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Non-vanishing for Koszul cohomology of curves

M. Aprodu and J. Nagel

Abstract. Westudy the relationship between rank p+2Koszulclasses and rank2vectorbundles
on a smooth curve. We show that every rank p+ 2 Koszul class is obtained from a rank 2 vector
bundle and give an explicit nonvanishing theorem for Koszul classes arising in this way.
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1. Introduction

LetXbe a smoothcomplexprojectivevariety. The geometryofXis reflected in the
behaviour of the Koszul cohomology groupsKp,q(X,L) introduced by Green [4], more
specifically the vanishing/nonvanishing of certain Koszul cohomology groups. The
fundamental result in this direction is the nonvanishing theorem of Green–Lazarsfeld
[5]. This theorem states that if a line bundle L admits a decomposition L L1 L2
with ri h0(X, Li) - 1 1 i 1,2) then Kr1+r2-1,1(X, L) 0. Voisin [9,
1.1)] has given a different proof of this result under the hypothesis that L1 and L2

are globally generated.

The aim of this note is to give amore geometric approach to this type of problems.
The starting point is the following construction due toVoisin. Given a rank two vector
bundle E on X with determinant L, Voisin [11, 2.22)] defined a homomorphism

: SpH 0 X,E) p+2
H0 X, E) pH0 X, L) H0 X, L).

By [11, Lemma 5], this homomorphism produces elements of Kp,1(X,L). If we
take E L1 L2, we get back the classes constructed by Green and Lazarsfeld.
As one of the referees pointed out to us, Koh and Stillman [7] had generalised the
Green–Lazarsfeld construction before from a different point of view.

Recall that the rank of a Koszul class Kp,1(X, L) is the minimal dimension
of a linear subspace W H0(X, L) such that is represented by an element in

pW H0(X, L); cf. [6, Definition 2.2]. Note that the subspace W is uniquely
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determined if p 2.) By definition, the Koszul classes constructed in this paper are

of rank p + 2 if the vector bundle E is indecomposable.
Section 3 contains the main results of this paper. We first give a necessary and

sufficient condition for nonvanishing of Koszul classes on smooth curves obtained
from rank 2 vector bundles Theorem 3.1). This result generalises the nonvanishing
theorem of Green–Lazarsfeld in the case of curves. Our second main result, Theorem

3.4, states that every rank p + 2 Koszul class on a smooth curve comes from a

rank two vector bundle. This theorem is a generalisation of [6, Theorem 6.7].

2. Preliminaries

2.1. The methodofVoisin. LetE be a rank twovectorbundleona smoothprojective
variety X defined over an algebraically closed field k of characteristic zero. Write

L det E and V H0(X, L), and let

d :
2H0 X, E) V

be the determinant map. Given t H0(X,E), define a linear map

dt : H0 X, E) V

by dt u) d(t u), and choose a subspace U H0(X,E) with U n ker(dt 0.
Suppose that dim U) p+2 with p 1, and putW dt(U)~= U. The restriction
of d to 2U defines a map 2U V which we can view as an element of

2U. V~=
pU V.

Let
pW V pV V

be the image of this element under the map dt
FollowingVoisin[11, 2.22)], weprove that defines aKoszulclass inKp,1(X, L).

To this end, we make the previous construction explicit using coordinates. If we
choose a basis {e1, ep+3} of t U H0(X, E) such that e1 t, we have

i<j
(-1)i+jd(t e2) · · · d(t ei) · · ·

·· · d(t ej · · · d(t ep+3) d(ei ej

1)

As in [11] one shows that the image of the by the Koszul differential

d :
pV H0 X, L) p-1

V S
2H0 X, L)
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equals

i<j<k
(-1)i+j+kd(t e2) · · · d(t ei) · · ·

·· · d(t ej · · · d(t ek) · · · d(t ep+3)

{d(t ei)d(ej ek)- d(t ej d(ei ek) + d(t ek)d(ei ej )}.

2)

Lemma 2.1 Voisin). Given four elements w1, w2, w3, w H0(X, E) we have the
relation

d(w w1)d(w2 w3)- d(w w2)d(w1 w3) + d(w w3)d(w1 w2) 0

in H0(X, L2).

Proof. See [11, Lemma 5].

The previous lemma shows that belongs to the kernel of the Koszul differential

dX :
pV H0 X, L) p-1

V H0 X, L2

Hence defines a Koszul class [.] U, t) Kp,1(X,L, W) Kp,1(X, L).

Remark 2.2. If U t U d-1
t W) is another lifting of W, then U, t)

U t). In particular, if ker(dt C.t the given class only depends on t and W; we
write [.] W, t) in this case.

2.2. The method ofGreen–Lazarsfeld. LetL1, L2 be twoline bundleson a smooth
projective variety X such that ri h0(X, Li) - 1 1 i 1, 2). Write Li
Mi + Fi withMi the mobile part and Fi the fixed part. Let B be the divisorial part of
F1 n F2. It is possible to choose si H0(X, Li) such that V s1, s2) B Z with
codim Z) 2. Set L L1 L2, and put t s1, s2) H0(X, L1 L2), W
im(dt H0(X,L(-B)). By construction h0(X, OX(B)) 1, hence ker(dt C.t
and dim W r1 + r2 + 1. By the previous discussion, we obtain a Koszul class

W, t) Kr1+r2-1,1(X, L). We call such classes Green–Lazarsfeld classes.

Note that the rank of a Green–Lazarsfeld class is either p + 1 or p + 2. Classes

of rank p + 1 are of scrollar type; see e.g. [8] or [6, Corollary 5.2].

Definition 2.3. Given a nonnegative integer k 0, let Kk,1(X,L)GL Kk,1(X, L)
be the subspace generated by Green–Lazarsfeld classes for all decompositions L
L1 L2 with k r1 + r2 - 1, r1 1, r2 1).
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2.3. The method of Koh–Stillman. Voisin’s method produces syzygies of rank

p + 2. As we have seen in the previous subsection, rank p + 1 syzygies are
Green–Lazarsfeld syzygies of scrollar type. Rank p + 2 syzygies can be obtained in
the following way. Suppose that L is a globally generated line bundle on a projective
variety X, and let [.] Kp,1(X, L) be a nonzero class represented by an element

pW V with dim W p + 2. We view as an element in 2W. V ~=

Hom 2
W, V Following [6, Proof of Theorem 6.1] we consider the map

:
2 C W) W

2
W V

defined by taking the direct sum of and the inclusion W V If we choose a

generator e1 for the first summand and a basis {e2, ep+3} for W, we obtain a

skew-symmetric p + 3) × p + 3) matrix A by setting

aij ei ej

By construction, the inclusion W V corresponds to the map e1 -). This
allows us to identify a1j and ej, 2 j p + 3. Let a be the image of under the
Koszul differential

d :
pV V p-1V S

2V.

Writing this out, we obtain

a
i<j<k

(-1)i+j+k
a12.·· · a1,i. · · · a1,j. · ·· a1,k.· · · a1,p+3.Pf1ijk(A).

3)
As the elements {a12, a1,p+3} {e2, ep+3} are linearly independent, this
expression is nonzero if and only if at least one of the Pfaffians Pf1ijk(A) is nonzero.

Furthermore, since a maps to zero in p-1
V H0(X, L2) the Pfaffians Pf1ijk(A)

have to vanish on the image of X.
The preceding discussion shows that every rank p+ 2 syzygy arises from a

skewsymmetric p + 3) × p + 3) matrix A such that

i) the elements {a12, a1,p+3} are linearly independent;

ii) there exists a nonzero Pfaffian Pf1ijk(A);

iii) the Pfaffians Pf1ijk(A) vanish on the image of X in P(V

This is exactly the method used by Koh and Stillman to produce syzygies; see [7,
Lemma 1.3].

Remark 2.4. In the geometric setting of Section 2.1, let Y be the image of X in
P(V The expression 2) shows that the canonical isomorphism

Kp,1(X, L)~= Kp-1,2(Pr
Y OP(1))
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maps the class [ ] to the element a defined in 3). Moreover, if d does not vanish on

decomposable elements then [ ] 0. Indeed, this condition is satisfied if and only
if the matrix A has no generalised zero; cf. [7, Definition 1.1)]. One then applies
[loc. cit., Remark p. 122].

3. Main results

Theorem 3.1. Let X be a smooth curve, let L be a base-point free line bundle on X
and let W H0(X, L) be a linear subspace. Put B Bs(W), and let t be a section
of H0(X, OX(B)) vanishing on B. Consider an extension

0 OX(B) E L(-B) 0 4)

such that
W ker H0 X, L(-B)) d-. H1 X, OX(B))).

Then the Koszul classes U, t) defined in Section 2.1 are nonzero for all liftings U
of W if and only if the extension 4) is non-split.

Proof. The proof proceeds in several steps. We use the notation of Section 2.1.

“Only if”. Suppose that the extension 4) splits, hence W H0(X, E) canonically.
We then put U W. In this case, one readily verifies that d vanishes identically on

2U. The formula 1) then shows that U, t) 0.

“If”. Suppose there exists U such that U, t) 0. We proceed in several steps.

Step 1. There exists a linear map h: U C such that

d(u1 u2) h(u2)dt(u1)- h(u1)dt(u2) 5)

for all u1, u2 U.
Indeed, suppose that there exists a nonzero element ˜ p+1

W ~= W. such
that is the image of ˜ under the Koszul differential. Then coincides with the
composition of maps

2
W d-. W W ˜ id

---. W V.

Since

d(u1 u2) dt(u1) dt(u2))

˜ dt(u2))dt(u1)- ˜ dt(u1))dt(u2)),

condition 5) is satisfied with h ˜ dt : U C.
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Step 2. Let u1, u2 t U be two sections such that dt(u1) and dt(u2) generate

L(-B). If d(u1 u2) 0, the extension 4) splits.
To prove this assertion, put si dt(ui) i 1,2) and consider the commutative

diagram

0 OX(B) E L(-B) 0

ev2

0 u1 u2 OX ~

ev1

s1 s2 OX 0.

Put M ker(ev1), and note that ker(ev2)~= L-1(B) since ev2 is surjective. By the
Snake Lemma we obtain an exact sequence

0 M L-1 B) OX(B) coker ev1) 0.

Note that

d(u1 u2) 0 rank im( u1 u2 OX E) 1 rank M 1

where the first equivalence follows from [10, p. 380]. If d(u1 u2) 0 the above

exact sequence shows that M~= L-1(B), hence the isomorphism u1 u2 OX ~.
s1 s2 OX induces an isomorphism im(ev1) ~= L(-B). The inverse of this

isomorphism provides a splitting of the extension 4).

Step 3. By Step 1, there exists a linear map h: U C verifying the relation 5). If h
is identically zero, then we can apply Step 1 and Step 2 to conclude. Suppose h 0.
Consider the morphism

p : X P(W.)
defined by the base-point free linear system W H0(X, L(-B)), and choose a

linear subspace P(W.) of codimension two such that n p(X) Ø. The
hyperplane ker(h) W corresponds to a point p P(W.). Put H1 p and
choose a hyperplane H2 P(W.) containing such that p /. H2. Let u1, u2 be

the sections corresponding to H1, H2. Then dt(u1) and dt(u2) generate L(-B) and

u1 ker(h), u2 /. ker(h). Equation 5) yields the identity

d(u1 u2) h(u2)dt(u1).

Rewriting this identity, we obtain d(u1 u2 + h(u2)t)) 0. Since the pair

{dt(u1), dt(u2 + h(u2)t)} {dt(u1), dt(u2)} generates L(-B), Step 2 implies that
the extension 4) splits.

Remark 3.2. In the statement of Theorem 3.1 it is not necessary to suppose that L
is globally generated, since Kp,1(X, L(- Bs(L)))~= Kp,1(X, L).
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Theorem3.1 yields ashort, geometricproof of the Green–Lazarsfeld nonvanishing
theorem for curves.

Theorem 3.3 Green–Lazarsfeld). Let X be a smooth curve, and let L be a line
bundle on X that admits a decomposition L L1 L2 with ri dim |Li| 1 for

i 1,2. Then Kr1+r2-1,1(X,L) 0.

Proof. We define s1, s2, t W, B and W, t) as in Section 2.2. Let C be the base

locus of W, seen as a subspace of H0(X, L(-B)). We prove that W, t) 0.
Suppose that W, t) 0. Consider the extension

0 OX(B) L1 L2 L(-B) 0.

Pulling back this extension along the injective homomorphism L(-B - C)

L(-B), we obtain an induced extension

0 OX(B) E L(-B - C) 0.

Applying Theorem 3.1 to the line bundle L(-C), we find that this extension splits.
Hence there exists an injective homomorphism

OX(B) L(-B -C) L1 L2.

Inparticular there exists i {1,2}such thatHom(L(-B-C), Li) 0. This implies
that

ri + 1 h0 X,Li) h
0 X,L(-B - C)) dim W r1 + r2 + 1,

and this is impossible since r1 1 and r2 1.

Theorem3.4. LetXbe a smooth curve, and leta 0 Kp,1(X, L)be aKoszul class
of rank p+2 represented by an element of pW H0(X, L) with dim W p+ 2.
There exist a rank 2 vector bundle E on X, a section t H0(X, E) and a subspace

W~= U H0(X,E) such that a U, t).

Proof. Put T C W, and choose a basis {e1, ep+3} of T such that t e1
is the generator of the first summand. Writing zij ei ej we obtain a

skewsymmetric matrix Z zij andcoordinates zij 1=i<j=p+3 on P
2

T Consider
the Grassmannian G G(2, T of 2-dimensional quotients of T The ideal of G
under the Plücker embedding G P

2
T is generated by the 4 × 4 Pfaffians

Pfijkl(Z) of the matrix Z. Taking exterior powers in the exact sequence

0 t T W 0
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we obtain an exact sequence

0 t W 2T
2
W 0.

The linear subspace P
2W. P

2
T is defined by the vanishing of the linear

forms z1j j 2, p + 3. A straightforward computation then shows that the
ideal of the union

G(2,T P
2W. P

2
T

is generated by the Pfaffians Pf1ijk(Z). The tautological exact sequence

0 S T OG Q 0

induces an isomorphism T ~= H0(G, Q). Under this isomorphism, we have

G(2, W) V t).
As in Section 2.3 we associate to the Koszul class a a matrix A aij of linear

forms such that

a) the linear forms in the first row of A span W;

b) there exists a nonzero 4 × 4 Pfaffian of A involving the first row and column;

c) the 4×4 Pfaffians involving the first row and column of A vanish on the image
of X in PH0(X,L)..

Let C be the base locus of the image of A. Replacing L by L(-C) if necessary W
is obviously contained in the image of A) we can suppose that C is empty, hence the
matrix A defines a morphism

: X P
2
T

Condition c) implies that the image Y X) is contained in the union G(2, T
P 2W. and condition a) shows that Y is not contained in P 2W. As Y is
irreducible, this implies that Y is contained in G(2, T

Put E .*Q. Twisting the exact sequence

0 Y OG .*OX 0

by the universal quotient bundle Q and taking global sections, we obtain an exact
sequence

0 H0 G, Q Y H0 G, Q) .*--. H0 G, .*OX Q)~= H 0 X,E).

Condition a) implies that Y is not contained in G(2, W) G(2, T n P
2W.

hence t does not vanish identically on X and defines a global section of E. The
zero locus of this section is given by the equations a12 · · · a1,p+3 0, hence
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it coincides with the base locus B of the sublinear system of |L| induced by W.
Consequently the line bundle E is given by an extension

0 OX(B) E L(-B) 0. 6)

Consider the commutative diagram

0 0

H0(G, OG)

t

H0(X, OX(B))

.*(t)

H0(G, Q)
.* H0(X, E)

dt

W
i H0(X, L(-B)).

Note that ker i W n H0(G,OG(1) Y 0 by condition a). As the map
H0(G,Q) W is surjective, we find that W is contained in the image of the map

dt : H0(X, E) H0(X, L(-B)). The embedding W H0(G, Q) t W
composed with .* is a section of dt Put U .*(W). By construction we obtain

U, t).

Remark 3.5. The union G(2,T P
2W. is a generic syzygy scheme; see [6,

Theorem 6.1]. In [loc. cit., Theorem 6.7] it was shown that a rank p+ 2 syzygy gives
rise to a rank 2 vector bundle if L is very ample and the ideal of X is generated by
quadrics.

The condition of Theorem 3.1 can be reinterpreted in terms of surjectivity of a

natural multiplication map.

Proposition 3.6. Let X be a smooth curve, and let W H0(X,L) be a linear
subspace. We put B Bs(W) and view W as a base-point free linear subspace of
H0(X, L(-B)). Let

µ: W H0 X, KX(-B)) H0
KX L(-2B))

be the multiplication map. The following conditions are equivalent.

i) The map µ is not surjective.

ii) There exists a non-split extension 0 OX(B) E L(-B) 0 such that

W is contained in the kernel of the map d: H0(X, L(-B)) H1(X, OX(B)).
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Proof. We first show that i) implies ii). Since µ is not surjective, there exists a

hyperplane H H0(X, KX L(-2B)) that contains im(µ). Let be a linear
functional defining H. Put 0 H1(X,L-1(2B)), and let

0 OX(B) E L(-B) 0

be the corresponding non-split extension. Given w W and v H0(X,KX(-B)),
the formula

d(w)(v) µ)(w v) 7)

shows that W is contained in the kernel of d.
For the converse, note that formula 7) implies that .|im µ 0.

Remark 3.7. If B is a fixed divisor, the result of the previous Proposition follows
from Green’s duality theorem [4, Corollary 2.c.10)]. Indeed,

coker µ~= K0,1(X, KX(-B), L(-B), W)~= Kp,1(X, B, L(-B), W). 8)

and since h0(X, OX(B)) 1 we have an injection

Kp,1(X,B,L(-B), W) Kp,1(X, L).

Theorem 3.4 shows that Voisin’s method may produce nontrivial Koszul classes

that are not contained in the space Kp,1(X, L)GL spanned by Green–Lazarsfeld
classes.

Example 3.8. By [2, Theorem 3.6 and Theorem 4.3] there exists a smooth curve of
genus 14 and Clifford index 5 whose Clifford index is computed by a unique line
bundle L such that L2 KX. The line bundle L embeds X in P4 as a projectively
normal curve of degree 13 which is not contained in any quadric of rank 4, and the
ideal of X is generated by the 4×4 Pfaffians of a skew-symmetric matrix aij 1=i,j=5

with

deg(aij
2 if i 1 or j 1

1 if i 2 and j 2

such that the quadric Q a23a45 - a24a35 + a25a34 has rank 5.
By [loc.cit.] the group K1,1(X, L) is generated by [Q], hence IX contains no

quadrics of rank 4. If K1,1(X, L) contains a Green–Lazarsfeld class this class

would be of scrollar type, since it necessarily comes from two pencils |L1|, |L2|.
This is impossible, since classes of scrollar type give rise to quadrics of rank 4.

The Koszul class [Q] K1,1(X,L) has rank 3, since it is represented by the
linear subspace W a23, a24, a25 Hence [Q] comes from Voisin’s method by
Theorem 3.4.
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Remark 3.9. A more geometric description of a subspace W representing [Q] is
the following. A smooth intersection of the quadric V Q) PH0(X,L). with one

of the cubic Pfaffians is a K3 surface in PH0(X, L). containing a line which is
disjoint from X by [2, Proposition 4.1]. The line corresponds to a 3-dimensional
linear subspace W H0(X, L), which is base-point-free since does not meet X.

One could ask whether the syzygies constructed in Section 2.1 span Kp,1(X,L).
In principle it may be possible to obtain higher rank syzygies as linear combinations
of rank p + 2 syzygies. However, if Kp,1(X, L) is spanned by a single syzygy of
rank p + 3 this is not possible.

Example 3.10 Eusen–Schreyer). Eusen and Schreyer [3, Theorem 1.7 a)] have

constructed a smooth curve X P5 of genus 7 and Clifford index 3 embedded by the
linear system |KX(-x)| such that K2,1(X, KX(-x))~= C is spanned by a syzygy s0.

The explicit expression for s0 given on p. 8 of [loc. cit.] shows that s0 is a rank 5

syzygy. Hence s0 cannot be obtained by the Green–Lazarsfeld construction or the
method of Section 2.1.

Acknowledgements. The first named author was partially supported by a Humboldt
ResearchFellowship,andby theANCScontract2-CEx06-11-20/25.07.06. Wewould
like to thank Université Grenoble 1, I.H.E.S., Universität Bayreuth and Université
Lille 1 for hospitality during the first stage of this work.

We thank the refereesforseveralcomments that helped to improve the presentation

of the paper, and for pointing out an error in the previous version of this paper.

References

[1] D. Eisenbud, Linear sections of determinantal varieties. Amer. J. Math. 110 1988),
541–575. Zbl 0681.14028 MR 0944327

[2] D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer, The Clifford dimension of a

projective curve.CompositioMath. 72 2) 1989), 173–204. Zbl 0703.14020MR 1030141

[3] F. Eusen and F.-O. Schreyer, A remark on a conjecture of Paranjape and Ramanan. Un¬

published preprint 1994), avalaible at http://www.math.uni-sb.de/~ag-schreyer/PS/eus.ps

[4] M. Green, Koszul cohomology and the geometry of projective varieties. J. Differential
Geom. 19 1984), 125–171. Zbl 0559.14008 MR 0739785

[5] M. Green, and R. Lazarsfeld, The nonvanishing of certain Koszul cohomology groups.
Appendix to [4].

[6] H.-C. Graf von Bothmer, Generic syzygy schemes. J. Pure Appl. Algebra 208 2007),
867–876. Zbl 05083166 MR 2283431

[7] J. Kohand M.Stillman, Linear syzygies and line bundles on an algebraic curve. J. Algebra
125 1) 1989), 120–132. Zbl 0708.14002 MR 1012666



628 M. Aprodu and J. Nagel CMH

[8] F.-O. Schreyer, Syzygies of canonical curves and special linear series. Math. Ann. 275
1986), 105–137. Zbl 0578.14002 MR 0849058

[9] C. Voisin, Déformation des syzygies et théorie de Brill-Noether. Proc. London Math. Soc.
3) 67 3) 1993), 493–515. Zbl 0823.14004 MR 1238043

[10] C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a K3
surface. J. Eur. Math. Soc. 4 4) 2002), 363–404. Zbl 1080.14525 MR 1941089

[11] C.Voisin, Green’scanonical syzygy conjecture forgenericcurves ofoddgenus.Compositio
Math. 141 5) 2005), 1163–1190. Zbl 1083.14038 MR 2157134

Received June 6, 2005

M. Aprodu, Romanian Academy, Institute of Mathematics “Simion Stoilow”,
P.O.Box 1-764, 014700, Bucharest, Romania
and
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