x(ß)) < e/(e + l),then

val(x(Ô))<min{val((nT/x(Ô))Ê), val(/o(x(ß))),

This implies that val(f(7Trigô)) val(x(ß))- The other cases are similar.

From the lemma it follows that

7TnflDai(0, e/(e + 1)) DA.(0, e/(e + 1)) ]J Dßi(e/(e + 1), 1).

Indeed the lemma proves something stronger: for any a e Q satisfying 0 < a <
e/{e + 1) we have

-lTrig"1 (A« [«, «D ÖA. [1 - a/g, 1 - a/e] U Dft [a, a]. (3.1)

This shows that the inverse image of DUl (0, e/(e + 1)) under 7rrig has two connected

components each of which maps onto DUi (0, e/(e + 1)) in a finite flat manner.
We show that the finite flat morphism7Tng: Dßi(0, e/(e+l)) -> Da.(0, e/(e+l))

is of degree one and hence is an isomorphism. The inverse of this map provides the
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desired section t. To calculate the degree we restrict the map to a circle Dai [a, a] with
0 < a < e/(e + 1). It is therefore enough to show that 7rrig : Dßt [a, a] --* Dai [a, a]
has degree one. We show this by reduction modulo vu. Our argument is based on the

following general principle.
Let 4> ¦ Spm(5) -> Spm(A) be a finite flat morphism of ^T-affmoids. Let L

be a finite field extension of K and let 4>l ¦ Spm(5 ®k L) -> Spm(A ®k L) be

the induced morphism. Let 9 be a uniformizer of L and let n be a positive integer;
let {B ®k L)° denote the (9z,-algebra of functions of supremum norm at most 1.

Define B (B ®K L)°/\6n),_mâ similarly for A. Let ~4>L : Spec(5) -> Spec(Ä)
be the induced map. Then, if 4>L is an isomorphism so is 4>. The argument reduces

to proving that 4>*L ¦ (A ®K L)° -> (5 ®K L)° is surjective, which, in turn, follows
from Nakayama's lemma.

To prove that the reduction of 7rrig : Dßt [a, a] --* Dai [a, a] is an isomorphism,
we first re-scale. We pass to a finite extension L of K with uniformizer 6 in which
there exists an element X of valuation a. Setting x Xxq and t Xto the map nrig
becomes a map between circles of radius one characterized by

fo(tfrigß) MQ) +

+ X~l MXxo{Q))

UsingO < a < e(e + l)~1 and/O) 0 (mod ye+l), one sees that this map reduces

modulo 9 to the identity map of 6L/(6)[T, 1/T].
For the second statement we argue as follows. Let U 2 Dai [a, a] be a connected

admissible open of £rig(0, e/{e + 1)) over which there is a section t' to 7rrig. Then

U, being connected, lies entirely within DUi (0, e/(e + 1)). By Lemma 3.6 the image
of U under t' is either a subset of Dßt (0, e/{e + 1)), or a subset of Dßt {e/{e + 1), 1).

In the former case, by the construction of t, it is clear that t' t\u- In the latter case,

t'(Dai [a, a]) is a connected component of Dßt [1 - a/e, 1 - a/e] by Equation (3.1).
However, since Dßt [1 —a/e, 1 —a/e] is connected and7rrig : Dßt [1 —a/e, 1 —a/e] --*
DUi [a, a] is e-to-1, we find that e 1, which contradicts our assumption.

Corollary 3.7. Assume e > 1. The morphism nrig : 2)rig --* Xrig admits a unique
section

which extends 5~.

Proof. By Corollary 3.4, s~ extends to a section st on Xrig[0, a] for some positive
rational number a < e/(e + 1). By the uniqueness assertion in Proposition 3.5 we
know that the restriction of s- to Xrig(0, a] is obtained as the restriction of t. This

implies that s~ and t glue together to form the desired unique section.
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Proposition 3.8. Assume e > 1. The section srig constructed in Corollary 3.7 is

maximal in the following sense: Let U be a connected affinoid inside £rig(0, oo)
such that it intersects both Xng(0, e/(e + 1)) and Xng[e/(e + 1), 1) nontrivially
Then there is no section to nrig on U.

Proof. Assume there is a section s to 7rrig on such U. As U is connected it lies
inside some Dai, and intersects both Da;(0, e/(e + 1)) and Da;[e/(e + 1), e/(e + 1)]
nontrivially. By [BGR, §9.7.2, Thm. 2] any connected affinoid of D&1 is the

complement of a union of finitely many disjoint open discs in a closed disc. A simple
calculation using the non-archimedean property of the norm shows that a closed disc
which intersects both DUi (0, e/{e + 1)) and DUi [e/{e + 1), e/{e + 1)] nontrivially,
must contain all of DUi [e/(e + 1), e/(e +1)]. Therefore, U contains the complement
of a union of finitely many disjoint open discs V\, Vr (which we may assume to
have radius e/(e + 1)) in the circle Dai [e/(e + 1), e/(e + 1)].

We first re-scale as in the proof of Proposition 3.5: let À e L be such that val (À)

e/(e + 1). Setting x Xxq and t Xto the map nrig : Dß.[e/(e + 1), e/(e + 1)] ~^

Dai [e/(e + 1), oo) becomes a map between a circle C of radius one and the closed

unit disc D characterized by

uo(Xxo(Q))(me/Xe+1)xo(Qre

The section s is defined on W, the complement in D of finitely many residue discs

which are the open unit disc together with X 1V\,..., X 1
Vr. The reduction s

of s : W ->¦ C, then, gives a map between A^i/(e) minus a finite number of points

(with parameter to), and A^i/(e) (with parameter xq) characterized by

UQ) xo(s(Q))

Here xo(s(—)) is a rational function in to and me/ke+1 is nonzero by our choice of k.

Degree considerations show that this is impossible.

We summarize the above results as a theorem (Theorem A of the Introduction).

Theorem 3.9. Assume e > 1. The morphism nrig : 2)rig -? ^rig admits a section

This section is maximal, namely, it can not be extended to any connected admissible

open set properly containing Xrig[0, e/(e + 1)).

The canonical subgroup of an elliptic curve can be thought of as a certain lifting
of the kernel of Frobenius from characteristic p [Kat, Thm. 3.1]. We prove a similar
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result in our setting. The section s°° srig \% was constructed on the level of formal
schemes, and by its construction it reduces to s mod m.

Fix DUi and let t be a coordinate on it, obtained from an isomorphism O^"1

0[[f]] as in Lemma 2.4. Also fix an isomorphism &y 0[[x, yj/(xy — ur) as in
loc. cit.; x is a parameter on Dßt and xy m.

Let yp : Spm(L) —>¦ Dai correspond to a closed point P which is contained
in Da.(0, e/{e + 1)). Thus L is a finite extension of K. Let ySng(P) srig o

yp : Spm(L) -> Dßt correspond to the image of P under srig. Letyp : Spf(0z,) -> X
denote the extension of yp to the formal model, and similarly define ySng(p). Let

YP, ysa (p) denote, respectively, the reductions of yp, ySng(P) modulo the element

uj/t{P) of &l. Let s' denote the base change of s: X ® k -> Y ® k from k to
For simplicity we denote the /c-algebra &l/(ut/î(P)) by R.

Proposition 3.10. For closed points P G DŒi (0, e/(e + 1)) with t(P) r g 6l the

section &xigreduces modulo tu Ir to s'. More precisely, for any P g Da;(0, e/(e + \))
we have YSû%{p) s' o y P.

Proof Let us denote the image of an element a€ÖiinÄ:= 0L/'{zu/'t {P)) by a.
Since P e Dai, the map yp : Spf (0L) -> X factors through Spf (0^"O- Similarly

ysr-lg(P) factors through Spf(0y Therefore, it is enough to prove the statement

after replacing X with Spf (0^"O and 2) with Spf (0yft). Then

7p : Spec(i?) -> Spec(0C"* ® R) Spec(RM)

is given by t h^ f (P). Similarly, the map

y {P) : Spec(R) -> Spec(0yft ® R) Spec(i?|[x,

is given by x i->- x(5rig(P)), y i-^- y(Srig(^*))- From the proof of Lemma 2.4, we see

that the section

/: Spec(#D>]]) Spec(0^ ® /c ®K /?) -^ Spec(0y ft

is given by i i^ l, )> i-> 0. Hence, it is enough to show that y(Sng(P)) 0

and x(Sng(P)) t(P). For the first equality notice that by Lemma 3.6 we have

val(f(P)) val(x(5rig(P))) and hence y(sng(P)) uj/x(sng(P)) is divisible by
uj/t{P). Since val(f(P)) val(x(srig(.P))), to prove the second equality it is enough
to show that t(P) and x(sx\g(P)) have the same reduction modulo y(Sng(P))
m/x(Sng(P)). But that is clear since from the proof of Proposition 3.5 we have

t(P) x(Sng(P)) + uo(x(sng(P)))(y(sng(P)))e

+ Mx(sng(P))) + mgo(x(sng(P))),
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and Mx(snë(P))) 0 (mod y(sng(P))e+1).

Definition 3.11. Let Q e 2)ng.

(1) We say that Q is canonical if Q is in the image of srig. By the construction

offing, this is equivalent to having vsg(Q) < e/(e + 1). If Q is canonical, then

by Lemma 3.6 we have v^{Q) vx(7TngQ).

(2) Wesaythat Q is anti-canonical if v^{Q) > e/(e+l). In this case by Lemma 3.6
l

(3) We say that Q is too singular if va)(g) e/{e + 1). This is equivalent

lovx(nngQ) >e/(e + \).

Remark 3.12. In the context of modular curves, the measure of singularity v«j) was
first introduced by Buzzard in §4 of [Buz2]. In [Co] this measure, referred to as the

Buzzard invariant, was used to identify "circles" corresponding to the image in Xo(p)
of points on Xo(p2) whose reductions lie on the horizontal components of the special
fibre of Edixhoven's stable model of Xq(p2). As it was pointed to us by one of the

referees, the setting in this work seems suitable for carrying out Coleman's approach

(which is less explicit than this work, but contains observations in the same spirit),
and hence clarifying how his results can be extended to the case of non-trivial tame
level and to corresponding situations for other Shimura varieties.

4. Throwing in an "involution"

In this section we prove the following theorem (Theorem B of the Introduction).

Theorem 4.1. Let w be an automorphism ofïï) that permutes the components ofïï).
We denote by w also the induced automorphism o/2)rig o-nd its effect of points by
Q h^ Qw. Then:

(1) vx(jTngQ) =0<^ vx(7tngQw) 0. In this case Q is canonical if and only

if Qw is anti-canonical.

(2) // vx(jtngQ) <(e + I)"1 and Q canonical, then vx(itngQw) e ¦ vx(itngQ)
and Qw is anti-canonical.

(3) If vx(7Trigô) (e + I)"1, and Q is canonical, then Qw is too singular.

(4) //(e+1)"1 < vx(itngQ) < eie+1)-1, and Q is canonical, then vx(itngQw)
1 — vx(nrigQ) and Qw is canonical.

(5) If vx(nrigQ) < e(e + 1) 1, and Q is anti-canonical, then vx(nrigQw)
e~1vx(nrigQ), and Qw is canonical.

(6) If Q is too singular, then vx(nrigQw) (e + I)"1 and Qw is canonical.



Vol. 81 (2006) The canonical subgroup: a "subgroup-free" approach 633

We begin by proving the following lemma.

Lemma 4.2. For any Q e 2)rig we have

Proof. We first note that w(S'00) 2f°, and hence for Q e 2?°° U 2f° the result
follows from the definition of v<y. Assume Q e Dß{ for some 1 < i < h. The

automorphism w induces an isomorphism between Dßt and Dß} where ßj ßf.
Let x, y be coordinates on Dß; as in Lemma 2.4. Then rj := w*x and § := w*y
are coordinates on Dß} such that D^. is the analytification of Spf(0[[§, ??]]/(§ rç —

m)). Because w switches the two components of Y ® k, § is a local parameter on
the component containing (7 ® /c)00 at the point ßj. Examination of the proof of
Lemma 2.4 shows that there is a local parameter r on Da., and local parameters (f, i))

on Dßj such that Ç i=û, fj r\u l, where m is a unit in 0K, vl/(t;V — ^)» and

such that (r, |, ?5) are related as in the statement of Lemma 2.4.

By our definition, we can use f to calculate v^j on D^.. Therefore

val(y(Ô)) 1 - val(x(ß)) 1 - vsg(ß).

We now prove the theorem.

(1) is clear.

(2) As Ô is canonical, Lemma 3.6 implies that V2)(ß) v^(7rrigô) < (e + 1) 1.

Therefore by Lemma 4.2 we have v<y(Qw) > e(e + 1) 1, which means that Qw is

anti-canonical. It now follows from Lemma 3.6 that vx(jTngQw) e(l — v%)(Qw))

(3) As ß is canonical, Lemma 3.6 implies that V2)(ß) v%{nrigQ) (e + 1) l,
and therefore v^{Qw) e{e + I)"1. This shows that Qw is too singular. It follows
from Lemma 3.6 that vx(7TngQw) > e{e + I)"1.

(4) Since Q is canonical, we have v%)(Q) vx(nngQ) > (e + 1) 1, and hence

v%(Qw) < e(e + I)"1. This shows that Qw is canonical. Therefore, vx(jtngQw)
V2)(ÔW) 1 " Vsg(ß) 1 - Vx(7TngO).

(5) Since ß is anti-canonical, Lemma 3.6 shows that vaj(ß) 1—e~1vx(nngQ) >
e(e+l)"1. Therefore, v^(Qw) l-v^(Q) < (e+l)"^andhence Qw is canonical.
We have vx(nngQw) vy(Qw) 1 - vy(Q) e-lv%(nngQ).

(6) Since v^(7rrigô) > e(e + I)"1, by Lemma 3.6 we have vaj(ß) e(e + I)"1,
and hence v^{Qw) (e + I)"1, This shows that Qw is canonical. Therefore, we
have vx(nngQw) vy(Qw) (e + I)"1.
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5. Applications

In this section we review some of the structure theory for Shimura curves and show

that our results apply to these situations. Our main references are Drinfeld [Dril],
[Dri2] andCarayol [Car]. In particular, we reproduce the classical results on canonical

subgroups [Kat], as well as more recent developments [Kasl], [Kas2].
Let F be a totally real field of degree d with ring of integers Gp and let B/F be

a quaternion algebra split at exactly one infinite prime of F. Let R be a maximal
order of B. Let p be a finite prime of F at which B splits, Fp the completion of F
at the prime p, 6p,P its ring of integers with a uniformizer m, and identify B ®F Fp

wifhM2(i7p) so that .ft 00^.(9^ M2(&F,p)- With B there is associated a projective
system of Shimura curves, initially over the complex numbers but, by Shimura's

theory of canonical models, in fact over F. Let G ResF/q>(Bx). Let X be

the G(IR)-conjugacy class of the homomorphism Cx —>¦ G(R) sending x + iy to

[(4x),l,-..,l] e GL2(M) x {W)d~l. Let K be an open compact subgroup of
G(A/) of the form Kp x K*>, where Kp ç GL2(0f ,p) and ^Tp is "away fromp". The
Shimura curve associated with K is MK(G, X)(C) G(Q)\G(A/) x X/K.

5.1. The case F Q. In this case the Shimura curves Mk (G, X)/Q afford a natural
modular description. Consider the functor associating to a scheme S the isomorphism
classes of triples (A, i, a)/S, where A/S is an abelian scheme of relative dimension 2,

i: R —* Ends (A) is an injective ring homomorphism and a : R/NR --* A[N] is an

isomorphism of .ft-group schemes; cf. [Dri2, §4], [DT, §4], [Buzl]. (Such objects

are sometimes called "false elliptic curves" because of the similarity with the case

of B Af2(Q) and the usual modular curves.) This corresponds to the case where K
is r(JV) - the elements of (R ®z Z) ^(viewed as a subgroup of G(A^)) that reduce

to the identity element under (Ä®ZZ)X -> {R®ï Z/NZ)x. For a general K, K
contains F(N) for some A^ and we take a up to K -equivalence (étale locally). This
makes sense in all characteristics once the level structure is understood in Drinfeld's
sense for which we refer to [Dril], [KM]. For K small enough, there is therefore a

scheme M^ over Spec (Z) representing this functor such that M^®gQ Mk(G, X).
As a module over R®ZP Af2(Zp), the /^-divisible group A[p°°] of A/S is a

direct sum A[/?°°]i © A[pœ]2 of two isomorphic /^-divisible groups over S, where
the decomposition is determined by the orthogonal idempotents (Jo) an(^ o m

M2(ZP); furthermore, these idempotents are conjugate under (JJ), which induces
the isomorphism A[/?°°]i A[p°°]2. Let Kp be small enough and let Kp be the

standard Iwahori subgroup of GL2(Zp). The open compact subgroup K Kp x Kp
corresponds to a choice of level structure away from p (given by Kp) and a choice
of a non-trivial ideal H c M2(Z//?Z). Such H corresponds, via the /^-equivalence
class of a, to an .ft-invariant subgroup of A[p] of degree p2. The level structure at p
can therefore also be expressed as an isogeny / : A\ --* A2 of false elliptic curves
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2whose kernel is of degree p and is killed by p. The conditions on / can also be

formulated by requiring / to have "false degree" p, i.e. that f'of [p] (see below
for the exact meaning of this formula); cf. [DT, p. 453], [Kasl, §§10-11].

Let A/k be a false elliptic curve over an algebraically closed field k of
characteristic p. One can prove, by means of the idempotents we have chosen, that the

functor of infinitesimal deformations of A (resp., together with an Iwahori level structure

Kp c GLi(Lv)) is equivalent to the functor of deformation of a 1-dimensional

/^-divisible group of height 2 over k (resp., with a ro(jc)-level structure). Thus, this
is exactly the situation arising for elliptic curves and is well understood; cf. [Buzl].
One concludes for such choice of K that every geometric connected component of
the special fibre M^ ®FP of M^ consists of two smooth curves crossing transversely
at the supersingular points and so is a normal crossing divisor. Moreover, the natural

morphismM^®Fp —>¦ Mgi^cz^xä^®^ is finite flat of degree p+\ and admits the

usual section taking a false elliptic curve A with Kp-structure to (A, Ker(FrA)) with
the same Kp-structure. The other component is isomorphic to Mgl2(Zp)xKp <S> ¥p
as well. Indeed, the morphism MK ® ¥p -> Mcl2(Zp)xkp <S> ¥p induces on it a map
which is bijective on geometric points (the pre-image of a point Ais (A, Ker(VerA)).
Hence the map is purely inseparable of degree p.

There is an automorphism w of Mk that is best described by its action on objects:
an Iwahori level structure f : A\ --* A2 of false elliptic curves is sent by duality
to f : Al2 -> A\. We remark here that every false elliptic curve carries a principal
polarization compatible with the ^-action [Dri2, §4], hence we get f' : A2 --* A\,
whose isomorphism class is well defined (independent of the choice of polarization).
If the kernel of / is connected (resp. étale) then the kernel of f is étale (resp.
connected). It follows that w permutes the two irreducible components ofevery geometric
connected component of Mk ® ¥p. Finally, there is a finite extension ¥q 2 ¥p over
which all the connected components of M^: ® ¥p and Mgl2(Zp) x kp <S> ¥p are defined
and each connected component is a normal crossing divisor. Using argument as in
Remark 3.2, and the fact that M^ ® W(¥q) is flat over W(¥q) and has reduced special
fibre, one find that the connected components of M^ ®F? (resp. Mgl2(Zp) xkp ®¥q are
in bijection with the connected components of the generic fibre. We conclude that each

connected component Y of M^ ® W(¥q) and its image X ç Mgl2(Zp)xä:p <S> W(¥q)
satisfy the hypotheses of this paper. Moreover, a descent argument, using the uniqueness

of the section on each connected component (see Proposition 3.5), allows one to

get a section over Mgl2(Zp) xkp®Qp defined over Qp. The application of our results

gives a new proof for the existence and other properties of canonical subgroups of
false elliptic curves, recovering Theorem 11.1 and Lemma 12.5 of [Kasl].



636 E Z. Goren and P. L. Kassaei CMH

5.2. The case [F : Q] d > 1. In contrast to the previous case, when F ^ Q there
is no natural modular description of the Shimura curves associated to B. Instead, by
making an auxiliary choice of a CM field L/F in which p splits, one can associate

to the algebra B ®f L another algebraic group G' with the same derived group as

that of G. The curves MK/(G', X')/F associated to G' are PEL Shimura curves.
These auxiliary curves play an important role in Carayol's construction of an integral
model for MK{G, X)/F over G Gp,p, since they are closely related to the Shimura

curves defined by G [Car, §4]. Carayol proves that such a model M^ exists, and

that there is a universal /^-divisible G -module (é of (O-) height 2 over the projective
limit Moo of Mk over K. This /^-divisible group is constructed as a certain "piece"
of the /^-divisible group of the universal abelian variety with additional structure

existing over (the projective limit of) the Shimura curves MK/(G', X')I&F. Note
that the /^-divisible group (é does not carry an R ® G -structure. In a moral sense, this
structure was already used in reducing the height of the p -divisible G -module to 2 (this
corresponds to choosing a particular piece of the /^-divisible group of the universal
abelian variety over MK> {G', X')/QF and is analogous to the process indicated above

for F Q). For details see [Car], in particular §§3.3, 6.3. We discuss this further.
Assume first that K GL2(6>) x Kp. Thus, no level structure is imposed at p.

Carayol constructs a /^-divisible group (é over Moo, which is a /^-divisible G -module
of height 2. For any geometric point x of Mk, there is a way to define the fibre (éx

by lifting x to a geometric point of Moo- Over a geometric characteristic 0 point x
of M^: we have (éx {Fp/G)2. The prime-to-p level structure plays a somewhat
dormant role. For example, Carayol proves [Car, §6.6] a "Serre-Tate theorem" to the

effect that the formal completion of the henselization of M^ at a geometric point x
of its special fibre pro-represents the functor of infinitesimal deformations for the p-
divisible G -module (éx. There are two cases:

(1) The ordinary case, where (éx is isomorphic to Fp/G © (Fp/G)1, where (-)'
denotes the dual /^-divisible group;

(2) The supersingular case where (éx is the "unique" formal G -module of dimen¬

sion 1 and height 2 [Dril, Prop. 1.7].

The deformation theory was worked out by Drinfeld. One concludes that in either
case the completed local ring is isomorphic to Gm\[t]] and hence that M^ is a regular
surface with a smooth special fibre; cf. [Dril, Prop. 4.2, 4.5], [Car, App. §3].

Carayol also considers the case of level structure Kv(n) x Kp, where Kv(n)
is the subgroup consisting of matrices in GL2(0) congruent to 1 modulo pn,

and Kp is small enough. There is a moduli interpretation of a sort to the ensuing

morphism n : M^p(„)x^p —>¦ MKp(o)xKt>', the group scheme ëf[p"] descends

to MKp(n)xKp and is equipped with a Drinfeld full pn-level structure, namely, a

morphism of (9-group schemes a: (p~n/O) -> (é\_pn\, such that the closed sub-

scheme J2pe(p-n/0)2 a(-f) is equal to ^[p"]. The scheme M^p(„)x^p is a torsor over
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2
Aut((p n 10) xM^p(o)x^p and the morphism it is the natural one (in particular its

fibres are principal homogenous spaces for Aut((p n/O) Such level structures

were introduced and studied by Drinfeld in [Dril, p. 572], developed more in [Car,
§7, Appendix], and studied extensively in [KM]. Again Carayol proves a "Serre-Tate
theorem" as to the nature of the completed local rings [Car, §7]. He also proves that the

morphism n extends the natural morphism MK („) xKp (G, X) --* MK (o) xkp (G, X)
induced by the inclusion Kp(n) x^h Kv(0) x Kp.

As Carayol remarks [Car, §0.4], the construction and results extend to any choice
of level subgroup at p; in particular, for K Kp x Kp, where Kp is the Iwahori
subgroup. The scheme MKpXKp then carries a finite flat group scheme Jf? (étale

locally) with a Drinfeld level structure p~l /& --* Jf such that

equal to Jf as a closed subscheme. The following conclusion follows from Carayol's
work: The completion of the henselization of M^p x Kp at a geometric characteristic p
point x is the ring that pro-represents the functor of infinitesimal deformations of the

divisible 6-module (éx together with an 6-subgroup scheme of order q \&/p\
killed by p. This moduli problem can also be phrased in a balanced manner. It can be

viewed as deforming a pair of divisible 6-modules of height 2, say (éx, (é'x, together
with an 0-isogeny (éx -> (é'x of degree q whose kernel is p-torsion.

The situation is again very similar to elliptic curves with To (p) -level structure, and

in particular the following holds. The scheme M^p xKp is a regular two dimensional
scheme, flat over GpjP, the morphism n is finite flat of degree q + 1 and the nature
of n at every point is completely understood. In particular, there are two pre-images
to every ordinary point of Mgl2(ö)xä:p and M^ xKp is regular at each; there is a

unique pre-image y to any geometric supersingular point and the completed local ring
of y is isomorphic to Ôm^s, t]\/(st — zu). For completeness we sketch an argument
below. We remark that one can also argue using the results in [Car] obtained for
full p-level structure. However, Carayol uses an explicit description of the formal
G -module to obtain his results. Since we do not anticipate such description to be

available (or indeed useful) in higher-dimensional cases, using Carayol's result will
be contrary to our thesis. We therefore provide an argument that should extend to the

more general situation we have in mind.

5.2.1. A sample case. Firstly, we quickly recall the technique of local models in
the particular situation of elliptic curves, which serves as a good sample case for our
problem.

The deformation theory of elliptic curves (or abelian varieties) can be studied as

follows. Given a characteristic p closed point x of a moduli space M of elliptic curves
with level prime to p and its universal object /: S --* M, choose an open affine
neighborhood U b x and a trivialization of M\R(S'/U) GJj. The variation of Hodge
structure R° f^Q^/u —^ MjR(<^/ U) provides a morphism U --* Grass, where Grass
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is the Grassmann scheme of locally free, locally direct summands of rank 1 of 0^.
One then shows, using the crystalline theory developed by Grothendieck, that this

morphism is étale and so is an isomorphism on the level of completed local rings
of x and its image in Grass; cf. [deJl, DP]. If one wants to work instead with the

/^-divisible groups, one may replace M\R by a similar object provided by the theory
of displays as developed by Zink, or by the theory of Cartier-Dieudonné modules, or
any other theory studying deformations of /^-divisible groups. For example, [RZ, §3]
choose the Lie algebra of the universal vectorial extension of the /^-divisible group.
By analyzing the Grassmann scheme, one therefore establishes that the completed
local ring is D W(k(x))M.

Under this method, the formal scheme representing the infinitesimal deformation

problem of an elliptic curve with a subgroup of order p may be translated to a

(formal) incidence variety. We think of the moduli problem as the one for a cyclic
isogeny h : E\ -> £2 of degree p between elliptic curves and we are interested in the

completed local ring of the point on the moduli space that corresponds to such data

over a finite field k of characteristic p. One may choose the trivialization of the two

MjR(<f /Spf(A)), A D) the completed local ring at E;, such that the isogeny is

given by 0
° [DP, §5.3 ff.] or [deJl]. We are then parameterizing a pair of locally

free, locally direct summands (L\, L2) of rank 1 of D2 such that (J °) L\ ç L2.

In the ordinary case we get an L\ whose reduction modulo p is not killed by (Jo)
and the deformation problem is represented by the completion of the local ring of a

£-point x of P{y(p a and so is isomorphic to V7(£)M- In the supersingular case we

get an L\ whose reduction is killed by (Jo)- Let x be a ^-rational point of P^m
and let P be the blow-up of P{y(jt) at x. Its special fibre has a unique singular point
that we shall still denote by x. The deformation problem is pro-represented by the

completion of the local ring of x on P and so is isomorphic to W(k)ls, tj/(st — p).

5.2.2. The calculation of the completed local rings. Recall that the moduli problem
is phrased in a balanced manner. Let x' be a closed point of M^pX^p with finite
residue field k, and let x be a Äj-point supported on x', where k is an algebraic closure
of k. The situation we have is of two divisible 0-modules (éx, (é'x of dimension 1

and height 2 over k and an 0-isogeny h : (éx -> (é'x of degree q \&/(m)\, whose
kernel is killed by p.

Let (é be (éx or (é'x. The Lie algebra of the universal vectorial extension of (é,

which serves as a substitute for the first de Rham cohomology, is a free ^-module of
dimension 2. As mentioned above, the functor of infinitesimal deformations of (é is

pro-representablebyi?" 0nr[[f]], which carries auniversal object^". Thiscanalso
be proven by the same technique of local models applied to the relative Lie algebra
Lje(âf") of <gu and the Lie algebra Lie(y^") (Ru)2 of its universal vectorial
extension V(éu, which identifies the completed local ring of x with the completed
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local ring of the £-point, still called x, on the formal Grassmann scheme (Pjja)Ax.
The analogue of Lemma 5.5 of [DP] holds. Namely, one can choose isomorphisms

Ue(V&?) (Ru)2 andLie(V^u) (Ru)2 such that h is given by the matrix A

(o m (one snould use that the /^-divisible groups are in fact polarized, are "special
6-modules" in Drinfeld's sense and that h is compatible with the polarizations).
Therefore, the completed local ring of x is isomorphic to the formal incidence variety
in (¥lRU )Ax x (Pjja )Ax given by A, i.e., by the closed subscheme over which we have

In the ordinary case we find that the complete local ring is önr|[f]], and in the

supersingular case we find that it is 0nrQ>, tj/(st — ur). Finally, one may conclude
that the completed local ring of x' itself is & ®w{k) W(k)ftJ if x is ordinary and is

6 ®w(k) W(k\)\[s, t]\/(st — uj) if x is supersingular, where [k\ : k] < 2.

Given these results, it is straightforward to verify that the connected components
of the generic fibre of a suitable unramified base-change of MKpxKp -> Mgl2(6»)xa:p

satisfy the assumptions of this paper, including the existence of an automorphism w.
In particular, one has a unique (partial) section on each pair of connected components
of the generic fibres; a descent argument allows one to conclude that the section can

already be defined before base-change.

Remark 5.1. One may, of course, carry the same analysis for the Shimura curves

MKi(G', X'). If anything, the analysis is easier, since it is the one underlying
Carayol's results. Hence, the results of this paper apply to these cases as well.

Remark 5.2. As is clear from our discussion, whenever we are in a situation of curves
Y --* X such that Y (or the fibres) parameterizes group schemes, e.g. in the case of
usual modular curves where Y has a ro(jc)-level structure, or for pairs M^p x^p —>¦

Ma:p(o)xa:p (or the analogous situations for the groups G'), the construction of a

section as in this paper provides one with a group scheme over the region where the

section is defined. In particular our results reprove Theorems 3.1 and 3.10.7 of [Kat],
and Theorem 9.1 of [Kas2] on canonical subgroups of abelian schemes parameterized
by MKi{G', X'), and in addition provide an analogue of Theorem 3.10.7 of [Kat] for
such canonical subgroups.
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