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On symplectic 4-manifolds with prescribed fundamental group

Scott Baldridge and Paul Kirk*

Abstract. In this article we study the problem of minimizing a. + bs on the class of all
symplectic 4-manifoldswith prescribed fundamentalgroupG( is theEuler characteristic, s is
the signature, and a, b R), focusing on the important cases + s and 2. + 3s. In certain
situations we can derive lower bounds for these functions and describe symplectic 4-manifolds
which are minimizers. We derive an upper bound for the minimum of and + s in terms of
the presentation of G.

Mathematics Subject Classification 2000). Primary 57R17; Secondary 57M05, 54D05.
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1. Introduction

Pick a finitely presented group G and letM(G) denote the class of closed symplectic
4-manifolds M which have p1(M) isomorphic to G. The existence of a symplectic

M with given fundamental group G was demonstrated by Gompf [6].
In this article we study the problem of finding minimizers in M(G) where

minimizing is taken with regard to the Euler characteristic following the approach
introduced by Hausmann and Weinberger in [8] for smooth 4-manifolds. There are

two aspects to this problem. Finding lower bounds to M) for M M(G)
addresses the question “How large must a symplectic manifold with fundamental group

G be?” The other aspect of the problem is finding efficient and explicit constructions
of symplectic manifolds with a given fundamental group.

Our main general result concerning upper bounds is Theorem 6, which states:

~=

Theorem 6. Let G have a presentation with g generators x1, xg and r relations

w1, wr Then there exists a closed symplectic 4-manifold M with p1M G,
Euler characteristic M) 12(g+ r + 1), and signature s(M) -8(g+r + 1).

We also provide a number of examples of small closed symplectic manifolds with
certain fundamental groups. A successful example is the following theorem, which

*The first author gratefully acknowledges support from the NSF grant DMS-0507857. The second author
gratefully acknowledges support from the NSF grant DMS-0202148.
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generalizes to the symplectic setting the results of [11]. See Corollary 17, for a more
complete statement.)

Theorem. Let Fg denote the closed oriented surface of genus g, and suppose that

Sg Sym2(Fg), so that Sg is a closed symplectic manifold with fundamental group
Z2g. If g 0, 1, or 3 mod 4), then any other closed symplectic 4-manifold N with
p1(N)~=

Z2g satisfies N) Sg).

The general theme of this article is to investigate the simplest symplectic 4-manifolds

one fundamental group at a time, finding constructions, obstructions, and
examples of minimizers of a. + bs.

The problem of minimizing and + s of 4-manifolds with a prescribed
fundamentalgroup arises in many contexts and has been studiedexplicitly in a number of
interesting articles. Hausmann andWeinberger in [8] usedq(G) minp1(M4)~=G M)
to establish the existence of a perfect group which can be the fundamental group of a

homology sphere in dimensions greater than 4 but which is not the fundamentalgroup
of a homology 4-sphere, and toconstruct groups which are knot groups in dimensions
greater than 4 but which are not the fundamental group of a knotted 2-sphere in S4.

Kotschick in [13] inserted the signature into the topic by defining the invariant

p(G) minp1(M4)~=G M)-|s(M)|and in [14] he carries out a systematic study of
p(G) and q(G), including computations and estimates forq(G) and p(G) for various
G. Moreover, Kotschick discusses the problem of defining variants of p and q by
restricting to 4-manifolds with fundamental group G which admit various geometric
structures, e.g. spin structures, almost complex structures, positive scalar curvature,
and symplectic structures, the topic of the present article. He also investigates the
question of what the possible values of p(G) and q(G) are for a given group G, a

question that we generalize and recast in Section 3.

Other related work includes the articles of Eckmann [3] and Lück [21] who derive
bounds on p(G) and q(G) for various G using 2-cohomology and the 2-signature
theorem, as well as the articles [2], [9], [11]. The general problem of calculating
q(G) appears as Problem 4.59 of Kirby’s problem list [10].

The article is organized as follows. In Section 2 we establish some simple bounds
and describe Gompf’s construction for producing a symplectic 4-manifold with a

given fundamental group. The function f a. + bs for a, b R is studied
in Section 3 and some reasons are given for restricting to the cases and + s.
In Section 4 we describe new constructions that give upper bounds for min and

min + s based upon the group presentation of G. In Section 5 we focus on
examples for specific classes of groups, namely free groups, cyclic groups, and free
abelian groups and describe minimizers of for many free abelian groups. In the
last section, we speculate about when or whether there are conditions for which the
minimizers of or + s are unique.
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2. Some bounds

The fundamental numerical invariants of a 4-manifold are its Euler characteristic
and its signature s. We will focus on the problem of minimizing and sometimes

+ s over the collection of symplectic manifolds with fundamental group G. Section

3 gives partial justification for our restricting to these cases. We remind the
reader of some coarse bounds on the Euler characteristic of smooth closed orientable
4-manifolds introduced in [8]. First recall that if G is finitely generated and M is a

connected oriented 4-dimensional Poincaré complex then the second Betti number of
M, b2(M), is at least as large as the second Betti number of K(G, 1) with any field
coefficients). Since b1(M) b3(M) b1(G), this implies

2- 2b1(G) + b2(G) M). 1)

By taking the double of the 2-handlebody defined by a presentation of G, one

obtains a smooth manifoldM with p1(M) Gand M) 2-2d where d denotes
the deficiency of the presentation i.e. the number of generators minus the number of
relations). Thus one has the following bound for smooth manifolds, where def(G)
denotes the minimum of the deficiency over all presentations:

min
p1M~=G

M) 2 - 2def(G).

This construction does not give a symplectic manifold in general. Thus this upper
bound need not hold when one minimizes over symplectic manifolds with fundamental

group G. To obtain a similarly general upper bound requires an examination of
the construction of symplectic manifolds with prescribed fundamental group.

In the symplectic setting, Gompfhas given a construction [6] by taking appropriate
symplectic sums of F × T 2 with many copies of the elliptic fibration E(1). By
examining Gompf’s argument one can formalize an upper bound.

Note that any finitely presented group is the quotient of an oriented surface group,
since for example) the free group on g generators is a quotient of the fundamental
group of a genus g surface. Call a system of immersed curves in general position

.i : S1 F, i 1, r on an orientable surface F a geometric surface presentation

of G provided the fundamental group of the 2-complex obtained by attaching
2-cells to F along the .i is isomorphic to G.

Given a geometric surface presentation of G, the union of the .i form a graph
where one allows a graph to have some isolated circle components). Gompf’s

construction yields the following general bound.
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Theorem 1 Gompf). Given any geometric surface presentation for G with r curves

.1, .r if the associated graph has n edges, there exists a closed symplectic
4-manifold M with p1(M)~= G, M) 12(r + 2n+1) and s -8(r + 2n+ 1).
Moreover, there exists a spin symplectic 4-manifold with p1(M) ~= G, M)
24(r + 2n + 1) and s(M) -16(r + 2n + 1).

Simple experiments show that the number n in Theorem 1 can be quite large for
even simple group presentations. As an example we compute the Euler characteristic
of a manifold which has G Z4. In this situation, start with a genus 4 surface F
with a standard collection of oriented circles

a1, a2, a3, a4, ß1, ß2, ß3, ß4

in F representing a symplectic basis of H1(F The quotient p1(F)/ ß1, ß4 is
a free group generated by the ai’s. For i 1, 4, let .i ßi. For i 1, 2, 3,
set .i+4 [ai, ai+1] using the configuration of curves on the top of F shown in
Figure 1.

a1
a2

a3

a4

Figure 1

Finally, set .8 [a2, a4], .9 [a1, a4], .10 [a1, a3] using the same configuration
as in Figure 1, butnow on the bottom of F, i.e. .5, .6, .7 are disjoint from.8, .9, .10.
The union of the immersed curves .1, .10 is an example of a geometric surface
presentation of Z4. After a careful count one finds 148 edges in the graph described
above. Using the theorem above one computes:

Example2. The construction above produces a symplectic manifoldMwithp1(M)
Z4 and M) 3, 684.
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Gompf was not trying to minimize the Euler characteristic in his construction; in
fact, it is clear from his writings that he knows ways to reduce this number significantly.

Still, our best estimate using this construction as the starting point together
with some tricks known to us) is M) 516. This is a significant reduction, no

doubt, but the 4-torus T 4 has fundamental group Z4 and 0. Thus constructions
like this one do not give a particularly effective upper bound for M) for M
symplectic, p1(M) G. Moreover, from the point of view of the present article the
problem of expressing a bound on the number n of edges of in terms of algebraic
invariants of G is unwieldy in general.

We end this section by recalling two facts that are useful in increasing the lower
bound of Equation 1) for symplectic manifolds. First, the symplectic form on

a symplectic 4-manifold M has the property that is a volume form. Thus
b+(M), thedimension of the largest positivedefinite subspace of the intersection form
over R) is always at least 1, and in particular, the second Betti number b2(M) 1.

For example, this implies that if p1(M)~= Z, then 1 M), improving Equation 1)
by one when G Z.

Secondly, a symplectic manifold admits an almost complex structure. This has

implications on its characteristic classes. The consequence of most use to us is that
1- b1(M) + b+(M) the index of the ASD complex) is even. For example, if M is
symplectic and p1(M)~= Z, then b+(M) is even. Combined with the observation
of the previous paragraph, we conclude that b+(M) 2, and hence 2 M),
improving Equation 1) by two when G Z.

Putting these observations together one sees that if M is symplectic with
fundamental group G, then M) + s(M) 2 - 2b1(G) + 2b+(M), and hence

M) +s(M)
4- 2b1(G) if b1(G) is even,

6- 2b1(G) if b1(G) is odd.
2)

3. Minimizing a. + bs and the special points + s, and 2. + 3s

In this section we investigate the values of a and b for which the function a. + bs
has a lower bound on a suitable class of 4-manifolds with a given fundamental group
smooth, symplectic, etc.). The answers to this question naturally lead to breaking

points at a b, and 3a 2b. These are related to important invariants of symplectic
4-manifolds: + s is 4 times the holomorphic Euler characteristic, and 2. + 3s is
the square of the canonical class on a symplectic manifold. The approach described
in this section can be viewed as a variant of the geography problem for 4-manifolds.

We first introduce a general notion. Let M denote a class of closed oriented
4-manifolds. We will be most interested in the cases, M M(G), the class of
symplectic 4-manifolds with fundamental group G, M M8(G), the class of
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smooth manifolds

~

with fundamental group G, and M Mmin(G), the subclass

of M(G) consisting of minimal symplectic 4-manifolds with fundamental group

G recall that a symplectic 4-manifold M is called minimal if it is not a blow up,

i.e. M N # CP
2

for N symplectic). But the following result also applies in
greater generality, e.g. the class of 4-dimensional Poincaré complexes with a given
fundamental group, or the class of smooth complex projective surfaces with a given
fundamental group, or the class of smooth 4-manifolds with even intersection form
for which the results of [2] are relevant), or the class of almost complex 4-manifolds

with given fundamental group see [12]), or even the class of all topological oriented
4-manifolds with no fundamental group restriction).

For a, b) R2, define fM(a, b) R {±8} to be the infimum

fM(a, b) inf
M.M

{a.(M) + bs(M)},

with the understanding that fM(a, b) 8 if M is empty e.g. if M is the class of
Kähler manifolds with fundamental group Z3). Define the domain DM of M to be

the set

DM {(a, b)| fM(a, b) -8}.
Thus DM is the set of a,b) so that a. + bs is bounded below on M. Notice that

DM is a cone since fM(ra, rb) rfM(a, b) when r 0. Furthermore, ifM M
then fM a,b) fM(a, b), and hence DM DM

Recall that a function f on a convex set S is concave if f tx + 1 - t)y)
tf x) + 1- t)f y) for all x, y S and t [0, 1].

Theorem 3. The domain DM is a convex cone and fM is a continuous concave
function on DM.

Proof. The proof is simple: each M Mdetermines a half space HM R3 by

HM {(a, b,c) | c a.(M) + bs(M)}.
The intersection

I M.M HM

is a convex set whose projection to R2 is DM. Thus DM is convex. Furthermore,

if a,b) DM, then fM(a,b) is the largest number c so that a, b,c) I; this is
clearly continuous and concave.

Since DM is a convex cone, it is either the entire plane e.g. ifMcontains finitely
many homotopy types) or else it is a cone with angle less than or equal to p.

Interestingly, DM need not be closed. For example, letM {Mk}8k 1, where

Mk 2k2
CP

2
# k2 - k)S2

× S
2
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Then Mk) 2+ 4k2-2k and s(Mk) -2k2. Thus a. + bs has a lower bound

if 2a > b or if 2a b and a 0. Otherwise, a. + bs is not bounded below. Thus

DM has cone angle p and contains one of its boundary rays ({(-r,-2r) |r > 0}) but
not the other ({(r, 2r) |r > 0}.

We focus now on the class M8(G) of smooth 4-manifolds with fundamental

group G. Blowing up i.e. taking the connected sum with CP
2

increases by 1
and decreases s by 1 without changing G. Thus a. + bs is not bounded below
if a - b < 0, and so DM8(G) is contained in the half-plane {a b}. Similarly,
taking connected sums with CP2 shows that DM8(G) is contained in the half-plane

{a -b}. Hence DM8(G) lies in the cone {a |b|}.
If a |b| then

a.(M)+bs(M) 2a(1-b1(G))+(a+b)b+(M)+(a-b)b-(M) 2a(1-b1(G))

and so a, b) DM8(G). Thus we have proven the following.

Proposition 4. Fix a group G and a 0. Then fM8(G) has domain

DM8(G) {(a, b) | a |b|},
i.e. DM8(G) is the cone over the closed interval {1} × [-1, 1].

Restricting to the class ofsymplectic manifoldsM(G) everything follows asabove
except for one point: taking connected sum of a symplectic manifold with CP2 does

not yield a symplectic manifold. In particular, one cannot conclude that a.+bs has

no lower bound on M(G) for b < -a. Theorem 6.3 of [6] shows that there exists
symplectic manifolds with fundamental groupGand arbitrarily large signature. Thus

bs does not have a lower bound onM(G) when b < 0.

These observations imply that the domain DM(G) is contained in the intersection
of the half-planes b a and a 0, andcontains the ray {(r,r) | r 0} as one the two
boundary edges of the cone DM(G). The other edge is a ray {(r cos(.G), r sin(.G) |
r 0} for some angle .G in - p2 ,- p4 We were unable to determine the “critical”
angle .G. This leads us to pose the question:

Question 1. Does the domain DM(G) contain any pairs a, b) with b < -a?

ForG {e}, Stipsicz ([27])has constructedsimply connectedsymplectic 4-manifolds

so that a.+bs is not bounded below whenb <-3a, so that .{e} tan-1(-3).
Figure 2 explains the notation.

We now look at the classMmin(G) of minimal symplectic manifolds with
fundamental group G. This time blowing up is not allowed, since by definition minimal
symplectic manifolds are not blowups. Since Mmin(G) M8(G) we know by
Proposition 4 that DMmin(G) contains the cone over the interval {1} × [-1,1]. The

following proposition implies that DMmin(G) is strictly larger than DM(G).
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b a 1

b a

.G?

a

b 3
2a

BMY

b -a

Figure 2

Proposition 5. Fix a group G. Then + bs has a lower bound on Mmin(G) if

-1 b 3
2 and does not if b > 3

2 In particular, DMmin(G) and hence DM(G)) is

contained in the half-plane {(a,b) | b
3
2a}, and DMmin(G) contains the cone over

the interval {1} × - 1, 3
2

Proof. Let K be the canonical class of M Mmin(G). A theorem of Liu [20]
states that if K2 < 0, then M is diffeomorphic to an irrationally ruled surface with
fundamental group a surface group. Assume for a moment that G is not a surface
group. In this case K2 0 or, equivalently 2.(M) + 3s(M) 0 for all manifolds

M Mmin(G). The convexity of the cone DMmin( and the fact thatG) DM8(G)

DMmin( implies that DMmin( contains the coneG) G) {(a, b) | b 2a
3 and a -b}.

The first part of the proposition follows from this inequality for such groups.
The case when G is a surface group is similar. Note that in this case there are

only two manifolds inMmin(G) up to diffeomorphism with K2 < 0).
To show that +bs is unbounded ifb > 3

2 letM be a spin symplectic manifold
with p1M~= G given by Gompf’s construction. Then 2.(M) + 3s(M) 0. By
construction, M containsembedded symplectic toriwith self-intersectionzeroand the
inclusionof these tori induces the trivialmorphism on fundamentalgroups. So onecan
take symplectic sums with arbitrarily many elliptically fibered) K3 surfaces, without
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changing the fundamental group. Moreover, the symplectic sums continue to be

minimal by a result of Li and Stipsicz [19]. Each such sum increases by 24 and
decreases s by 16. Therefore +bs can be made as small as desired whenb > 3

2

The proof of Proposition 5 shows that except for surface groups of genusg > 1),

fMmin(G)(2, 3) 0. For surface groups of genusg > 1, the only minimal symplectic
manifolds with fMmin(G)(2,3) < 0 are diffeomorphic to irrational ruled surfaces, in
which case it is known that fMmin(G)(2, 3) 4(2- 2g).

Before moving on it is worthwhile to mention the consequence of the conjectured
Bogomolov–Miyaoka–Yau inequality for symplectic manifolds to determining the
shape of DMmin(G). Recall that the BMY conjecture states that - 3s 0 for all

minimal symplectic manifolds with K2 0. This gives a lower bound for -3s on
Mmin(G) whenever that G is not a surface group, and hence implies that in this case

Mmin(G) contains the cone over the interval {1}× -3, 3 improving Proposition 52
for non-surface groups. It is worth noting that all currently known simply-connected
irreducible 4-manifolds satisfy - 3

2s 0.
It is perhaps most natural to describe the domains DM as cones on an interval

p4p4

contained in the unit circle and fM as functions on these intervals. For example

DM8(G) corresponds to the interval - and DM(G) corresponds to the
interval .G, p4 However, we find it more convenient to describe them in terms
of intervals in {1} × R for two reasons. First, a. + bs is not bounded below on

M(G) for a 0. But for a > 0 one can divide by a and minimize the 1-parameter

family + bs without losing information. Secondly, the function of one variable
b fM(1, b) can easily be shown to be a piecewise linear concave function, and
can often be explicitly described.

Thus we restrict to the case a > 0 and hence to a 1 by normalizing) and

consider the intersection of the line {a 1} with the domains DM8(G), DM(G),
and DMmin(G). Propositions 4 and 5 show that there are natural breaking points
at b 1, and b

3 corresponding to2 + s and + 2s.3 The comments after

Proposition 5 completely compute the minimum of +
3
2s on Mmin(G). These

breaking points really do matter, as the next few calculations of the functions fM
over the line a 1 show.

Consider first G {e} the trivial group:

fM8(e)(1, b)
2 if|b| 1,

-8 otherwise,

with S4 the minimizer for all |b| 1. By contrast,

fM(e)(1,b)
b + 3 if |b| 1,

-8 if b < -3 or b > 1,
unknown, but b + 3 if - 3 b < -1.
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with CP2 the minimizer for all |b| 1, and Stipsicz’s examples [27] treating the
cases b < -3.

ForMmin(e) the domain of fMmin(e)(1,b) includes 1 b 3
2 Considering CP2,

Dolgachev surfaces, and Stipsicz’s examples yields the following:

fMmin(e)(1,b)

b + 3 ifb < -1,

b + 3 if|b| 1,

-8b + 12 if 1 b 3
2

-8 if b < -3 or b > 3
2

Altogether, the functions yield the following graphs.

b b b

fM8(e)(1, b)

-1 1 -1 13 -1 12
3
2

3
2

fM(e)(1,b) fMmin(e)(1,b)

Figure 3

Another interesting example is the case of G Z6. In [11] it is shown that
any smooth oriented 4-manifold M with fundamental group Z6 has M) 6.
Moreover, b+(M) 7. To see this, consider the composite p1(M)~= Z6 Z5,
where the second map is the projection to the first five coordinates. The induced map
H2(Z5) H2(M) is injective, and Theorem 4 of [11] shows that its image has a

7-dimensional isotropic subspace. Hence M) + s(M) 4.
The symplectic manifold S3 described below in Section 5 has fundamental group

Z6, S3) 6, and s(S3) -2. Thus fM8(Z6)(1, 0) 6 and fM8(Z6)(1, 1) 4.
This shows

fM8(Z6)(1, b)
6- 2|b| if |b| 1,

-8 if |b| > 1.
3)

In 3) we used the fact that by reversing orientation shows that b fM8(G)(1, b)
is an even function. This is not true for M(G), i.e. for symplectic manifolds, as the
example with G {e} above shows.

The domains DM8(G) are independent of G, but we do not know the answer to
the question:

Question 2. Are the domains DM(G) and DMmin(G) independent of G?
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The examples given above show that the functions fM(G) do depend on G in
interesting ways.

Motivated by the results of this section we will concentrate on minimizing and

+ s for the rest of the paper.

4. Algebraic upper bounds

~=

We next state and prove two theorems which give algebraically determined bounds
in terms of a presentation of G.

Theorem 6. Let G have a presentation with g generators x1, xg and r relations

w1, wr Then there exists a symplectic 4-manifold M with p1M G, Euler
characteristic M) 12(g + r + 1), and signature s(M) -8(g + r + 1).

Combining this with the bound 1) one obtains:

Corollary 7. For a finitely presented group G with g generators and r relations,

2- 2b1(G) + b2(G) min
M.M(G)

M) 12(g + r + 1). 4)

and
min

M.M(G)
M) + s(M) 4(g + r + 1). 5)

For specific groups one can and we will; see below) do better. One general class

of groups for which we can improve the construction of Theorem 6 and hence the
upper bound in 4) is treated in the following theorem. We will show below that this
class includes free groups.

Theorem 8. Let H : F F be an orientation-preserving diffeomorphism of an

orientable surface F. Assume H fixes a base point z. Let G be the quotient of

p1(F,z) by the normal subgroup generated by the words x-1H*(x), x p1(F,z).
Then there exists a symplectic 4-manifoldM with p1M~= G, Euler characteristic

M) 12, and signature -8.

Proof. We prove Theorems 6 and 8 simultaneously. The arguments we give are
derived from Gompf’s arguments and follow by combining them with the construction
of symplectic forms on M × S1, where M is a fibered 3-manifold. The flexibility

gained by replacing Gompf’s choice of M F × S1 with a fibered manifold
leads to a simplified and ultimately smaller as measured by the Euler characteristic)
construction.
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We begin with a discussion of how to put symplectic forms on 4-manifolds of the
form N × S1, where N is a surface bundle over S1. This construction has its origins
in Thurston’s article [29].

Let F be an oriented surface. Let H : F F be a diffeomorphism with at least
one fixed point, and let p: M S1 denote the mapping torus of H, fibered over the
circle with fiber F and monodromy H.

Let g0 be a Riemannian metric on F, and let gt be a path of Riemannian metrics
from g0 to g1 H*(g0). Then H : F,g0) H, g1) is an isometry.

Notice that if H is an isometry with respect to some metric g0 then one can
take gt to be the constant path. In this case the volume form of g0 on F determines a

closed 2-form ß on M whose restriction to each fiber is a volume form i.e. a closed,
nowhere-zero, top dimensional form).

In general, we find such a 2-form as follows. Let at 2
F

denote the volume
form of the metric gt and the given orientation. Since H is an orientation-preserving
diffeomorphism, the cohomology classes [a0] and [a1] in H2(F ;R)~= R are equal.
Hence there exists a positive smooth function f : [0,1] 0,8) with f 0) 1

f 1) so that the cohomology class [f t)at ] is independent of t Denote the closed,
nondegenerate 2-form f t)at on F by ßt

Moser’s stability theorem see [23]) implies that there is a 1-parameter family of
diffeomorphisms .t : F F so that .0 is the identity and .*t ßt ß0. The trace

x, t) .t x), t) induces a diffeomorphism : M M where M denotes the
mapping torus of .1 H.

Let p : F × [0, 1] F denote the projection to the first factor. The 2-form ß
on F × [0, 1] defined by ß p*(ß0) is closed. Moreover, since .1 H)*(ß0)
H*(.*1 ß0)) H*(ß1) ß0, ß descends to a well-defined closed 2-form on M
whose restriction to each fiber is a volume form. Pulling this form back to M via
determines a closed 2-form on M whose restriction to each fiber is a volume form.
Denote this 2-form by ß 2

M
Let dt denote the volume form on the base of the fibration p: M S1. Then

p*(dt) is a 1-form on M. Denote by N the 4-manifold M × S1. To distinguish it
from the base of the fibration denote the volume 1-form on the second factor by ds.
Let q1 : M × S1 M and q2: M × S1 S1 denote the projections to each factor.
Then q*2 ds) is a 1-form on N.

The 2-form
q*1 ß) + p*(dt) q*2 ds) 6)

is a symplectic form on N. Indeed, since ß is closed, d. 0, and one can check

locally that is nowhere zero.
If z is a fixed point of H, then the circle z ×H S1 M determines a torus

T0 z ×H S1) × S1 M × S1 N. The restriction of to this torus is a volume
form; with a slight abuse ofnotation it is just the form dt.ds. Thus T0 is a symplectic
torus in N. Note that the self-intersection number T0 · T0 in N is zero.
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The fundamental group of M is the HNN extension of p1F with respect to the
automorphism induced by H, i.e.

p1M p1F, t | H*(x) txt-1 for each x p1F

and p1N p1M × Z. Denote by s the generator of the second factor. Note that the
Euler characteristic and signature of N vanish.

Theorem 8 can now be proved, following Gompf’s argument. The group G of
Theorem 8 is obtained by taking the quotient of p1(N) by the normal subgroup
generated by t and s.

Recall from [6] that if X and Y are symplectic 4-manifolds containing symplectic
tori TX X and TY Y with trivial normal bundles then the symplectic sum of
X and Y along TX and TY denoted by X #T Y is obtained by removing tubular
neighborhoods of TX and TY and identifying the resulting boundaries, which are
S1 bundles over T by a fiber-preserving, orientation reversing diffeomorphism. The
symplecticsum admitsa symplecticstructure so that any symplectic surface inX-TX
or Y - TY remains symplectic in X #T Y.

Suppose that E is a symplectic 4-manifold which contains a symplectic torus T
with self-intersection number zero satisfying p1(E - T 1. Then Van Kampen’s
theorem implies that the fundamental group of the symplectic sum N #T E along T0
in N is obtained from the fundamental group of N by killing the image of p1(T0) in
p1(N). TakingE to be the elliptic surface E(1) and T a generic fiber gives the desired
symplectic manifold S N #T E(1) with p1S G, S) 12, and s(S) -8.

We turnnowto the proofofTheorem6. From thepresentationofGwithgenerators

r1

x1, xg and relations w1, wr construct a new presentation with 2g generators

x1, y1, xg, yg, and g + r relations: the first g relations are x1y1, xgyg and
the last r relations are w w Here wi

is obtained from wi by replacing every

occurrence of x-a
j for a > 0 with yaj for all j The relevant observation for our

purposes is that in every relation the generators appear with only positive powers.
Let T S1 × S1 and define f : S1 × S1 S1 by f eia, eib) ei(a+b). Let

X S1 × {1} and Y {1} × S1. Let D T be a small 2-disk in the complement
of X Y Let w: T T be a smooth map that collapses D to a point and is a

diffeomorphism on the complement of D. Denote by the 1 form on T obtained
by pulling back the volume form on S1, w*(f *(dt)). This is a 1-form on T
which vanishes on D, and restricts to a volume 1-form on any positive monotonic
path in T - D, that is, any smooth oriented) path in T - D whose composite with

f w wraps monotonically with non-vanishing derivative) around S1 in the positive
direction.

Let ni denote the length of the relation wi e.g. the length of x35y1y22 is 3). Let

n 1 +
r

i=1

ni
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Consider the isometric) Z/(ng) action of S2 generated by the rotation R about
the z axis by angle 2p/(ng). Let D be a small disc in S2 centered on the equator
say at 1,0, 0)) such that its translates by R are all pairwise disjoint. Let F be the

orientable surface of genus gn constructed by removing all the translates of D by
powers of R and gluing in one copy of T -D along each boundary circle. There is a

corresponding isometry R: F F which takes each copy of T -D to the next. The

1-form on T defines a smooth 1-form which we continue to call on F which
vanishes outside the union of the T -D and which is invariant under R. Another
description of this entire construction is to consider the ng-fold cyclic branched cover
of T branched over two points in D and to pull back the 1-form to the branched
covering.

For convenience denote F A B, where A is the complement of the ng discs

Rk(D in S2 and B is the disjoint union of the ng punctured tori. The region A is
shaded in Figure 4.

Let H Rg : F F. Thus H is an isometry of order n. We label the
images of the curves X and Y in the various copies of T - D using a double
index, Xi,j,Yi,j, i 1, g, j 1, n labeled lexicographically. Thus

H(Xi,j Xi,j+1 and H(Yi,j Yi,j+1 with j taken modulo n). In other words,
the labeling is lifted from the n-fold branched cover F F/H.

Join the intersection point of Xi,j and Yi,j to the north pole z 0, 0,1) along a

great circle to obtain generators xi,j and yi,j of p1(F, z). Thus the induced action on

p1F is given by H*(xi,j xi,j+1 and H*(yi, j yi,j+1.
To the ordered set of relations w1 w2 wr we assign an ordered set of words

w̃
1

1, w̃r in the xi,j and yi,j as follows. Starting with the first letter which appears

in w replace the corresponding xi or yi by xi,1 or yi,1. For the second letter which
appears in w2 add the second index 2 to its subscript, and continue until all the letters
in w1 are replaced by doubly indexed letters in such a way that as the word is read

from left to right, the second indices increase. Then proceed to the second relation

w2 and so forth. Thus when the words w̃1, w̃r are read from left to right, the
second index in the subscripts will read “1, 2, n- 1”.

For example, this process converts the set of relations

w1 w2 y2x
3
1x5,y4y

2
3

to

w̃1,w̃2) y2,1x
3
1,2x5,3,y4,4y

2
3,5).

From thew̃i one can easily construct pairwise disjoint immersed curves.i : S1

F for i 1, r with the properties:

1) .i connected to the north pole along a great circle) represents the word w̃i in
p1(F, z).
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y2,1

y1,1

x1,1

A xg,n

Figure 4

2) The double points if any) of .i are finite, transverse and contained entirely in
B.

3) .i restricts to apositive monotonic path in each component i.e. punctured torus)

ofB. This iswhereweuse the fact that the relations involve onlypositive powers
of the xi and yi

4) The curves .i intersect each component i.e. circle) of A n B transversely.

The pulled back 1-form * isa positivemultipleof dt on thatpart of S1 mappedi
into the interior of B by .i and is zero on nA. One can find a function 1.i fi on - A)i
so that fi vanishes on the endpoint of each arc in -1

i A) and so that *i + dfi
is a volume form on S1. Since the intersection of the union of the .i with A is a

collection of pairwise disjoint embedded arcs, one can extend each fi to a function
on F which vanishes outside a neighborhood of .i n A and vanishes on B. Adding
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the values of the fi yields a function f : F R so that *i + df is a volume i.e.

nowhere vanishing) 1-form on S1 for each i.
We also need g extra curves, corresponding to the relations xiyi, i 1, g.

Notice that n was the sum of the lengths of the relations, plus one. We use this extra
bit of surface to construct immersions in fact these can be taken to be embeddings)

.r+k : S1 F, k 1, g corresponding to the words x1,ny1,n, xg,nyg,n.

These curves can each be taken to lie entirely in one punctured torus component of
B and be positive and monotonic in this component. Alternatively, we could have

made n larger and treated these relations exactly as we did with the first type of
relation. We choose this approach since our intention is to find as small a universal
construction as possible.) The 1-form df vanishes on these last g punctured tori by
construction, and so *i + df is a volume form for i r + 1, r + g as well.

Since the form is invariant under H, the pull back p*1 via the projection
p1 : F × [0, 1] F is a closed 1-form on F × [0, 1] which determines uniquely a

well-defined1-form on the mapping torusM F×H S1 ofH with the property that
the restriction of to F × {0} M equals The function f : F F × {0} R
extends to a function still called f) on M say by using a cut-off function in the
interval coordinate). Thus we end up with a closed 1-form + df on M whose
restriction to the fiber F × {0} pulls back to a volume form for each .i : S1 F.

Let N M × S1. For small enough e, the form

.e q*1 ß) + p*(dt) q*2 ds) + eq*1( + df q*2 ds)

is a symplectic form onN. For each i 1, r+g the immersed torus Ti .i×S1
is Lagrangian with respect to q*1 ß)+p*(dt).q*2 ds). Since q*1( +df q*2 ds) is
avolume form on .i×S1, theTi are symplectic with respect to.e for small positivee.
The Ti can be regularly homotoped to embeddings by a small regular homotopy by
separating the double points of .i using the parameter transverse to the fibers in the
fibration of M. Pushing the curve .i into a far away fiber can be used to construct a

homotopy of Ti off itself. Thus the Ti have self-intersection zero.
Finally, we saw before that the “vertical torus” T0 T z ×H S1 is symplectic

with respect to .0; hence it remains symplectic with respect to .e for small
enough e.

The fundamental group of N is generated by the xi,j yi,j t and s subject to the
relations:

i,j
[xi,j,yi,j] 1, txi,j t-1 xi,j+1, tyi,jt-1 yi,j+1, sis central.

It follows that the quotient of p1N obtained by killing the generators s, t the words

w̃i and xi,nyi,n has the presentation with generatorsxi, i 1, g and relationswi
Thus to complete the argument we form the symplectic sum of N with g + r + 1

copies of the elliptic surface E(1) along the symplectic tori T0, T1, Tr+g. Sum-
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ming along T0 kills t and s. Summing along Ti, i 1, r kills w̃i and summing
along Tr+1, Tr+g sets xi,j equal to yi,j Note that this kills the commutator

[xi,j, yi,j] and hence the surface relation disappears. A simple calculation using the
Mayer–Vietoris sequence and Novikov additivity shows that each sum increases
by 12 and decreases s by 8, completing the proof.

Notice that the manifold M constructed in the proof of Theorem 6 is fibered over
S1 with finite order monodromy and with two fixed points. It follows that M is
Seifert-fibered over a surface S of genus g with two singular fibers. If s : M S

denotes the Seifert fibration, then the composite of the projection M ×S1 M and

s : M S is a singular fibration with torus fibers. The torus T0 is one of the singular
fibers. Nearby smooth fibers form an n fold cover of T0. The tori Ti are products of
curves .i in a section of the Seifert fibration with the last S1 factor.

The proof of Theorem 6 also proves the following, which is useful for certain
classes of groups.

Corollary9. LetGbe the quotientofasurface group xi,yi | i [xi, yi ] by a normal
subgroup generated by n words w1, wn in which the xi and yi appear with only
positive exponents. Then there is a closed symplectic 4-manifold with fundamental
group G, Euler characteristic 12(n + 1) and signature -8(n + 1).

A very interesting question is whether the number 12 which occurs in Theorems 6

and 8, and Corollaries 7 and 9 can be improved. Suppose that E is a symplectic
manifold which contains a symplectic torus T E such that T · T 0, and so that

p1(E-T 1. Then if k E), the number 12 in these theorems can be replaced
by k.

We can require even less: suppose thatK is a symplectic manifold which contains
a symplectic torus T K such that T · T 0 and so that p1(K - T Z. Let

p: T K-T denote a push off of T into the boundary of its tubular neighborhood.
Suppose that the induced homomorphism p* : p1(T p1(K - T is surjective.
Notice that p* contains aprimitivevector in its kernel, andso symplectically summing
with K can be used just as E(1) was used in the proof. If K) then the
12(g + r + 1) which occurs in Theorem 6 can be replaced by g + r + 2) or

g+ r)+k, with k as in the previous paragraph. This is because the first symplectic
sum used in the proof of Theorem 6 along T0) is used to kill two generators, t and s,
whereas the subsequent sums only need to kill one generator at a time.

We summarize these observations in the following corollary for completeness.

Corollary 10. Let E be a closed symplectic 4-manifold which contains a symplectically

embedded torus T with self-intersection zero such that p1(E - T is trivial
and with E) k. Let K be a closed symplectic 4-manifold which contains a
symplectically embedded torus T with self-intersection zero such that p1(K - T )~= Z,
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p* : p1(T p1(K-T surjective, and K) Then ifGadmitsa presentation
with g generators and r relations,

min
M.M(G)

M) k + g + r). 7)

Unfortunately, we do not know of any “small” examples of E or K as above. The
smallest example of such an E we know is E(1). The adjunction inequality ([16])
can be used to show that any such E must have E) 6. Since our constructions
are based on taking symplectic sums with E(1), the smallest example we know of a

K as in Corollary 10 has K) 12 see Lemma 18 below).

5. Bounds for specific classes of groups

In this section we derive better bounds for free groups, cyclic groups, and free abelian
groups than those given in Corollary 4. In particular, we determine the lower bound

for certain free abelian groups and provide an example of a minimizer.

5.1. Free groups.

Theorem 11. For any finitely generated free group G there exists a symplectic 4-
manifold M with fundamental group G and M) 12, s(M) -8.

Proof. Let F be a surface of genus g. Let Xi Yi i 1, g be a collection of
embedded curves forming a standard symplectic basis for H1(F Let xi, yi p1(F
be the corresponding loops obtained by connecting the Xi,Yi to a base point. Take

H : F F to be the composite of Dehn twists along the curves Y1, Y2, Yg. Then

H*(xi) xiyi and H*(yi) yi It follows that the quotient of p1(F by the normal
subgroup generated by x-1H*(x), x p1F is free with generators x1, xg.
Applying Theorem 8 finishes the argument.

Corollary 12. Let G denote the free group on n generators. Let e 0 if n is even

and e 1 if n is odd. Then

3 - 2n + e min
M.M(G)

M) 12,

and

4 - 2n + 2e min
M.M(G)

M) + s(M) 4.
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Proof. Theorem 13 establishes the upperbounds. LetM besymplecticwithp1(M)~=
G. Notice that M) 2-2n+ b+(M)+ b-(M) and M)+ s(M) 2 -2n+
2b+(M). SinceM is symplectic, b+(M) 1. Moreover, since 1- b1(M)+ b+(M)
is even, b+(M) is even if n is odd, so that for n odd b+(M) 2.

Notice that for G ~= Z the upper and lower bounds in the second formula of
Corollary 12 coincide. Thus our construction gives a symplectic 4-manifold with
fundamental group Z which minimizes + s.

Kotschick [15] improves the lower bound for min in Corollary12 from 3-2n+e
to 65 1-n) using the fact that 2. + 3s 0 for minimal symplectic 4-manifolds with
free fundamental groups.

5.2. Cyclic groups. We begin with an estimate for cyclic groups which uses
Theorem 8. The argument we give is identical to the argument given by Gompf in
Proposition 6.4 of [6].

Theorem 13 Gompf). There exists a symplectic 4-manifold M with fundamental
group G~= Z/n satisfying M) 12 and s(M) -8.

Proof. Let F be a torus. Take H : F F to be diffeomorphism which induces the
matrix

0 1

-1 2- n

on Z2 H1(F p1(F The quotient of p1(F by the normal subgroup generated

by x-1H*(x), x p1F is isomorphic to Z/n, since elementary row and column
operations transforms H* - I to the diagonal matrix with entries n and 1. Applying
Theorem 8 finishes the argument.

Corollary 14. Let G Z/n for n 0. Then

3 min
M.M(G)

M) 12,

and
min

M.M(G)
M) + s(M) 4.

Proof. If M is symplectic with p1(M)~= Z/n, then M) 2 + b2(M) 2 +
b+(M) 3. Moreover, M)+ s(M) 2+2b+(M) 4. The upper bounds come
from Theorem 13.

Notice that if M denotes the algebraic surface obtained from E(1) by performing

two logarithmic transformations of multiplicity p,q with n gcd(p, q), then
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p1(M) Z/n, M) 12, and s(M) -8. This shows that Theorem 13 can be

improved: one can replace “symplectic 4-manifold" by “Kähler surface.”
The examples of Theorem 12 do not always minimize the Euler characteristic.

For example, there are smooth complex projective surfaces with fundamental group

Z/5 Catanese) and Z/8 Reid) with 10. There are smooth complex projective
surfaces with fundamental group Z/2 Barlow and Reid) and Z/4 Godeaux) with

11. These examples have + s 4 [1].

5.3. Free abeliangroups. We turn to some calculations andestimatesof the minimal
values of + s onM(G) for G free abelian.

Recall first that smooth 4-manifolds were constructed in [11] which minimize
M) over the class of smooth manifolds M with p1(M) Zn. It was shown that

the minimal Euler characteristic for n 3,5 is

2- 2n + C(n, 2) + en,

where C(n, 2) denotes the binomial coefficient n(n- 1)/2, and en is 1 if C(n, 2) is
odd and zero otherwise. For n 3 resp. n 5) the minimal Euler characteristic
is 2 resp. 6). We will show below that for n even virtually the same result holds if
we minimize over the class of symplectic 4-manifolds. For n odd the situation is less
clear.

We begin by setting up some notation and making some easy observations. Let
G Zn and let M be a smooth, closed 4-manifold with p1(M) ~= G. Choose
a map f : M T n inducing an isomorphism on fundamental groups. Since
the cohomology ring H*(T n) is an exterior algebra on H1(T n), the induced map

f * : H2(T n) H2(M) is split) injective. In particular 2-2n+ C(n, 2) M).
Moreover, M) + s(M) 2 - 2n + 2b+(M) 2 - 2n.

Note that Zn contains subgroups isomorphic to Zn of arbitrarily large finite index.
Since and s are multiplicative with respect to finite covers,

0 M) + s(M). 8)

We turn now to the search for symplectic examples which minimize and +s.

Proposition 15. Any closed symplectic 4-manifold M with p1(M)~= Zn satisfies

M)
2 - 2n + C(n, 2) if n 1 or 4 mod 8,

3 - 2n + C(n, 2) otherwise

and

M) + s(M) 0 mod 4.
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Proof. The cases n 0,1, 2 are easy, so we assume that n 3. Suppose that M is
a closed symplectic 4-manifold with p1(M)~= Zn. Then M) 2 - 2n + b2(M).
Since M is symplectic, 1 - b1(M) + b+(M) 1 - n + b+(M) is even. Hence
2- 2n + 2b+(M) M) + s(M) 0 mod 4.

The bound 1) or see the paragraph preceding Equation 8) implies that b2(M)
C(n, 2). The theorem will follow if we can show that this bound can be improved to

b2(M) C(n, 2) + 1 when n is not congruent to 1 or 4 mod 8.
Assume that b2(M) C(n,2).
As remarked in [11], if b2(M) C(n, 2), the injection f * : H2(T n) H2(M)

is an isomorphism. SinceH*(T n) is anexterior algebra over Z) onH1(T n), H2(T n)
hasa basis forwhich each basisvector has cupsquare zero. This forces the intersection
form of M to be even and hence have even rank. Thus C(n, 2) is even.

This proves that b2(M) C(n,2)+ 1 whenever C(n, 2) is odd, i.e. if n 4k+ 2

or n 4k + 3. Notice that we did yet not use the fact that M was symplectic.)
Continue with the assumption that b2(M) C(n, 2), so that C(n, 2) is even.

Since we are assuming that b2(M) C(n, 2), the intersection form of M is even,

and hence its signature is divisible by 8. Thus M) 0 mod 4, i.e.

2- 2n + C(n,2) 0 mod 4 9)

A simple calculation establishes that if n 4k, then Equation 9) forces k to be odd.
Similarly, if n 4k + 1, then k must be even. Thus we have shown that with the
possible exception of n 8k + 1 and n 8k, a symplectic 4-manifold M with
p1(M)~= Zn must have b2(M) C(n, 2)+1, and so M) 2-2n+C(n, 2)+1.

In[11] itwasshown that there exist smooth closed 4-manifoldsXn withp1(Xn)~=
Zn and Xn) 2-2n+ C(n,2) for anyn > 5 with C(n, 2) even. It follows from
Theorem 15 that Xn cannot admit a symplectic structure when n 8k or n 8k+5.
For these examples, b1(Xn) is even, s(Xn) 0 and 2.(Xn) + 3s(Xn) 0.

As explained in[11], thecasesZ3 andZ5 are exceptional. The intersection formof
any smooth manifoldM with fundamentalgroup Z3 has a 3-dimensional metabolizer,
hence b+(M) 3 and b-(M) 3. IfM is symplectic then b+(M) is even, hence at

least 4. Thus M) 3 and M) + s(M) 4. Similarly, the intersection form of
any smooth manifoldM with fundamental group Z5 has a 7-dimensional metabolizer.

If M is symplectic this implies M) 7 and M) + s(M) 8.
We next look at upper bounds. As a first estimate, since Zn has a presentation with

n generators and C(n,2) relations, Theorem 6 and Proposition 15 give the estimates

1
2 n

2 - 5n + 4) min
M.M(Zn)

M) 6(n2
+ n + 2).

Thuswe see thatminM.M(Zn) M) growsquadratically in n,with leading coefficient
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between 1
2 and 6. It follows from the calculations below that the leading coefficient

is 1
2 ; in factminM.M(Zn){ M)- 12n2} grows at most linearly in n.
For each integer g 0 let Fg denote the surface of genus g. Let Sg Sym2(Fg).

Proposition 16. The space Sg is a compact Kähler manifold, and in particular
is symplectic. Moreover, p1(Sg) Z2g, H2(Sg) ZC(2g,2)+1 so that Sg)
3- 2(2g) + C(2g, 2), and s(Sg) 1- g.

Sketch of proof. The fact that Sg admits a complex structure comes from the fact that
the Z/2 action on Fg ×Fg defines a branched cover of Sg. The fundamental group is
computed usingVan Kampen’s theorem, splitting Sg along the circle bundle over the
branch set; note that the two sets of generators of p1(Fg × Fg)~= p1(Fg) × p1(Fg)
commute, and are identified in p1(Sg). Since b1(Sg) is even, Sg is Kähler [7].

The Riemann–Hurwitz formula computes Sg) and with the universal coefficient
theorem this implies the computation for H2(Sg). Computing the signature is a bit
more involved; the most straightforward way to do this is to use the transfer with R
coefficients) to observe that the induced map H2(Sg) H2(Fg × Fg) is injective
with image the Z/2-invariant classes, and to compute the intersection form directly
by restricting the intersection form of Fg × Fg.

We refer to [22] for details.

The following corollary computes the minimal Euler characteristic for most Z2g.

Corollary 17. Let G Z2g.

1) If g 0,1 or 3 mod 4, then

min
M.M(G)

M) 3- 4g + C(2g,2),

with minimizer Sg.

2) If g 2 mod 4, then

0 min
M.M(G)

M) - 2- 4g + C(2g, 2) 1.

3) 0 min
M.M(G)

M) + s(M) 4 - 5g + C(2g, 2).

Proof. The examples Sg of Proposition 16 provide the upper bounds. Proposition 15
shows that when g 0,1 or 3 mod 4, the Sg give the smallest possible When

g 2 mod 4, the lower bound of Proposition 15 differs by one from Sg). The

third assertion comes from Equation 8 and Proposition 16.
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Corollary 17 does not answer the question of whether Sg minimizes onM(Z2g)

when g 4m+ 2. In fact it does not for m 0: S2 T 4 # CP
2

But the 4-torus T 4

is symplectic and

0 T 4 < S2) 1.

We do not know whether S4m+2 minimizes : M(Z8m+4) Z form > 0.
Note that S2 does minimize + s. In fact, S0, S1,S2, and S3 minimize + s

for symplectic manifolds and G 0, Z2, Z4 and Z6. The first unknown case is S4,

with S4) + s(S4) 12. Hence either S4 minimizes + s among symplectic
4-manifolds with fundamental group Z8 or else since + s 0 mod 4) there is a

symplectic 4-manifold X with p1(X) Z8 and b+(X) 7,9 or 11.
Free abelian groups of odd rank pose a greater challenge. For G Z, we know

that any symplectic 4-manifold M with p1(M)~= Z has b+(M) even and greater
than zero, thus M) b2(M) 2. On the other hand, Theorem 13 constructs a

symplectic 4-manifold with p1(M)~= Z with M) 12 and s(M) -8. At the
moment this is the smallest example known to the authors of a symplectic 4-manifold
with fundamental group Z see Theorem 13). Thus

2 min
M.M(Z)

M) 12. 10)

This example does minimize + s. Indeed, since b+(M) is even and greater
than zero for a symplectic 4-manifold with fundamental group Z, it follows that

M) + s(M) 2b+(M) 4. The example of Theorem 13 with p1(M)~= Z has

M) + s(M) 4, so

min
M.M(Z)

M) + s(M) 4. 11)

We turn to the case G~=
Z3.

Consider the four-torus X T 2
× T 2 with the product symplectic structure. Its

fundamental group is Z4 generated by the coordinate circles; call these generators

a, b, c, d. The Euler characteristic of X is 0 and s(X) 0. The symplectic torus

T0 p × T 2 has fundamental group generated by c and d and self-intersection 0.
We can use the manifold in the next lemma to kill one of the generators c or d.

Lemma 18. There exists a symplectic 4-manifold K with p1(K)~= Z which contains
a symplectically embedded torus T with self-intersection zero such that

1) K) 12 and s(K) -8, and

2) p1(K - T )~= Z and the map induced by inclusion p1(K - T p1(K) is an
isomorphism.
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Proof. Let K be the symplectic 4-manifold with p1(K)~= Z constructed in Theorem

13. The construction of K was the following. First a fibered 3-manifoldM with
fiber a torus F is constructed as the mapping torus of the Dehn twist H : F F
on the torus along the second curve y of a symplectic basis {x, y} of p1(F Thus

p1(M) x, y,t | [x, y], txt-1 xy,tyt-1 y and letting N M × S1,

p1(N) x, y, t, s | [x, y], txt-1 xy, tyt-1 y, s central Then N admits
a symplectic form see Equation 6)) for which the torus T0 t × s is
symplectic, and taking the symplectic sum of N with E(1) along T0 yields K. Since

p1(N - T0) p1(N) is surjective and p1(E(1)- T0 1, where T0 is the elliptic
fiber in E(1) along which the symplectic sum is taken, it follows that p1(K) is infinite
cyclic, generated by x.

Let T denote the embedded torus in N given by x ×s. More precisely, choose an
embedded curve freely homotopic to x in the fiber F which avoids the base point.
Then T × S1 M × S1 is a torus and the morphism induced by inclusion
takes the two generators of p1(T to x and s. From Equation 6) one sees that T is
Lagrangian in N. Notice also that T is disjoint from T0 t × s since avoids the
base point of F. Also notice that T has self intersection zero since can pushed off
itself.

Since x is non-zero in H1(M), T is non-zero in H2(N) by the Künneth theorem.
It follows by a standard argument see e.g. Lemma 1.6 of [6]) That can be perturbed
by an arbitrarily small amount so that T is symplectic with respect to the resulting
symplectic form If the perturbation is taken very small, T0 remains symplectic.
Gompf shows furthermore that a symplectic structure on the symplectic sum K
N #T0 E(1) can be chosen so that T remains symplectic in K.

ThusT K is a symplectic torus withself-intersection zero for which the induced
map on fundamental groups is the map Zx Zs Zx, i.e. x x, s 1. To
compute p1(K - T first notice that N - T M - × S1. Since is a curve in
the fiber of the fibration M S1 representing x), it follows that M - is obtained
from F ×[0, 1] by gluing the ends along an annulus, namely the annulus in the torus

F complementary to Thus p1(M- x, y, t | [x, y], txt-1 xy It follows
that p1(N - T x, y, t, s | [x, y], txt-1 xy,s central Since K - T is the
symplectic sum of N - T with E(1) along T0,

p1(K - T x, y, t, s | [x, y], txt-1 xy, s central, s 1, t 1 Zx.

Take the symplectic sum, L, of K and T 4 along T in K and T0 in T 4,

L T 4 #T K,

identifying x with c and s with d. This, in effect, kills d without introducing any new
relations, giving a symplectic manifold with fundamental group Z3, with L) 12
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and s(L) -8. Together with the remarks after Proposition 15 this implies the
following.

Proposition 19. There exists a symplectic 4-manifold L with fundamental group
G Z3 satisfying L) 12 and s(L) -8. Hence

3 min
M.M(Z3)

M) 12.

Moreover,
min

M.M(Z3)
M) + s(M) 4.

Finally, we treat the case of odd rank free abelian groups.

Theorem 20. There exists a symplectic 4-manifold M with p1(M)~= Z2n-1 such

that M) 15- 5n + 2n2 and s(M) -7- n.

Theorem 20 gives the bound

min
M.M(Z2n-1)

M) - 2- 2(2n - 1) + C(2n - 1, 2) 2n + 10.

In other words, the difference between the lower bound of Equation 1) and the
examples constructed here grows linearly with the rank. This is in contrast with the
examples of even rank free abelian groups: that difference is always a constant. On
the other hand, it is an improvement over the general construction of Theorem 6,
whose difference grows quadratically in n.

The proof of Theorem 20 depends on finding a suitable symplectic form on the
Kähler) manifold Sg Sym2(Fg) for which we can identify certain tori as

Lagrangian. The main technical result needed is the following proposition, whose proof
was suggested to us by R. Gompf.

Proposition 21. Let F denote the closed surface of genus g, and let p : F ×F Sg
denote the regular 2-fold branched cover corresponding to the Z/2 action x,y)
y, x) on F × F with fixed submanifold B {(x, x) | x F}. Let .F be a fixed

symplectic form on the surface F and let .F .F 2(F × F) be the

Z/2-equivariant symplectic form on the product.
Then there exists a symplectic form 2(Sg) so that the pullback p*(

agrees with outside a small tubular neighborhood of B.

Proof. We first show that in any neighborhood of B in F × F one can find a tubular
neighborhood N of B which admits a semi-free Hamiltonian S1 action with fixed
set B, such that the Z/2 action x, y) y, x) embeds in the S1 action as multiplication

by-1. The Hamiltonian function µ: N [0,e) satisfies µ-1(0) B. This
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is a standard fact in symplectic topology; we include a proof for the benefit of the
reader.

Fix a Riemannian metric on F ×F and letP B be the principalSO(2) U(1)
bundle associated to the normal bundle of B, i.e. P is the bundle with c1(P
2 - 2g. Then P admits a free Z/2 action commuting with the U(1) action, namely
multiplication by -1 U(1). Let E P ×U(1) D2 B be the associated disc
bundle. Note that E is diffeomorphic to the normal disc bundle of B F × F.
Moreover, one can choose the diffeomorphism E~= equivariant with respect to the

Z/2 action on E and the linearization of the Z/2 action x, y) y, x) near B in
F × F.

The symplectic form. onF×F restricts to a symplectic form.B onB. This form
extends to an S1-equivariant symplectic form on E with corresponding Hamiltonian
function µ: E [0, 1], so that µ-1(0) B see [23, page 155]).

Since E and are equivariantly diffeomorphic symplectic bundles and restrict
to the same symplectic form .B on B, Weinstein’s symplectic tubular neighborhood
theorem see [30] and [23, page 98]) implies that there is a Z/2-equivariant
symplectomorphism from a neighborhood of the zero section in E and a neighborhood
of B in F × F. Since any neighborhood of the zero section in E contains a smaller
neighborhood of the form Ee µ-1([0, e)), pulling back µ and the U(1) action via
the symplectomorphism restricted to Ee gives the desired neighborhood N, Hamiltonian

µ, and corresponding Hamiltonian S1 action.
Denote the quotient of N - B by the Z/2 action by U. Thus U is endowed

with the quotient symplectic structure since Z/2 acts freely and symplectically on

N -B with quotient U) and admits a free Hamiltonian S1(= S1/(Z/2)) action with
Hamiltonian µ̄ : U 0, e).

Symplectic cutting U at e/2 see [17]) yields a symplectic manifold N diffeomorphic

to the tubular neighborhood of the branch set B Sg. The symplectic structure

on U is the restriction to U of the symplectic structure on Sg - B pushed down
from the equivariant symplectic structure on F × F -B). Since symplectic cutting
preserves the symplectic structure away from the cut locus it follows that Sg admits

a symplectic form whose restriction to Sg -N pulls back to the restriction of to

F × F -N.

Notice that theproof ofProposition 21 appliesequally well toanyregularbranched
cover X Y X/G with connected, symplectic branch manifold B X and
Gequivariant symplectic form on X.

Proof of Theorem 20. Let F be a closed surface of genus g with a symplectic form

.F Let .1 and.2 be disjointly embedded curves inF representing different elements

in a symplectic basis for H1(F Then T .1 × .2 is a Lagrangian torus in F × F.
Since .1 and .2 are disjoint the composite T F × F Sg is also an embedding.
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Proposition 21 implies that this torus which we continue to denote T in Sg is
Lagrangian with respect to a suitable symplectic form on Sg. The torus T Sg
represents a non-trivial homology class inH2(Sg) since its transfer t([F]) H2(F ×
F) is nonzero it equals .1 × .2 + .1 × .2) by the Künneth theorem.

Thus the symplectic form on Sg can be perturbed slightly so that T Sg is
symplectic. Taking the symplectic sum of Sg with the manifold K constructed in
Lemma 18 so that yields a symplectic manifold M whose fundamental group is the
quotient of p1(Sg) Z2g by the subgroup generated by [.1], i.e. p1(M) Z2g-1,

and such that M) Sg) + 12, s(M) s(Sg) - 8. The calculations of
Proposition 16 finish the proof.

5.4. Other abelian groups. In Section 6 of [6] Propositions 6.4 and 6.6), Gompf
explores the geography of symplectic 4-manifolds with certain abelian fundamental

groups constructed by symplectically summing torus bundles with E(1). For
completeness we state his results in our terminology.

Theorem 22 Gompf). 1) If G is the direct sum of up to three cyclic groups, except

Z Z Z, or if G Z Z Z/k Z/ with k, 0, then there is a symplectic
4-manifold M with p1(M) G, M) 12 and M) + s(M) 4.

2) If G is Z Z/k Z/ Z/n, or if G Z Z Z Z/k with k,
n 0, then there is a symplectic 4-manifold M with p1(M) G, M) 24 and

M) + s(M) 8.

Note that these computations include the computations we gave for cyclic groups
in the previous subsections. Using the same arguments as in the previous subsections,
the first statement in Theorem 22 has the following consequences:

1) If G Z/k Z/ Z/n with k, n 0, then

3 inf
M(G)

M) 12 and inf
M(G)

M) + s(M) 4.

2) If G Z/k Z/ Z with k, 0, then

2 inf
M(G)

M) 12 and inf
M(G)

M) + s(M) 4.

3) If G Z/k Z2 with k 0, then

0 inf
M(G)

M) 12 and inf
M(G)

M) + s(M) 0 or 4.
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Corresponding but weaker) bounds can be derived from the second statement of
Theorem 22.

Gompf also gives examples of relatively small symplectic 4-manifolds with other
non-abelian) fundamental groups. We refer the interested reader to his beautiful

article [6].

6. Some final remarks

We end with a brief discussion about some difficult issues surrounding minimizers
of The 4-dimensional Poincaré conjecture can be rephrased by saying that any
simply connected topological resp. smooth) 4-manifold with minimal Euler characteristic

is homeomorphic resp. diffeomorphic) to the 4-sphere. In other words, if one

minimizes the Euler characteristic on the class of simply connected 4-manifolds,
the minimizer is unique. Freedman’s theorem [5] proves the Poincaré conjecture for
topological manifolds, and the smooth question is one of the outstanding problems
in 4-dimensional topology.

New wrinkles appear in the symplectic case. For example CP2 minimizes the
Euler characteristic among simply-connected symplectic 4-manifolds, and Freedman’s

theorem implies any two minimizers are homeomorphic. One might call the
problem of whether any two simply connected symplectic 4-manifolds with 3

are diffeomorphic or symplectomorphic) the “symplectic Poincaré conjecture”. A
counterexample would involve finding a simply-connected symplectic 4-manifold
M, having M) 3 and KM · [.] > 0 cf. [18] or [20]). The question of

whether a simply connected symplectic manifold with 3 is diffeomorphic or
symplectomorphic to CP2 is unresolved, but there has been much recent progress in
the direction of a counterexample. Starting with [25] and expanded upon in [24],
[28], [4], [26], new examples were constructed of irreducible smooth 4-manifolds

homeomorphic but not diffeomorphic to CP2 # nCP2 for n 5,6, 7,8. However,
for n 5 the examples are not symplectic.

All attempts to change the diffeomorphism type of known minimizers without

changing their fundamental group seem to fail, suggesting that minimizers of

: M(G) Z are somehow special. But to conjecture that a symplectic minimizer
of : M(G) Z is unique up to diffeomorphism, however, is simply incorrect.
For example, S2 × T 2 and the nontrivial S2-bundle over T 2 both have fundamental
group Z2. Yet the search for other examples with G Z2 seems futile. It is certainly
easy to build homology T 2

× S2 symplectic manifolds: let Y be zero surgery on
a fibered knot in S3 and take Y × S1. The only example from this extensive list
that has fundamental group Z2 is when the knot is the unknot, i.e., when Y × S1 is
diffeomorphic to T 2

× S2. The key difference between S2 × T 2 and the nontrivial
S2-bundle over T 2 is that the first is spin and the second is not. So minimizers of
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: M(G) Z can have different intersection forms of the same rank. This leads us

to make, possibly out of ignorance, the following conjecture:

Conjecture 23. Let M be a symplectic 4-manifold with p1(M)~= G which
minimizes : M(G) Z. Let QM denote the intersection form of M. Then any other
symplectic manifold with intersection form QM which also minimizes : M(G)
Z is diffeomorphic to M.

We offer this conjecture merely as a new twist on an old theme in 4-manifold
theory, namely, describing conditions under which 4-manifolds are possibly unique.
Aweakerconjecturewould be to letQM denote the equivariant i.e.Z[G]) intersection
form of M. A counterexample to this conjecture would also be interesting. A good
place to start is to find another minimizer ofM(Z6) which is not diffeomorphic to S3.

Notice that any minimizer of is necessarily minimal. If G is not a free product then
any minimizer of is irreducible.

Suppose instead thatone looks for minima of.+s onM(e). Then minimizersare

not unique: for example CP2 # nCP
2

are minimizers inM(e). These examples indicate

that to go beyondexcessively generalobservationsone may have to restrict further
the class of manifolds, e.g. irreducible manifolds. Even then minimizers are not
unique up to diffeomorphism, for example). Indeed there are examples mentioned
above of irreducible, symplectic 4-manifolds homeomorphic but not diffeomorphic

to CP2 # nCP
2

for n 6 cf. [28]).
We end this article with remarks about improving our bounds.
What is missing in our results is a method for increasing the lower bounds of

minM.M(G) M) which uses the fact thatM is symplectic in a non-trivial way. The
lower bounds given in the present article are obtained by combining the lower bounds

valid for all 4-dimensional Poincaré complexes e.g. Equation 1)) with two simple
facts which hold for symplectic manifolds: b+(M) 1 and 1- b1(M) + b+(M) is
even. This second fact depends only the existence of an almost complex structure.
Our calculations show that for G Z2g, the difference

min
M(Z2g)

M)- min
M8(Z2g)

M)

equals zero or one. On the other hand, a recent article of Kotschick [15] shows that
for Gk the free group on k generators, the difference

min
M(Gk

M)- min
M8(Gk

M)

gets arbitrarily large as k goes to infinity. Thus any improvement of the lower bounds

which uses the symplectic structure in a deeper way will have to take these kinds of
examples into account.
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As explained at the end of Section 4, improving our upper bounds requires that
we find a symplectic 4-manifold K with K) < 12 which contains a symplectically

embedded torus T of self-intersection number zero with p1(K - T )~= Z or
p1(K - T 1. We have not found any such manifold, and might conjecture that
one does not exist. It is not hard to show that any such K must satisfy K) 6.
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