
A Caporaso-Harris type formula for
Welschinger invariants of real toric Del Pezzo
surfaces

Autor(en): Itenberg, Ilia / Kharlamov, Viatcheslav / Shustin, Eugenii

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 84 (2009)

Persistenter Link: https://doi.org/10.5169/seals-99111

PDF erstellt am: 10.08.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-99111


Comment. Math. Helv. 84 2009), 87–126 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

A Caporaso–Harris type formula for Welschinger invariants of
real toric Del Pezzo surfaces

Ilia Itenberg, Viatcheslav Kharlamov and Eugenii Shustin

Abstract. Wedefinea seriesof relative tropicalWelschinger-type invariantsof real toricsurfaces.
In the Del Pezzo case, these invariants can be seen as real tropical analogs of relative Gromov–
Witten invariants, and are subject toa recursive formula. As application weobtain new formulas
forWelschinger invariants of real toric Del Pezzo surfaces.
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1. Introduction

Welschinger invariants of real rational symplectic four-manifolds [10], [11] represent
one of the most interesting and intriguing objects in real enumerative geometry. In
the case of a real unnodal i.e., not containing any rational n/-curve, n 2) Del
Pezzo surface † theWelschinger invariants count, with appropriate weights 1, the
real rational curves which belong to an ample linear system jDj and pass through a

given generic conjugation-invariant set of c1.†/ D 1 points in †. In this paper
we consider only the invariants corresponding to sets of real points.

Our goal is to provide recursive formulas which calculate theWelschinger invariants

of toric Del Pezzo surfaces equipped with the tautological real structure. The
formulas we obtain are similar to those proved by L. Caporaso and J. Harris [1] for
relative Gromov–Witten invariants of P2.
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We use the technique of tropical geometry and follow ideas of A. Gathmann and

H. Markwig [2], [3] who suggested a tropical version of the Caporaso–Harris formula
and its tropical proof. We suitably adapt the tropical count to the real setting and
introduce tropical, multi-component and irreducible, Welschinger numbers for relative
constraints and arbitrary genus. We check their invariance Theorem 1 in Section 3.1)
and prove that these tropical invariants satisfy Caporaso–Harris type formulas
Theorem 3 for the multi-component invariants and Theorem 4 for irreducible invariants,
Section 3; a reformulation with generating functions is presented in Section 6.1). In
the case when the set of relative constraints is empty these invariants coincide with the
genuine Welschinger invariants. As a by-product, we establish some monotonicity
of the Welschinger invariants and give a new proof of their positivity Corollaries 4

and 5, Section 3.3).
The paper is organized as follows. In Section 2 we remind definitions and basic

facts concerningWelschinger invariants and plane tropical curves. Section 3 contains
the definition of tropical relative Welschinger numbers, the statements of the main
results and few corollaries. We prove the invariance of tropical relativeWelschinger
numbers in Section 4 and the recursive formulas in Section 5. Section 6 is devoted to
concluding remarks. Our main results are stated in terms of embedded plane tropical
curves, while the proofs go essentially through the parameterized incarnation of these
curves, and starting from Section 4we put a special attention to be maximally possible
consistent with existing in the literature notions and statements concerning these two
different categories. In particular, a part of Section 4 is devoted to various types of
genericity conditions and their comparison.

To conclude this short introduction, we would like to emphasize a certain,
challenging in our opinion, difference between the real and complex cases. Namely,
Gathmann–Markwig’s count of tropical curves in the tropical version of Caporaso–
Harris formula is in a strict correspondence in the sense of modified Mikhalkin’s
correspondence theorem [7], see [2], [3]) with the count of complex algebraic curves

in the original Caporaso–Harris formula. In particular, the invariance of the terms

in Caporaso–Harris formula explains and implies) the invariance of the terms in
the tropical version of Caporaso–Harris formula proposed by Gathmann and Markwig.

On the contrary, we do not know how to lift up invariantly the terms entering
the formulas suggested in the present paper except those which lead to the genuine
Welschinger invariants). One of the difficulties is that such a lift, if it exists, can not
be formulated in purely topological terms, see Section 6.

Acknowledgements. A considerable part of this work was done during our visits to
the Max-Planck-Institut für Mathematik, Bonn. We thank MPIM for the hospitality
and excellent working conditions.
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2. Preliminaries

2.1. Welschinger invariants of Del Pezzo surfaces. We remind here the definition
of Welschinger invariants [10], [11] restricting ourselves to a particular situation.
Let † be a real unnodal i.e., not containing any rational n/-curve, n 2) Del
Pezzo surface with a connected real part R†, and let D † be a real ample divisor.
Consider a generic set of c1.†/ D 1 real points of †. The set R.D;!/ of real

C 2 jDj passing through the points of is finite, and all these curves are nodal and
irreducible. In fact, the listed properties of R.D;!/ can be taken here as a definition
of the term ‘generic’.) Due to theWelschinger theorem [10], [11] and the genericity
of the complex structure on †), the number

W.†;D;!/ D X
C2R.D;!/

1/s.C/;

where s.C/ is the number of solitary nodes of C i.e., real points, where a local
equation of thecurve can be written overRin the form x2Cy2 D 0), does not depend

on the choice of a generic set We denote thisWelschinger invariant by W.†; D/.

2.2. Divisors on toric Del Pezzo surfaces. There are five toric unnodal Del Pezzo

surfaces: the projective plane P2, the product P1 P1 of projective lines, and P2
with k blown up generic points, k D 1; 2, or 3; the latter three surfaces are denoted
by P2k Let E1; : : : ; Ek be the exceptional divisors of P2k P2 and L P2k

the pull
back of a generic straight line.

Let † be one of these surfaces. An ample divisor on † defines a linear
system, which in suitable toric coordinates is generated by monomials xiyj where

i; j / ranges over all the integer points of a polygon D/ of the following form.
If † D P2 and D D d P1, then D/ is the triangle with vertices .0;0/, d;0/,
and .0; d/. If † D P1 P1 and D is of bi-degree d1; d2/, then D/ is the
rectangle with vertices .0; 0/, d1; 0/, d1; d2/, and .0; d2/. If † D P2 kk D 1, 2,

or 3, and D D dL P
k
iD1 diEi then D/ is respectively the trapeze with

vertices .0; 0/, d d1;0/, d d1; d1/, .0; d/, or the pentagon with vertices d2;0/,
d d1;0/, d d1; d1/, .0; d/, .0; d2/, or the hexagon with vertices d2;0/,
d d1; 0/, d d1; d1/, d3; d d3/, .0; d d3/, .0; d2/ see Figure 1). The

slopes of the sides of D/ are 0, 1, or1.
2.3. Plane tropical curves. In Sections 2.3 and 2.4 we remind definitions and basic
facts concerning plane tropical curves cf. [7], [3]), and fix the notation.

Let R2 be a nondegenerate convex lattice polygon, i.e., a convex polygon
with integer vertices and non-empty interior. A convex piecewise-linear function

F W R2 R; F.x/ D max
2 \Z2

h ; xi C c /; where c 2 R;
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Figure 1. Polygons associated with Del Pezzo surfaces.

is called a tropical polynomial with Newton polygon Consider the corner locus

AF R2 of F i.e., the subsetofR2 where F is not smooth). The setAF is naturally
stratified and defines a subdivision ‚F of R2. The 0- and 1-dimensional elements of
the stratification of AF are called, respectively, its vertices and edges.

The Legendre transform takes F to a convex piecewise-linear function %F W

R, whose linearity domains 1; : : :; N are convex lattice subpolygons of and
whose graph is the lower part of the polytope convf. ; c / 2 R3; 2 \ Z2g: The
polygons 1; :: : ; N give rise to a subdivision SF of This subdivision is dual
to ‚F in the following sense: there is a one-to-one correspondence D between the
elements of SF and the elements of ‚F such that

D sends any vertex of SF to a 2-cell of ‚F any edge of SF to an edge of‚F
and any polygon of SF to a vertex of ‚F ;
for any edge e of SF the edge D.e/ is orthogonal to e;

D reverses the incidence relation.

Each edge e of AF can be equipped with a weight w.e/ equal to the lattice length
i.e., the number of integer points diminished by 1) of the dual edge in SF The

stratified set AF whose edges are equipped with the corresponding weights is called
the tropical curve associated with the tropical polynomial F One says that AF is a

plane tropical curve with Newton polygon A plane tropical curve determines its
Newton polygon and the dual subdivision of uniquely up to translation.

Notice that the unbounded edges of AF are dual to the edges of SF lying on

the boundary @ of The unbounded edges of AF are called ends of AF The
unbounded edges of AF dual to the edges of SF which are contained in a side of

are called -ends.

Any edge of a plane tropical curve AF has rational slope, and for any vertex v
of AF one has the balancing condition

w.e1/u.v;e1/ C Cw.ek/u.v; ek/ D 0;

where e1; : : :; ek are the edges adjacent to v, and u.v; ei/ is the primitive integer
vector starting at v and directed along ei
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The sumAF .1/ C CAF n/ of plane tropical curvesAF .1/; : :: ; AF n/ is theplane
tropical curve defined by the tropical polynomial F .1/

C CF n/. The underlying
set of AF .1/ C CAF n/ is the union of underlying sets of AF .1/; : : :; AF n/ and
the weight of any edge of AF .1/ C CAF n/ is equal to the sum of the weights of
the corresponding edges of summands. A tropical curve in R2 is reducible if it is the
sum of two proper tropical subcurves. A non-reducible tropical curve in R2 is called
irreducible. A tropical curve AF is nodal, if any polygon of the dual subdivision SF
is either triangle, or parallelogram. The number of double points of a nodal tropical
curve Af with Newton polygon is the sum of the number of parallelograms in SF
and the number of integer points which belong to the interior of and are not vertices
of SF

The multi-set of vectors fw.e/u.e/g, where e runs over the ends of a plane tropical
curveAF and each primitive integer vectoru.e/ is directed along e to infinity, is called
the degree of AF

We extend the plane R2 up to yR2 D T R, where T D R[ f 1g is equipped
with the topology making T homeomorphic to OE0; C1/ via a logarithmic map, and
correspondingly extend any tropical curve in R2 by attaching a vertex on L 1 D
f 1g R to any horizontal negatively directed end of the curve.

2.4. Parameterizationsof plane tropicalcurves. Let x be a finiteconnected graph
without divalent vertices, and V a collection of certain univalent vertices of x Put

D xnV. Denote by 0 the set of non-univalent vertices of by 1 the set of0
edges of and by 11 the set of edges of such that the corresponding edges of x
terminate at univalent vertices we call such edges of the ends).

A parameterized plane tropical curve is a triple ;w;h/, where wW
1 N is

a function called weight function) and hW yR2 is a continuous proper map such

that

for any E 2 1, the restriction of h to E is an embedding into a straight line
with a rational slope,

if E 2 11 and E terminates at a univalent vertex V 2 then h.E/ lies in a

horizontal line and h.V / 2 L 1,
for any V 2

0 the union0

[E2
1

V2@E

h.E/

is not contained in a line, and one has the balancing condition

X
E2 1
V2@E

w.E/u.V; E/ D 0;
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where u.V;E/ is the primitive integer vector starting at h.V / and directed
along h.E/.

The ends of which are adjacent to univalent vertices of are called left. Due to
the properness of h, the non-left ends of are mapped onto half-lines which are not
horizontal negatively directed.

The multi-set of vectors fw.E/u.E/ W E 2 11 g, where each primitive integer
vector u.E/ is directed along h.E/ to infinity, is called the degree of ; w;h/.

A parameterized plane tropical curve ;w; h/ is a parameterization of a plane
tropical curve T if

the image under h of any vertex of is a vertex of T

the closure of the image under h of any edge of is the closure of a union of
edges of T

theweight of any edgee of T is equal tow.E1/C Cw.En/, whereE1; : : : ; En
are the edges of whose images under h contain e.

Any parameterizedplane tropicalcurve is aparameterization of auniqueplane tropical
curve. Notice that if ;w;h/ is a parameterization of a plane tropical curve T the
curve T might have vertices that are not images under h of vertices of

The genus of aparameterizedplane tropical curve ; w; h/ is the first Betti number

b1. / of If a plane tropical curve T is irreducible, the minimal genus of its
parameterizations is called the genus of T and is denoted by g.T /.

The degree of an irreducible nodal plane tropical curve T coincides with the
degree of any parameterization of T. If T is an irreducible nodal plane tropical
curve, then any minimal genus parameterization ;w;h/ of T is simple, that is,
any vertex of has valency either 3, or 1. For any two simple parameterizations

; w; h/ and 0; w0; h0/ of a given irreducible nodal plane tropical curve, there
exists a homeomorphism ' W

0 such that h D h0
B ' and w.E/ D w0.'.E//

for any E 2 1.

If T is a nodal plane tropical curve, then each edge of T is contained in a unique
irreducible subcurve of T In particular, a nodal plane tropical curve is uniquely
represented as a sum of its irreducible subcurves. Notice that this statement is not
true without the nodality assumption.) Furthermore, any irreducible subcurve of a

nodal plane tropical curve is nodal. The genus g.T / of a nodal plane tropical curve T
is g.T .1// C C g.T n// n C 1, where T .1/; : : : ;T n/ are all the irreducible
subcurves of T. If T is a nodal plane tropical curve with Newton polygon then
the genus of T is equal to the difference between the number of vertices of the dual
subdivision ST which belong to the interior of and the number of parallelograms
in ST In particular, the sum of the genus of T and the number of double points of T
is equal to the number of interior integer points of
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3. TropicalWelschinger invariants

3.1. Tropical Welschinger invariants of toric surfaces. Denote by C the
semigroup of sequences D 1; 2; : : :/ 2 Z1 with nonnegative terms and finite
l1-norm k k D Pi i Each element of C contains only finitely many non-zero

1i

terms, so in the description of concrete sequences we omit zero terms after the last
non-zero one. The only exception concerns the zero element of C the sequence

with all the terms equal to zero). This element is denoted by .0/. For an element
in C, put J D P D1.2i 1/ i Define in C the following natural partial order:
if each term of a sequence is greater than or equal to the corresponding term of a

sequence then we say that is greater than or equal to and write For

two elements D 1; 2; :: : / and D 1; 2; : : :/ of C such that the
sequence D 1 1; 2 2; : : : / is an element of C.

Let R2 be a nondegenerate convex lattice polygon, and the intersection
of with its left vertical supporting line. Assume that is a not a point. In this
case, we say that is left-nondegenerate. Pick two elements and in C such that

J C J D j j, where j j is the lattice length of Fix an integer g, and put

r D j@ j j jC k k C k kC g 1; 1)

where j@ j is the lattice length of the boundary of Assume that r > k k.
Consider the space ; ; ;g/ D L 1/k k R2/r k k formed by the

ordered) configurations p D p[;p]/ of r points in yR2 such that p[ D p1; :: : ;pk k/
is a sequence of k k points on L 1, and p] D pk kC1; : : : ; pr/ is a sequence of
j@ j j j C k k C g 1 points in R2. For any p 2 ; ; ; g/, introduce the
set T ; ; ; g;p/ of nodal plane tropical curves T yR2 satisfying the following
conditions:

T has as Newton polygon and is of genus g;

all the 0-ends of T where 0 ¤ have weight 1;

the number of -ends of T is equal to k C k, and precisely i C i of them
have weight 2i 1, i 1;

any irreducible subcurve of T has a -end;

T passes through all the points of p, and any point pk 2 p[ is contained in
a -end of weight 2ik 1, where the positive integer ik is determined by the
inequalities

Pj<ik j < k Pj ik j
The first three conditions completely describe the degree of T and further on we

denote this degree by ; For any T 2 T ; ; ;g; p/ one has

r D #End.T / C g 1;
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where #End.T / is the number of ends of T For a generic p 2 ; ; ; g/, the set

T ; ; ; g; p/ is finite. This assertion can be proved similarly to the corresponding
one in [7]. A more precise statement and a proof is found in Section 4.8.

Let T be a curve in T ; ; ;g; p/. If T does not have edges of even weight, put

W.T / D 1/s, where s is the total number of integer points lying in the interior of the
triangles of the subdivision ST of Otherwise, putW.T / D 0. The numberW.T /
is called the Welschinger multiplicity of T Note that for a reducible tropical curve

T 2 T ; ; ; g; p/, itsWelschinger multiplicity is the product of theWelschinger
multiplicities of all the irreducible subcurves of T

The Welschinger multiplicity can be also defined for any simply parameterized
plane tropicalcurve ;w; h/. Namely, let V bea vertex in 0

0 If the weights of all the
edgesof that are adjacent to V areodd, denoteby s.V / the number of interior integer
points in the triangle built on the vectors w.E1/u.V; E1/ and w.E2/u.V; E2/, where

E1; E2 is a pair of edges of adjacent to V and putW.V / D 1/s.V /. Otherwise,
put W.V / D 0. The number

QV2
0 W.V / is called theWelschinger multiplicity of
0

; w; h/ and is denoted by W. ; w; h/. If ; w; h/ is a simple parameterization of
a nodal plane tropical curve T then W. ; w; h/ D W.T /.

Denote by T irr. ; ; ; g; p/ the set of irreducible curves in T ; ; ;g; p/,
and put

W. ; ; ; g; p/ D X
T2T ; ; ;g;p/

W.T /;

and

Wirr ; ; ; g; p/ D X
T2T irr. ; ; ;g;p/

W.T /:

Theorem 1. The numbers W. ; ; ;g; p/ and Wirr. ; ; ; g;p/ do not depend
on the choice of a generic configuration p 2 ; ; ; g/.

The word ‘generic’ in the statement of Theorem 1 means that the configurations
are taken in an open dense subset of ; ; ; g/. This subset is explicitly described
in Section 4.8 see the definition of multi-tropically generic configurations).

Due to Theorem 1, one can skip p in the notation of the above numbers. The
numbers W. ; ; ; g/ resp., Wirr. ; ; ; g/) are called multi-component resp.,

irreducible) relative tropical Welschinger invariants.

The following statement is acorollary ofMikhalkin’s correspondence theorem[7].
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Theorem 2 see [6], Theorem 6, and [8], Proposition 6.1). Let † be a toric unnodal
Del Pezzo surface equipped with its tautological real structure, D † an ample
divisor, and is a polygon SL.2;Z/-and-translation equivalent to the polygon D/
defined in Section 2.2. Assume that is left-nondegenerate. Then

Wirr ; .0/; j j/; 0/ D W.†; D/;

where is the intersection of with its left vertical supporting line.

The proof ofTheorem 1 isgiven in Section 4. Itmainlyfollows the argument of[2],
[3], where a description of the first order degenerations and respective bifurcations of
simple parameterizations of tropical curves in count are given. Notice that Theorem 1

can also be proved via the study of non-parameterized plane tropical curves in the
spirit of [8].

3.2. Recursive formula for multi-component invariants. Denote by k the
element in C whose k-th term is equal to 1 and all the other terms are equal to 0. For

; 0

2 C, 0, put

D
0

iD1

0
i1Y i

:

Extend the definition of the multi-component relative tropicalWelschinger invariants
to the degenerate case D in the following way. If is a point, then put

W. ; .0/; .0/; g/ D ´ 1; if g D 0;

0; otherwise:

If is a vertical segment, then putW. ; ; ; g/ D 1 for C D j j/, g D 1 j j,
and put W. ; ; ;g/ D 0, in all other cases. A number W. ; ; ; g/ such that

D will be referred to as an initial value.
In addition, put W. ; ; ; g/ D 0 whenever is nondegenerate and r k k.
Given a convex lattice polygon and a cooriented straight line

Es
of slope 0, 1

or1, take the supporting straight line L
Es

of such that L
Es

is parallel to Es, and is
contained in the half-plane defined by the coorientation.

Then the Es-peeling lEs. / of is the convex hull of \Z2/nLEs

Introduce the set„ formed by the empty set, the lattice points, the lattice vertical
segments, and the convex lattice left-nondegenerate polygons such that a primitive
integer normal vector of any face of belongs to the set

f.1; 0/; 1;0/;.0;1/;.0; 1/; .1; 1/; 1; 1/g:

Remark 1. Any nondegenerate polygon in „ defines a toric unnodal Del Pezzo
surface and an ampledivisor on it. The set„ isclosed with respect to the Minkowski sum
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and any Es-peeling 7! lEs. / where
Es

is a cooriented straight vertical line. Furthermore,

if the Minkowski sum of several convex lattice left-nondegenerate polygons is
a polygon in „, then all the summands are in „.

Let 2 „ be a nondegenerate polygon. Denote by 1 respectively, E0, 1) a

vertical line respectively, ahorizontal line, a line ofslope 1)coorientedby the vector

.1; 0/ respectively, .0; 1/, .1; 1/). Denote by L E0
respectively, L 1

the support

straight line of such that LE0
respectively, L 1

is parallel to E0 respectively, 1),
and is contained in the half-plane defined by the coorientation. We say that is

E0-nondegenerate respectively, 1-nondegenerate), if the intersection I of withL
E0

respectively, L 1
is not a vertex, andoneof the edges neighboring to the edgeI is of

1

slope 1 respectively, 0). Consider a subset È of fE0; 1g. The È-peeling lÈ. / of
is the result of the consecutive Es-peelings of l / where Es

runs over the elements

of È note that in the case È D fE0; 1g, one has l 1 l
E0

l1 /// D l
E0

l 1 l1 ///
since l1 / is left-nondegenerate). The set È is called -admissible if for any

Es 2 È
the polygon is Es-nondegenerate, and the polygon lÈ. / is either left-nondegenerate

or a point. Note that if È is -admissible, then lÈ. / 2 „.
Theorem 3. Let 2 „be anondegenerate polygon, and the intersection of with
its left vertical supporting line. Then, for any ; 2 C such that J C J D j j,
and any integer g, one has

W. ; ; ; g/ D Xk 1
k>0

W. ; C k; k; g/

C XÈ; 0; 0;g0

W.lÈ. /; 0; 0;g0/;
0

0

2)

where the latter sum in 2) runs over the quadruples È, 0, 0, g0 satisfying the
following conditions:

È fE0; 1g is -admissible; 0; 0 2 C; g0 2 Z; 0 ; 0;

; / ¤ 0; 0/; J 0

C J 0 D j 0j; g g0 D k
0

k 1;
3)

0 being the intersection of lÈ. / with its left vertical supporting line.

The proof of Theorem 3 basically follows the lines of the proof of Theorem 4.3
from [3], and is presented in Section 5.

Remark 2. The initial values for W. ; ; ; g/ i.e., the numbers W. ; ; ; g/
in the case D and the recursive formula given in 2) determine all the numbers

W. ; ; ; g/; 2 „.



Vol. 84 2009) A Caporaso–Harris type formula forWelschinger invariants 97

Formula 2) can be seen as a real analogue of the Caporaso–Harris formula [1],
Theorem 1.1, and of its generalizations proposed by R.Vakil [9]. The Caporaso–
Harris formula contains extra coefficients and extra terms with respect to formula 2).
Comparing two formulas, one should take into account that a term indexed by ; /
in formula 2) is an analog of the term indexed by j. /; j. // of the Caporaso–
Harris formula, where j W C C is the injection associating to a sequence D

1; 2; 3; : : :/ 2 C the sequence 1;0; 2; 0; 3; 0; : : :/. In other words, in
formula 2) we do not consider the tropical analogs of curves which have even order
intersections with the fixed straight line. Notice also that the Caporaso–Harris
formula contains as a parameter the number of double points instead of the genus. This
difference is not essential, since the genus determines the number of double points
and vice versa.

3.3. Recursive formula for irreducible invariants. For ; .1/; : : : ; s/
2 C,

.1/ C C s/, put

.1/; :: : ; s/ D 1Y
iD1

i Š

i Š. i Pk
k/.1/

i Š
s/

i /Š

:

Introduce the set S of the 4-tuples ; ; ; g/ formed by a polygon 2 „,
elements and in C such that J C J D j j, where is the intersection of with
its left vertical supporting line, and an integer g. Define in S the following operation:

; ; ;g/ C Q ; Q; Q; gQ/ D C Q ; C Q; C Q; g CgQ 1/:

We extend the definition of the irreducible relative tropicalWelschinger invariants
to the degenerate case D in the following way. If D putWirr. ; ; ; g/ D
1 for g D 0, C D j j/, and j j 1, and put Wirr. ; ; ; g/ D 0, in all other
cases. A number Wirr. ; ; ;g/ such that D will be referred to as an initial
value.

In addition, put Wirr. ; ; ; g/ D 0 whenever g < 0.
The irreducible relative tropicalWelschinger invariants satisfy a recursive formula

which is similar to the Caporaso–Harris formula for irreducible relative Gromov–
Witten invariants see [1], Section 1.4).

Theorem 4. Let 2 „ and be as in Theorem 3. Then, for any ; 2 C such that

J C J D j j, and any integer g 0, one has

Wirr ; ; ;g/ D Xk 1
k>0

Wirr ; C k; k; g/ 4)

CX .1/; : : : ; m/
nŠ

n1Š : : : nmŠ
iD1

i/
mY Q.i/

Wirr i/; i/; i/; g i// ;
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where

n D j@ j j jCk kCg 2; ni D j@
i/j j i/

jCk
i/

kCg i/ 1; i D 1; : : : ; m;

and the latter sum in 4) is taken

over all -admissible sets È fE0; 1g,
over all splittings

lÈ. /; 0; 0; g0/ D mX
iD1

i/; i/; i/; g i//

in S, where

0; 0 2 C; g0 2 Z; 0 ; 0;

J 0 C J 0

D j 0j; g g0 D k
0

k 1;

0 being the intersection of lÈ. / with its left vertical supporting line,

over all splittings

0 D C mX
iD1

Q i/; k Q i/k > 0; i D 1; : :: ; m;

satisfying the restriction i/ Q.i/; i D 1; : : : ; m;

and factorized by simultaneous permutations in the both splittings.

Remark 3. In the case g D 0, the right-hand side of formula 4) reduces to the terms

with g.i/ D 0 and k Q.i/k D 1.

The proof of Theorem 4 is a slight modification of the proof of Theorem 3, and

we indicate this modification at the end of Section 5.
The initial values for Wirr. ; ; ; g/ and formula 4) determine all the numbers

Wirr. ; ; ;g/.

Corollary 4. Let 1 and 2 be two nondegenerate polygons in „ such that 2

1. Denote by †i and Di i D 1; 2, the toric Del Pezzo surface equipped with its
tautological real structure and the ample divisor on †i which are defined by i
Then

W.†1; D1/ W.†2;D2/: 5)

If, in addition, the number of interior integer points of 1 is greater than the number
of interior integer points of 2 i.e., the genus of a generic member of the linear
system jD1j is greater than the genus of a generic member of jD2j), then

W.†1; D1/ > W.†2;D2/: 6)
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Corollary 5 cf. [5], Theorem 1.3). Let † be a toric unnodal Del Pezzo surface
equipped with its tautological real structure, and D † an ample divisor. Then

W.†;D/ > 0.

Proof of Corollaries 4 and 5. Since 2 1, the polygon 2 can be obtained from

1 by a sequence of peelings. Thus, it is sufficient to treat the case when 2 is
the result of an Es-peeling of 1. Without loss of generality, we can assume that

Es

is the left vertical supporting line of 2 cooriented so that 2 is contained in the
half-plane defined by the coorientation. Denote by 0 the intersection of Es with 2,

and by the intersection of 1 with its left vertical supporting line. If is a point,
then W.†1; D1/ D W.†2;D2/. Assume that is a nondegenerate segment. One
has

W.†1; D1/ D Wirr 1; 0; j j/;0/; W.†2; D2/ D Wirr 2; 0; j 0j/; 0/:

The absolutevalueof thedifference j j j 0jis at most 1. According to Theorem4,

if j 0j D j j C 1, then

Wirr 1;0; j j/; 0/ j 0j Wirr 2; 0; j 0j/; 0/I

if j 0j D j j, then

Wirr 1;0; j j/; 0/ Wirr 1; .1/; j j 1/;0/

j 0j Wirr 2; 0; j 0j/; 0/I

if j 0j D j j 1, then

Wirr 1;0; j j/; 0/ Wirr 1; .1/; j j 1/;0/
Wirr 1; .2/; j j 2/;0/

j 0j Wirr 2; 0; j 0j/; 0/:

Thus, in all the three cases,

Wirr 1;0; j j/; 0/ j 0j Wirr 2;0; j 0j/;0/: 7)

This proves the inequality W.†1; D1/ W.†2; D2/. Since, in addition, we have

W.†2; D2/ D 1 whenever 2 does not have interior integer points, we obtain
positivity of the invariants W.†; D/.

If the number of interior integer points of 1 is greater than the number of interior
integer points of 2, then j 0j 2, and inequality 7) implies that W.†1; D1/ >
W.†2; D2/.

Corollary 6. The first six terms of the sequence W.P2; dP1/ are as follows:

W.P 2; P1/ D W.P2; 2P1/ D 1; W.P2 ;3P 1/ D 8; W.P2; 4P1/ D 240;

W.P2; 5P1/ D 18264; W.P 2; 6P1/ D 2845440:
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4. Invariance of tropicalWelschinger numbers

4.1. Moduli spaces of parameterized marked tropical curves. Let g,
and r be as in Section 3.1. A parameterized marked tropical curve ;w; h; P/ of
degree ; isa parameterizedplane tropical curve ; w; h/ ofdegree ; equipped
with a sequence P of r distinct points in such that

P D P [ [ P ] starts with a sequence P[ of some univalent vertices of and
terminates with a sequence P] whose points are not univalent vertices of

the number of points in P[ is equal to k k,
the weight of the ends of merging to the points

Pk 2 P [; Xj<i
j < k Xj i

j;

is 2i 1, i 1,

those points of P] that coincide with vertices of can be pushed inside the
adjacent edges in order to transform P to a set zP such that the components of
xn zP have no loops and each of them contains at most one univalent vertex in
particular, the components of xnP have no loops and each of them contains at

most one univalent vertex).

We sometimes call such a sequence P a configuration. The elements of P are called
marked points.

Lemma 7. Let ; w; h;P/ be a parameterized marked tropical curve such that no

pointofP coincides with a non-univalent vertex of Then anyconnected component
of x n P contains exactly one univalent vertex.

Proof. Identifying all the points of V x we obtain a graph whose first Betti
number is equal to r k k. The complement of P] in this graph is a tree, and the
statement follows.

Two parameterized marked tropical curves ;w; h; P/ and 0; w0;h0; P0/ of the
same degree ; are called isomorphic if there is a homeomorphism ' W

0

such that '.P/ D P0, and w.E/ D w0.'.E// for any E 2 1. Two parameterized
marked tropical curves ; w; h; P/ and 0; w0;h0; P0/ of the same degree ; have

the same combinatorial type, if there is a homeomorphism ' W
0 such that

for any V 2
0 and any edge E adjacent to V the vectors u.V; E/ and0

u.'.V /; '.E// coincide, where u.V; E/ respectively, u.'.V /; '.E//) is the
primitive integer vector starting at h.V / respectively, h0.'.V //) and directed
along h.E/ respectively, h0.'.E//),
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w.E/ D w0.'.E// for any E 2 1,

if a point Pi 2 P belongs to an edge E respectively, coincides with a vertex V
of then the point P0i belongs to the edge '.E/ respectively, coincides with
the vertex '.V /).

Let ƒ ; ; ;g be the set of all the combinatorial types of parameterized marked

tropical curves ; w; h;P/ of degree ; such that b1. / g and P ] contains at

least g b1. / points coinciding with vertices of For any 2 ƒ ; ; ;g denote by

M ; ; ;g the set of the isomorphism classes of parameterized marked tropical curves

of combinatorial type One can encode the elements ; w; h;P/ ofM ; ; ;g by

i) the lengths of images under h of all the edges E 2
1
n 11

ii) the position of h.V / 2 yR2 for some vertex V 2
0
0

iii) the coordinates of the points of h.P[/ on L 1, and

iv) the distances of the points of h.P]/ to the images under h of certain chosen
vertices of the edges of which contain the points of P].

These parameters are called graphic coordinates. The graphic coordinates described

in the item iv) are called marked. For a given graphic coordinates are subject to
finitely many linear equalities and inequalities and identifyM ; ; ;g with the relative

interior ofa convex polyhedron in an affinespace. WecallM ; ; ;g
the moduli space

of parameterized marked tropical curves of combinatorial type
A combinatorial type 0 2 ƒ ; ; ;g is a degeneration of 2 ƒ ; ; ;g if graphic

; ; ;g
and M 0coordinates on M ; ; ;g can be chosen in such a way that M 0

; ; ;g
becomes the intersection of M ; ; ;g with some coordinate hyperplanes in the
following sense: the non-zero coordinates of any point of this intersection are the chosen

graphic coordinates of the corresponding point ofM 0

; ; ;g
For each combinatorial type contained in ƒ ; ; ;g choose graphic coordinates

; ; ;g Denote by xP the corresponding polyhedron and by P its relativeon M
interior. If 0 is a degeneration of then for any choice of graphic coordinates on

M ; ; ;g there exists a unique choice of graphic coordinates on M 0

; ; ;g such that

M 0

; ; ;g becomes the intersection of M ; ; ;g with some coordinate hyperplanes.

Denote by f 0; the affine map identifying this intersection with P 0

Proposition 8. For any combinatorial type 2 ƒ ; ; ;g and any face F of the

polyhedron xP there exists a degeneration 0

2 ƒ 1 0

; ; ;g such that f 0; P / D F

Proof. Pick a parameterized marked tropical curve ; w; h;P/ of combinatorial
type The map h induces a metric on and thus, an affine structure on it. Any
point in M ; ; ;g has a representative ;w; hQ; Pz / such that hQ is affine-linear on
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any segment that contains no marked point and no vertex of Let p 2 F be

the limit of a sequence of points in P The sequence of corresponding maps hQ

converges to a map yR2 which is a composition of a quotient map from to a

certain graph 0 and an embedding h0
W

0 yR2. The sequence of configurations zP

converges to a configuration xP of points of Descendingw and xP to 0, one obtains
aparameterizedmarkedtropicalcurve 0; wB 1; h0; xP// together with graphical
coordinates identifying it with p. The combinatorial type of 0; w B 1; h0; xP//
is a degeneration of

For any 2 ƒ. ; ; ; g/, denote by Q the projection of P on the coordinate
subspace spanned by the non-marked graphical coordinate axes.

Lemma 9 see [7], Proposition 2.23). For any 2 ƒ. ; ; ; g/, the dimension of

Q is at most r. Moreover, Q is of dimension r if and only if the curves in are
simply parameterized.

If ; w; h; P/ is a simply parameterized marked tropical curve of degree ;

such that no point in P] is a vertex of then the combinatorial type of ; w; h; P/
is called -generic.

Consider the disjoint union ` xP where runs over all the -generic
combinatorial types in ƒ ; ; ;g. LetM ; ; ;g be the quotient space of ` xP defined by
the gluing maps f 1

0; 2 B f 0; 1 for all the triples 1; 2; 0/ of combinatorial types

such that 1 and 2 are -generic, and 0 is a degeneration of 1 and 2. We identify
the setsM ; ; ;g with P and consider them as subspaces inM ; ; ;g.

In the case D .0/, the moduli space M ; ; ;g coincides with a moduli space
introduced by Gathmann and Markwig [2] in [2] this space is denoted by Mxg;
where D

.0/;

4.2. Collar. For a combinatorial type 2 ƒ ; ; ;g of parameterized marked tropical

curves ; w; h;P/ denote by L the combinatorial type of parameterized marked
tropical curves ; w; h; PL / of degree .0/; C such that the configuration PL is
obtained from P by pushing the points of P[ inside the adjacent edges of If is

-generic, so is L and vice versa.

Denote by ML ; ; ;g the union
S 2ƒ ; ; ;g

ML
; 0/; ;g M ; 0/; ;g Define

a map …W ML ;.0/; ;g M ; ; ;g associating to ; w; h;PL / 2 ML ;.0/; ;g the

element ; w; h; P/ in M ; ; ;g such that the configuration P is obtained from PL

by moving each of the first k k points of PL all these points belong to left ends of
to the closest univalent vertex of

Consider the spaces

; ; ; g/ D L 1/k k R2/r k k L 1/k k yR
2/r k k yR

2/r ;
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the map prW yR2/r L 1/k k yR2/r k k replacing the first k k abscissaes by

1, and the evaluation map

ev
W M ; ; ;g L 1/k k R2/r k k; ev. ; w; h;P/ D h.P/:

Lemma 10. For any 2 ƒ ; ; ;g the restriction of … to Px
L \ ML ; ; ;g is an

affine surjective map to xP and its fibers are relative interiors of convex polyhedra
of dimension k k. Furthermore, the restrictions of the evaluation maps to xP and

xP
L are affine, and ev B … D pr B ev.

Proof. The restriction of… to P L is an affine map to P Furthermore, … is continuous

cf. proof of Proposition 8). Repeating the construction of L out of one can

show that the restriction of… to P L is surjective onto P and each of its fibers is the
product of k k open rays. The last statement of the lemma is straightforward.

4.3. Zero and one

Lemma 11. For any combinatorial type 2 ƒ ; ; ;g, the dimension of M ; ; ;g
is at most 2r k k recall that r D j@ j j j C k k C k k C g 1), and

dimM ; ; ;g D 2r k k if and only if is -generic.

Proof. The statement immediately follows from Lemma 9.

Lemma 12. For any -generic combinatorial type

i) the evaluation map ev restricts to a bijection betweenM ; ; ;g and the interior

of a full dimensional convex polyhedron in L 1/k k R2/r k k, and

ii) any two parameterized marked tropical curves of combinatorial type have the
same Welschinger multiplicity.

Proof. Pick a -generic combinatorial type 2 ƒ ; ; ;g. Due to Lemma 10, the
restriction ev of ev to P is affine. Furthermore, according to [2], Proposition 4.2,

cf. [7]) the restriction evL of ev to P L is injective. The equality ev B… D prBev see

Lemma 10) and the injectivity of evL imply the injectivity of ev since if a point in
ev.P / has two distinct inverse images 1; w1;h1; P1/ and 2;w2; h2; P2/ under
ev B…, then modifying h1 and h2 alternatively moving some points of P1 and P2)
one gets two distinct points in P L with the same image under ev.

The second statement of the lemma immediately follows from the definition of
theWelschinger multiplicity.
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The Welschinger multiplicity of the parameterized marked tropical curves of -

generic combinatorial type is denoted by W. /
Our goal is to study the complement in L 1/k k R2/r k k of the union

S ev.M ; ; ;g /, where runs over all the combinatorial types in ƒ ; ; ;g such

; ; ;g/ in L 1/k k R2/r k k is at least 2. Athat the codimension of ev.M
combinatorial type 2 ƒ ; ; ;g is called injective codimension 1 if M ; ; ;g

is of
codimension 1 in M ; ; ;g, and the restriction of ev to M ; ; ;g is injective. The

set of combinatorial types 2 ƒ ; ; ;g such that the codimension of ev.M ; ; ;g/
in L 1/k k R2/r k k is at most 1 consists of

all -generic combinatorial types in ƒ ; ; ;g see Lemmas 11 and 12) and

all the injective codimension 1 combinatorial types in ƒ ; ; ;g.

Lemma 13. Let 2 ƒ ; ; ;g be injective codimension 1. Then L is injective
codimension 1. Furthermore, any element inM ; ; ;g is represented by a parameterized
marked tropical curve ; w; h;P/ such that b1. / D g and

i) either is trivalent, and exactly one point of P] is a vertex of

ii) or one of the vertices of is four-valent, the other non-univalent vertices of
are trivalent, and the points of P] are not vertices of

iii) or has two four-valent vertices joined by two edges E1 and E2, the other
non-univalent vertices of are trivalent, and the points of P] are not vertices
of

Proof. Since all the fibers of … have the same dimension see Lemma 10), the

codimension of ML
; ; ;g ML ; ; ;g is equal to 1. The fibers of pr have the same

dimension as the fibers of …. Hence, due to ev B … D pr
B ev, the injectivity of

the restriction of ev to M ; ; ;g implies the injectivity of the restriction of ev to

ML
; ; ;g The second statement of the lemma follows now from [2], Proposition 3.9

and Remark 3.6.

4.4. First bifurcation. Let 2 ƒ ; ; ;g be an injective codimension 1 combinatorial

type, and ; w; h;P/ a parameterized marked tropical curve of combinatorial
type Assume that is trivalent, and exactly one point of P] is a vertex of
Denote this vertex by V The last property in the definition of parameterized marked
tropical curves implies that exactly two edges adjacent to V are allowed in the
following sense: pushing the point which coincides with V to any of these edges creates
neither a loop in xnP nor a component of xnP with more than one univalent vertex.
Denote the two resulting -generic combinatorial types by

C
and The

combinatorial type is a degeneration of C
and and no other -generic combinatorial

type has as degeneration.
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Lemma 14. Let C, and be as above. Then ev.M C
; ; ;g/ and ev.M ; ; ;g/

are on opposite sides of ev.M ; ; ;g/.

Proof. According to Lemma 13, the combinatorial type L is injective codimension 1.

As is shown in [2], case c) in the proof of Theorem 4.8, the images ev.M
L C

; ; ;d/
and ev.ML

; ; ;d / of M
LC

; ; ;g and ML
; ; ;g under the evaluation map are on

opposite sides of ev.ML
; ; ;d /. Thus, the statement of the lemma follows from the

relation ev B … D pr B ev and the fact that pr is affine.

Lemma 15. Let C, and be as above. Then the Welschinger multiplicities
W. C/ and W. / are equal.

4.5. Third bifurcation. Let 2 ƒ ; ; ;g be an injective codimension 1 combinatorial

type, and ; w; h;P/ a parameterized marked tropical curve of combinatorial
type Assume that has two four-valent vertices V and V 0 joined by two edges E1
and E2, the other non-univalent vertices of are trivalent, and the points of P]
are not vertices of A -generic combinatorial type Q is a perturbation of if Q

is represented by a parameterized marked tropical curve z; wQ ; hQ; Pz/ such that the
graph z is obtained from replacing each four-valent vertex by two trivalent ones

connected by an edge denote these edges by EV and EV 0
respectively), and there

exists a continuous map ' W z satisfying the following properties:

the image of any vertex of z under ' is a vertex of

if E is an edge of z different from EV and EV 0 and a vertexW is adjacent to E,
then the image '.E/ is an edge of the vectors u.W; E/ and u.'.W /;'.E//
coincide,

' EV / D V and '.EV 0/ D V 0,

if E is an edge of z different from EV and EV 0
then wQ E/ D w.'.E//,

' zP/ D P.

Lemma 16. Let 2 ƒ ; ; ;g be as above. Then there are exactly two -generic
combinatorial types which admit as a degeneration. These combinatorial types

C
and are perturbations of The perturbations C and are not equivalent in the
following sense: there is no homeomorphism of their underlying graphs zC

and z
which respect the maps 'C

and ' fragments of the graphs zC and z are shown

in Figure 2 a)). Moreover, ev.M C; ; ;g/ and ev.M ; ; ;g/ are on opposite sides of

ev.M ; ; ;g /.
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Figure 2. Third bifurcation.

Proof. According to Lemma 13, the combinatorial type L is injective codimension 1.
As isshownin [2], case d) in the proof ofTheorem 4.8, thereare exactly two -generic
combinatorial types L C and L which admit L as a degeneration. The underlying
graphs of parameterized marked tropical curves representing LC

and L are obtained
from replacing each four-valent vertex by two trivalent ones as shown on Figure

2 a), and ev.M
L

C
; ; ;d / and ev.ML

; ; ;d/ are on opposite sides of ev.ML
; ; ;d /.

Thus, the statements of the lemma follow from the relation ev B… D pr B ev and the
fact that pr is affine.

Lemma 17. Let C, and be as in Lemma 16. Then W. C/ D W. /
Proof. Consider parameterized marked tropical curves zC; wQC; hQC;PzC/ and

z ;wQ ; hQ ;Pz / of combinatorial types
C

and The dual subdivisions of plane
tropical curves TC and T defined by zC;wQC; hQC; Pz C/ and z ; wQ ; hQ ; Pz / differ
by the fragments shown in Figure 2 b).

The lattice lengths jBF1j and jF2Dj are equal to w.E1/, and the lattice lengths

jF1Dj and jBF2j are equal to w.E2/. If at least one of the lattice lengths jABj, jBCj,
jCDj, jDAj, jBF1j D jF2Dj, jF1Dj D jBF2j, is even, then W.TC/ D W.T / D 0.
Assume that all these lengths are odd. Then jF1F2j is even, and therefore jAF1j D
jAF2j mod 2 and jF1Cj D jF2Cj mod 2. Ifat least one of the lattice lengths jAF1j
and jF1Cj is even, then W.TC/ D W.T / D 0. If jAF1j and jF1Cj are odd, then
the total number sC of interior integer points in the triangles ABF1, AF1D, BCF1,
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F1CD has the same parity as the number s of interior integer points in the triangles

ABF2, AF2D, BCF2, F2CD. Hence, W.TC/ D 1/sC s W.T / D W.T /

4.6. Second bifurcation

4.6.1. Preliminaries. Let 2 ƒ ; ; ;g be an injective codimension 1 combinatorial

type, and let ;w; h; P/ be a parameterized marked tropical curve of combinatorial

type Assume that one of the vertices of is four-valent denote this vertex
by V the other non-univalent vertices of are trivalent, and the points of P] are
not vertices of Denote by E1, E2, E3, and E4 the edges of which are adjacent
to V and denote by L1, L2, L3, and L4 the lines containing h.E1/, h.E2/, h.E3/,
and h.E4/, respectively.

A -generic combinatorial type Q is a perturbation of if Q is represented by a

parameterized marked tropical curve z;wQ ;hQ; Pz / such that the graph z is obtained
from replacing the vertex V by two trivalent ones connected by an edge denote this
edge by EV and there exists a continuous map ' W z satisfying the following
properties:

the image of any vertex of z under ' is a vertex of

if E is an edge of z different from EV and a vertex W is adjacent to E,
then the image '.E/ is an edge of and the vector u.W; E/ coincides with
u.'.W /; '.E//,

' EV / D V

if E is an edge of z different from EV then wQ E/ D w.'.E//,

' zP/ D P.

4.6.2. Non-degenerate case

Lemma 18. Let 2 ƒ ; ; ;g be as in Section 4.6.1. Assume that the lines L1, L2,
L3, and L4 are pairwise distinct. Then there are exactly three -generic combinatorial

types which admit as a degeneration. These combinatorial types C,
and are perturbations of and have the following properties:

among the edges ' 1 E1/, ' 1 E2/, ' 1 E3/, and ' 1 E4/, there are two

Ei/ and ' 1 Ej /, such that the images under hQ of their interiorsedges, ' 1

have a common point,

the edges ' 1
C Ei / and ' 1

C Ej/ have a common vertex,

the edges ' 1 Ei / and ' 1 Ej/ do not have a common vertex.
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Fragments of the graphs z zC, and z are shown in Figure 3 a). The perturbations

C, and are not equivalent in the same sense as in Lemma 16. Furthermore,

ev.M / and ev.M C / are on the same side of ev.M; ; ;g ; ; ;g ; ; ;g /, and

ev.M ; ; ;g/ is on the opposite side.

Proof. Thesame argumentsas in theproofs of Lemmas 14 and 16allowonetodeduce
all the statements of the lemma from [2], case a) in the proof of Theorem 4.8. To
complete the proof of the last statement, consider the dual subdivisions of the tropical

curves defined by z ; wQ ; hQ ; Pz / zC; wQC; hQC; Pz C/, and z ; wQ ; hQ ; Pz /
see Figure 3 b)), and notice that

Area.BCF / Area.CDF / C Area.ABD/ Area.BCD/

D Area.ABC/ Area.ACD/:
8)

~

E E3 4

~

E E E4

B B B B

A A A A

C C C F C

D D D D

b)

~
G

a)

1

3 4

2

1

G-

2

1

3

G
+

2

1

3 4

2

E

E

E

E

E

E

E

E

E

E

E

Figure 3. Non-degenerate second bifurcation.

Lemma 19. Let the combinatorial types C, and be as in Lemma 18. Then

W. / CW. C/ D W. /

Proof. Let us consider parameterized marked tropical curves z ;wQ ; hQ ; Pz /
zC;wQC; hQC; Pz C/, and z ; wQ ; hQ ; Pz / of combinatorial types C, and
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respectively. The dual subdivisions of plane tropical curves T TC, and T defined

by z ; wQ ; hQ ; Pz / zC; wQC; hQC; Pz C/, and z ; wQ ; hQ ; Pz / differ by fragments
shown in Figure 3 b). Denote by W WC, and W the multiplicative)
contributions of these fragments to W.T / W.TC/, and W.T / We have to check that
W CWC D W

If either at least one of the lengths jABj, jBCj, jCDj, jADj is even, or all the
lengths jACj, jBDj, jFCj are even, then W D WC D W D 0. So, assume that

jABj, jBCj, jCDj, jADj are odd, and jACj, jBDj, jFCj are not all even. The first
assumption yields

Area.BCF / D Area.CDF / D jCFj mod 2;
Area.ABD/ D Area.BCD/ D jBDj mod 2;
Area.ABC/ D Area.ACD/ D jACj mod 2:

Therefore, 8) and the second assumption imply that two of the lengths jACj, jBDj,
jFCj are odd and the third one is even. Denote by N respectively, NC, N the
total number of integer points lying in the interior of the triangles BCF and CDF
respectively, ABD and BCD, ABC and ACD), and denote by N respectively,

N0) the number of integer points lying in the interior of the quadrilateral ABCD
respectively, the triangle ABD). Then NC D N jBDjC1, N D N jACjC1

and N D N 2N0 jBDj C 1 jBF j jFDj jCFj C 2.

If jACj is even, while jBDj and jFCj are odd, then W D 1/N WC D
1/NC, andW D 0. Furthermore, in thiscase, NC D N mod 2 andN D N C1

mod 2, which yields W CWC D 0 D W
If jBDj is even, while jACj and jFCj are odd, then W D 1/N WC D 0,

and W D 1/N Furthermore, in this case, N D N mod 2 and N D N
mod 2, which yields W CWC D 1/N D W

If jFCj is even, while jACj and jBDj are odd, then W D 0, WC D 1/NC,
and W D 1/N Furthermore, in this case, NC D N mod 2 and N D N
mod 2, which yields W CWC D 1/N D W

4.6.3. Degenerate case

Lemma 20. Let 2 ƒ ; ; ;g be as in Section 4.6.1. Assume that some of the four
lines L1, L2, L3, and L4 coincide. Then there are exactly two -generic combinatorial

types which admit as a degeneration. These combinatorial types
C and are

perturbations of Fragments of the graphs zC and z and their images under hQC

and hQ are shown in Figure 4 a), b), c) in the cases a), b) and c), the polygon

corresponding to V in the subdivision dual to the plane tropical curve defined
by ; w; h/ is a triangle, trapeze, and parallelogram, respectively). The perturbations

C, and are not equivalent in the same sense as in Lemma 16. Furthermore,

ev.M C
; ; ;g/ and ev.M ; ; ;g/ are on the opposite sides of ev.M ; ; ;g/.
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Proof. Let ; w; h; P/ be a parameterized marked tropical curve of combinatorial
type According to Lemma 7 any connected component of x n P contains exactly
one univalent vertex. Assume that the edges E1, E2, E3, and E4 are numbered in
such a way that the simple path in x n P connecting V with a univalent vertex
contains the edge E4.

Consider a parameterized marked tropical curve B; wB; hB; PB/, where
B

is
obtained from by removing the vertex V the map hB is obtained by a modification
of h on the edges adjacent to V in such a way that directions of the images of these
edges do not change, wB is inherited from all the points of PB but one are inherited
from and the additional point Padd of PB belongs to E4. The combinatorial
type of B; wB;hB; PB/ is -generic. Denote this combinatorial type by B. Put

p D hB.PBnfPaddg/ and padd D hB.Padd/. According to Lemma 12, any
twoparameter small perturbation p.t /; padd. // of p.0/; padd.0// D p;padd/ lifts to

B
;wt;

B
;ht;

B
; P t;a unique continuous family F t;

D
t;

B / in the moduli space of
parameterized marked tropical curves of combinatorial type B. For any fixed t the
one parameter family F t; has the following property: all the edges of htB; Bt; / that
are not contained in t; preserve their supporting lines.

Among the lines L1, L2, and L3 choose a line Li such that the two other lines
are distinct, and Li either coincides with one of these two lines or coincides with
L4. Change, if necessary, the numbering of lines L1, L2, and L3 in order to have

i D 3 and the lines L2 and L3 non coinciding. The position of the lines Lt;
1

Lt;
2 and Lt;

3 does not depend on and if p.t/ 62 ev.M ; ; ; g//, then these

lines do not have a common point. Thus, if the perturbation p.t /; padd. // is linear,

p.t/ 62 ev.M ; ; ; g// for t ¤ 0, and padd. / 62 L4 for ¤ 0, then Lt;
3

transports with a non-zero velocity vector relative to Lt;
1 [ Lt;

2 while Lt;
4 which

depends only on performs another, independent, parallel transport movement with
a non-zero velocity vector relative to Lt;

1 [ Lt;
2

For a certain sign of t assume that this sign is and sufficiently small absolute
value of t the ray starting at the point Lt;

2 \ Lt;
3

and going in the direction
determined

B
;wt;

B
;ht;

B
; P t;by the balancing condition intersects the ray of F t; D

t;
B /

supported by Lt;
1 Selecting D t/ in such a way that Lt;

4 goes through the
above intersection point, gives rise to a tropical curve whose combinatorial type is a

perturbation of
If L3 does not coincide with L1, then for positive and sufficiently small values

of t the ray starting at the point Lt;
1 \ Lt;

3 and going in the direction determined

B
; wt;

B
; ht;

B
; P t;by the balancing condition intersects the ray of F t; D t;

B /
supported by Lt;

2 and a construction as above gives rise to a tropical curve whose
combinatorial type is a perturbation of If L3 coincides with L1, then for positive

and sufficiently small values of t the ray starting at the point Lt;
1 \ Lt;

2 and

going in the direction determined by the balancing condition intersects the ray of
F t; D t;

B / supported by Lt;
B

;wt;
B

;ht;
B

; P t;
3 and again a construction as above
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gives rise to a tropical curve whose combinatorial type is a perturbation of
Since some of the lines L1, L2, L3, and L4 coincide, there are at most two

combinatorial types that can be perturbations of On the other hand, we constructed
two distinct perturbations of denote the first one by and the second one by C).
Moreover, the images ev.M C

; ; ;g/ and ev.M ; ; ;g / are on the opposite sides of

; ; ;g /.ev.M

Lemma 21. Let ; C, and be as in Lemma 20. Then W. C/ D W. /
Proof. Consider parameterized marked tropical curves zC; wQC; hQC;PzC/ and

z ;wQ ; hQ ;Pz / of combinatorial types
C

and The dual subdivisions of plane

tropical curves TC and T defined by zC; wQC; hQC; PzC/ and z ; wQ ; hQ ; Pz / differ

by fragments shown in Figure 4 d), 4 e), or 4 f). These fragments correspond
to two splittings of the polygon dual to h.V /, and their multiplicative) contributions

WC andW toW.TC/ andW.T / respectively, are equal in each of the cases 4 d),
e), f). Indeed, WC and W both vanish if

in the case 4 d), at least one of the lengths jABj, jACj, jBD1j D jCD2j,
jCD1j D jBD2j in Figure 4 d) is even,

in the cases 4 e), f), at least one of the lengths jABj, jBCj, jCDj, jADj is
even.

If the aforementioned lengths are odd then, in the case 4 d) one has jAD1j D jAD2j
mod 2, and in the cases 4 e) and 4 f), one has jACj D jBDj mod 2. This yields

WC D W

4.7. Tropically generic configurations. A configuration p 2 ; ; ; g/ is
called ; ; ; g/-generic resp., almost ; ; ;g/-generic) if the inverse image
ev/ 1.p/ of p under the evaluation map evW M ; ; ;g ; ; ; g/ consists of

parameterized marked tropical curves of -generic resp., of -generic or injective
codimension 1) combinatorial types.

We say that a parameterized plane tropical curve ; w; h/ of degree ; and
genus g matches a configuration p D p[[p] 2 ; ; ; g/ if p h. / and any
point pk 2 p[ is contained in the image of a left end of weight 2ik 1, where the
positive integer ik is determined by the inequalities

Pj<ik j < k Pj ik j. A

; ; ; g/-generic configuration p D p[[p] 2 ; ; ;g/ is called tropically
generic if any parameterized plane tropical curve matching p and having the degree

; and the genus g defines a plane tropical curve T which satisfies the following
properties: T is nodal, and no point in p] coincides with a vertex of T

Lemma 22. The complement in ; ; ; g/ of the subset formed by the tropically
generic configurations is a finite closed polyhedral complex of positive codimension.
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Figure 4. Degenerate second bifurcations.
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Proof. The subset formed by the non-tropically generic configurations in the space

; ; ; g/ is a projection of[ 2ƒ ; ; ;g B where B P is described by a

disjunction of a finite collection of systems of linear equations and linear inequalities
in graphic coordinates. Since the set ƒ ; ; ;g is finite, it remains to prove that the
tropically generic configurations form an open dense subset in ; ; ;g/.

As it immediately follows from Lemma 11 and finiteness of ƒ ; ; ;g), the

; ; ; g/-generic configurations form an open dense subset in ; ; ; g/.
Denote by O the set of the ; ; ; g/-generic configurations p 2 ; ; ; g/ such

that any parameterized plane tropicalcurve which matches p and has thedegree ;

and the genus g is simply parameterized. Since for any parameterized plane tropical
curve one can always choose a configuration P of marked points to obtain a

parameterizedmarked tropical curve ; w; h; P/, Lemma 9 impliesthatO is an open

dense subset in ; ; ; g/.
Denote by C1 the set of the configurations p D p[ [p] 2 O admitting a simply

parameterized plane tropical curve ; w;h/ which matches p, has the degree ;

and the genus g, and satisfies the following property: the plane tropical curve defined
by ; w; h/ has a vertex at one of the points of p]. Clearly, C1 is a closed nowhere
dense subset of O.

Denote by C2 the set of the configurations p 2 O admitting a simply
parameterized plane tropical curve ; w; h/ which matches p, has the degree ; and
the genus g, and satisfies the following property: the plane tropical curve defined
by ;w; h/ is not nodal. For a combinatorial type 2 ƒ. ; ; ; g/ of simply
parameterized marked tropical curves, consider the image in Q of the points of
P corresponding to parameterized marked tropical curves defining non-nodal plane
tropical curves. This image is a closed nowhere dense subset of Q as can be shown
using the same arguments as in the proof of [7], Proposition 2.23. Hence, C2 is a

closed nowhere dense subset of O. Thus, the tropically generic configurations form
an open dense subset in ; ; ;g/.

Lemma 23. Let p 2 ; ; ; g/ be a tropically generic configuration. Then any
curve in T irr. ; ; ;g; p/ can be parameterized by an element of the inverse image
ev/ 1.p/ of p under the evaluation mapM ; ; ;g ; ; ; g/.

Proof. Pick an element T in T irr. ; ; ;g; p/, and consider a simple parameterization

; w; h/ of T The configuration p lifts to a configuration P Assume
that xnP has a component containing either a loop, or two univalent vertices. Then
there exists a one-dimensional family of simply parameterized plane tropical curves

; w; ht/ such that ht P/ D p for any t and the coordinates of the images of
vertices of depend linearly on t Hence, this family degenerates either to a situation
of collision of two vertices of or to a situation of collision of a point in P and a

vertex of The both cases contradict the fact that p is tropically generic.
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Lemma 24. For any tropically generic configuration p 2 ; ; ;g/, the set

T irr. ; ; ; g; p/ is finite.

Proof. The lemma follows from Lemma 12, Lemma 23, and finiteness of the set

ƒ ; ; ;g.

4.8. Multi-tropically generic configurations. Let S be the set of the 4-tuples

; ; ;g / formedby a left-nondegenerate convex lattice polygon elements
and in C such that J CJ D j j where is the intersection of with

its left vertical supporting line), and an integer g Define an addition operation in
S in the same way as in S see Section 3.3).

A partition F
`
jD1 p.j/ of p 2 ; ; ; g/ is called compatible with a splitting

; ; ; g/ D
`

X
jD1

j /; j/; j/;g j //

in S if p.j/ 2 j /; j/; j /;g.j// for any j D 1; : : : ; `. A configuration

p 2 ; ; ; g/ is called multi-tropically generic if for any splitting

; ; ; g/ D
`

X
jD1

j /; j/; j/;g j //

in S and any partition p D F
`
jD1 p.j/ compatible with this splitting the following

holds:

each configuration p.j / is tropically generic,

anysum
P

`
jD1

T j / isa nodal plane tropical curve wheneverT j / is aplane tropical

curve defined by a parameterized tropical curve which belongs to the inverse
image ev/ 1.p.j//ofp.j / under the evaluationmapevW M j/; j /; j/;g.j /

j /; j /; j/; g.j //.
Lemma 25. The complement in ; ; ; g/ of the subset formed by the
multitropically generic configurations is a finite closed polyhedral complex of positive
codimension.

Proof. Consider the subset U ; ; ; g/ formed by the configurations p such

that, for any splitting ; ; ; g/ D P
`
jD1. j /; j/; j /; g.j // in S and any

partition p D F
`
jD1

p.j / compatible with the given splitting, all the configurations

p.1/; : : : ;p.`/ are tropically generic. Lemma 22 implies that U is an open dense

subset of ; ; ; g/. Now the statement of the lemma follows from the fact that
the sum of several nodal plane tropical curves canbe always made nodalby arbitrarily
small parallel shifts of summands.
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Lemma 26. For any multi-tropically generic configuration p 2 ; ; ; g/, the
set T ; ; ; g;p/ is finite.

Proof. The statement is an immediate consequence of Lemma 24.

Lemma 27. Let p 2 ; ; ; g/ be a multi-tropically generic configuration. Then

W. ; ; ;g; p/ DX
`

Y
jD1

Wirr j/; j /; j /;g j /; p j//; 9)

where the sum is taken over all unordered splittings

; ; ; g/ D
`

X
jD1

j /; j/; j/;g j //

in S and all compatible partitions of p.

Proof. Straightforward.

4.9. Proof of Theorem 1. Notice that it is enough to establish the invariance of
the numbers Wirr. ; ; ; g/, since the invariance of W. ; ; ;g/ will then follow
from 9).

Pick two tropically generic configurations p and q in L 1/k k R2/r k k, and
connect them by a path L 1/k k R2/r k k such that

consists of ; ; ; g/-generic configurations and finitely many almost

; ; ;g/-generic configurations,

for any almost ; ; ; g/-generic configuration z 2 and any injective
codimension 1 combinatorial type of parameterized marked tropical curves in
ev/ 1.z/ M ; ; ;g, the path intersects ev.M ; ; ;g/ transversally.

According to Lemmas 15, 17, 19, and 21, the value of P 2 ev 1.z/ W. / is the same

for all ; ; ; g/-generic configurations z 2 In particular, Wirr. ; ; ;g; p/ D
Wirr. ; ; ;g; q/.

5. Proof of the recursive formulas

5.1. Auxiliary lemmas

Lemma 28 cf. [3], proof of Theorem 4.3). Let and g be as inTheorem 3. Fix
positive real numbers " and N, and consider a multi-tropically generic configuration

p D p[; p]/ 2 ; ; ; g/ such that
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the second coordinates of all the points in p belong to the interval "; "/,
the first coordinate of one point in p] is smaller than N, while the first
coordinates of all other points in p] belong to the interval "; "/.

Then for any tropical curve T 2 T ; ; ; g; p/, the second coordinates of all
trivalent vertices of T belong to the interval "; "/. Furthermore, if N is sufficiently
large with respect to ", there exist real numbers a and b satisfying the inequalities

N < a < b < " and satisfying the following condition: for any tropical curve

T 2 T ; ; ; g; p/ the intersection of T with the rectangle f.x; y/ 2 R2 W a
x b and " y "g does not contain vertices of T and consists of horizontal
segments.

Proof. Consider a tropical curve T 2 T ; ; ; g;p/. Among the trivalent vertices
of T choose a vertex v D v1; v2/ having the maximal second coordinate. The
curve T has an end starting at v and pointing upwards. This end is orthogonal to one

of the upper sides of and thus, is of weight 1 and of direction either .0; 1/ or .1;1/.
Hence, T should have another edge which starts at v and does not point downwards.
Consider a simple parameterization ; w; h/ of the irreducible subcurve T 0 of T
such that v 2 T 0, and denote by P the lifting of p to If v2 > ", the connected
component of x nP containing h 1.v/ has at least two ends, and thus, ; w; h; P/ is
not a parameterized marked tropical curve. This contradicts Lemma 23. In the same
way one can show that the curve T does not have vertices below the line y D "
This proves the first statement of the lemma.

Denote by R the rectangle f.x; y/ 2 R2 W N x " and " y "g.
Let T 1 be an irreducible subcurve of T such that the intersection of T 1 with the
interior of R is non-empty, and let 1; w1; h1/ be a simple parameterization of T 1.

As follows from Lemma 23 and the first statement of the current lemma, the image
under h of any path x nP does not intersect one of the two horizontal edges ofR.
Thus, for any point x1; y1/ belonging to the interior of R and to a non-horizontal
edge of T 1, there exists a path x nP such that h. / contains x1; y1/ and is the
graph of a strictly monotone function f defined either on the interval OE N; x1 or on

the interval OEx1 " Since there are only finitely many slopes that can be realized
by the edges of a tropical curve with Newton polygon the length of the definition
interval of f is bounded from above by a constant depending only on This proves
the second statement of the lemma.

Lemma 29. Consider a non-degenerate lattice polygon i whose projection to the
horizontal coordinate axis coincides with the segment OE0; 1 Put 1 D i \ fx D 0g,

2 D i \ fx D 1g, and introduce the vectors u1 D 1; 0/, u2 D .1;0/. Fix a

point p 2 R2 yR2 and an ordered splitting j 1j D n1;1 C C n1;m1
respectively,

j 2j D n2;1 C Cn2;m1 of j 1j respectively, of j 2j) into positive integer
summands. Fix also two non-increasing sequences of real numbers y1;1; : : : ; y1;m1
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and y2;1; :: : ;y2;m2 In the case j ij D 0, the sequences ni;1; : : : ; ni;mi and

yi;1; : : :; yi;mi are empty.) Then there exists a parameterized plane tropical curve

; w; h/ satisfying the following conditions:

1) has genus 0 and degree n1;1u1;: : : ; n1;m1u1; n2;1u2; : :: ; n2;m2u2; u3; u4/,
where u3 and u4 are primitive integer outward normal vectors of the two
nonvertical sides of i,

2) has m1 ends E1;1;: : : ; E1;m1 such that, for any k D 1; : :: ; m1, the end E1;k
is of weight n1;k, and h.E1;k/ is a horizontal negatively directed ray which is
contained in the line y D y1;k,

3) has m2 ends E2;1;: : : ; E2;m2 such that, for any k D 1; : :: ; m2, the end E2;k
is of weight n2;k, and h.E2;k/ is a horizontal positively directed ray which is
contained in the line y D y2;k,

4) p 2 h. /
Furthermore, if all the numbers y1;1; : : :; y1;m1; y2;1; : : : ; y2;m2 differ from the second

coordinate of p, then all parameterized plane tropical curves having the above
properties define the same plane tropical curve, and p belongs to the interior of a

non-horizontal edge of this curve.

y2, j y2, j + 1

h

G
p

y 1, i

y2, j 1

1, i +1

_

y D

Figure 5. Curve ;w; h/ in Lemma 29.

Proof. Any plane tropical curve having a parameterization with the described
properties can be constructed in the following way. Take the union Æ of all the lines

y D y1;1; : : : ; y D y1;m1 ; y D y2;1; : : : ;y D y2;m2 and consider a broken line L
such that

any vertex of L belongs to Æ,

any edge of L has a rational nonzero slope,

the two unbounded edges of L have directions determined by the vectors u3
and u4,



118 I. Itenberg, V. Kharlamov and E. Shustin CMH

for any vertex v of L, the two primitive integer vectors e1 and e2 starting at v
and directed along the adjacent edges of L satisfy the relation

e1 C e2 C Xy1;kDvy

n1;ku1 C Xy2;kDvy

n2;ku2 D 0;

where y D vy is the line containing v.
Make a horizontal shift of L in order to obtain a broken line containing p, and
extend the result in a unique possible way) to a plane tropical curve which admits
a parameterization satisfying the properties 1)–(3). This proves the existence. The
second statement of the lemma immediately follows from the construction.

Consider the subset X ; ; ;g/ formed by the multi-tropically generic
configurations p D p[[p] satisfying the following property: for any point p 2 p],
there exists a number M such that any configuration

pQ 2 ; ; ; g/ obtained
from p by a horizontal shift of p to a point whose first coordinate is smaller than M
and different from 1 is multi-tropically generic.

Lemma 30. The subset X is open dense in ; ; ; g/.

Proof. Straightforward from Lemma 25.

Lemma 31. Let and g be as in Theorem3. ChooseÈ, 0, 0, and g0 satisfying
the conditions 3), a configuration p D p[ [ p] 2 X, and a point p 2 p]. Then
any subconfiguration q p such that q 2 lÈ. /; 0; 0; g0/ and q] D p]nfpg is
multi-tropically generic.

Proof. Consider a splitting lÈ. /; 0; 0;g0/ D P
m
iD1. i/; i/; i/; g.i// in S

and a partition
F

m
iD1

q.i/ of q compatible with this splitting. All the polygons
.1/; : : : ; m/ are in „ it follows from Remark 1 and the fact that lÈ. / 2 „).

For each i D 1; : : : ;m, pick a parameterized plane tropical curve i/; w.i/; h.i//
matching q.i/ and having the degree i// i/; i/ and the genus g.i/.

We say that a left end of i/ is marked if this end terminates at a marked univalent
vertex of i/. Among the non-marked left ends of`

m

iD1
i/ choose k

0

k ends

whose weights fit the sequence 0 and denote the chosen set by E. Consider a

polygon i such that

the projection of i to the horizontal axis coincides with the segment OE0; 1
the sides 1 D i\ fx D 0g and 2 D i\fx D 1g satisfy j 1j D J. / J. 0/,

j 2j D J. 0/ J. /
the two non-vertical sides of i are respectively parallel to the sides >. ; È/ and

;È/ of which are defined as follows: the side >. ; È/ is of slope 1 and
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not a neighbor of if E0 2 È, and >. ; È/ is the non-vertical side adjacent to the
upper vertex of otherwise; the side ; È/ is of slope 0 and not a neighbor

of if 1 2 È, and ; È/ is the non-vertical side adjacent to the lower vertex
of otherwise.

The conditions 3) imply that i isnondegenerate. Putm1 D k 0k, consider a
nonincreasing sequence y1;1; : : : ;y1;m1 of second coordinates of points in p[ n q[, and
denote by n1;1; : : : ; n1;m1 the weights prescribed to the points of p[ n q[ by the
sequence Furthermore, put m2 D k 0 k, consider a non-increasing sequence

y2;1; : : : ; y2;m2 of second coordinates of the images of terminal univalent vertices
of left ends belonging to E, and denote by n2;1;: : : ; n2;m2 the weights of the
corresponding left ends. Take a parameterized plane tropical curve ; w; h/ satisfying the
conditions 1)–(4) of Lemma 29. Due to a possibility to make a negative horizontal
shift of p and simultaneously compose h with this shift see the definition of X), we
can assume that there exists a vertical line x D c such that the images of vertices
of lie in the left half-plane delimited by this line, and the images of non-univalent
vertices of`i

i/ lie in the right half-plane. In particular, the line x D c crosses the
images of all left ends belonging to E and the horizontal positively directed images
of ends of

Cut along the preimages of x D c the left ends belonging to E and the ends

of whose images are horizontal and positively directed, and remove the trivial
pieces of the edges cut. The natural gluing of remaining pieces of and`

m
iD1

i/
gives rise to a collection of parameterized plane tropical curves z.j /; wQ j/; hQ.j //,
j D 1; : :: ; `, a splitting ; ; ;g/ D P

`
jD1. Q j /; Q.j /; Q.j /; gQ.j // in S, and a

partition F
`
jD1 pQ j / of p which satisfy the following properties:

each curve z.j /; wQ j/; hQ.j // matches the configuration
pQ
j/ and has the degree

Q j //Q.j /; Q.j / and the genus gQ.j/,
the partition F

`
jD1 pQ

j/ is compatible with the splitting

; ; ; g/ D
`

X
jD1

Q j/; Q j /; Q j /;
gQ
j//:

Since the configuration p is multi-tropically generic, each configuration pQ j/, j D
1; : : : ;` is tropically generic. This implies, that for any j D 1;: : : ; ` the curve

z.j/; wQ
j/; hQ.j// defines a nodal plane tropical curve Tz.j/ such that no point in

pQ j//] is a vertex of Tz.j /. Moreover, according to Lemma 23, the lift Pz
j /

of pQ j /

to z.j/ produces a parameterized marked tropical curve z.j /; wQ j /; hQ.j/; Pz
j/ /, and

thus, the sum zT .1/
C C zT .`/ is a nodal plane tropical curve. Hence, the configuration

q is multi-tropically generic.
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5.2. Proof of Theorem 3. Choose positive real numbers " and N satisfying the
inequality " < N, and consider a configuration p D p[; p]/ 2 X ; ; ; g/
such that the second coordinates of all the points inp belong to the interval "; "/, the
first coordinate of one point p 2 p] is smaller than N, and the first coordinates of
the other points in p] belong to the interval "; "/. Assume that thenumbers " andN
are chosen in such a way that, for some numbers a and b satisfying the inequalities

N < a < b < " the intersection of any tropical curve in T ; ; ;g; p/ with
the rectangle Rba D f.x; y/ 2 R2 W a x b and " y "g consists of
horizontal segments the existence of such " and N is guaranteed by Lemma 28).
Consider a tropical curve T 2 T ; ; ; g; p/ without edges of even weight.

Suppose that p belongs to a -end e of T Since the configuration p is
multitropically generic, Lemma 7 implies that the end e is not marked, i.e., terminates
at a point q 2 L 1 different from any point of p[. Consider the configuration

pO D pO [; pO]/ 2 ; C k; k; g/, where k D w.e/ is the weight of e, the
configuration pO

[ is obtained from p[ by insertion of q in the k-th group of points,
and

pO
] D p] n fpg. Since p 2 X, the configuration pO is multi-tropically generic.

Clearly, the curve T belongs to T ; C k; k; g; pO /. On the other hand, we
can assume that N is chosen so that T ; C k; k; g; pO / T ; ; ;g; p/.
Thus, the contribution to W. ; ; ;g/ of the curves T 2 T ; ; ; g; p/ such
that p belongs to a -end of T is equal to

X
k 1; k>0

W. ; C k; k; g/:

Suppose now that p does not belong to any -end of T Since T is nodal, it can be
represented in a unique way as a sum of its irreducible subcurves T .1/;: : : ; T .`/.
For any j D 1; : : : ; `, consider a simple parameterization j /;w.j /; h.j // of T j/.
Picka number c such thata < c < b. For any curve j /; w.j /; h.j // consider the lift
‡.j / j / of the intersection points of T j/ with the vertical segment x D c, "
y " Lemma 28 implies that no connected component of j / n‡.j / has an image
intersecting the bothhalvesRba\fx < cg andRba\ fx > cg ofRba If‡.j/ ¤ ¿ then

‡.j / cuts j / in two parts: the image of any connected component in the right part
j/

R intersects Rba \ fx > cg, and the image of any connected component of the left

part j/L intersects Rba \ fx < cg. Any connected component j; /
L D 1; : : :; j̀

gives rise to a parameterized plane tropical curve j; /
L ; w j; /

L ; h j; /
L /, where the

weightfunctionw j; /
L is induced byw.j/, and h j; /

L is given by a modification of h.j /

on the edges cut without changing the directions of the images of these edges). The

imageof j; /
L under h j; /

L is obtained fromh.j /. j; /
L / by the extension of the edges

cut by the segment x D c, " y " up to horizontal positively directed rays.

R D 1; : :: ; `0j of j /For any connected component j; /
R denote by y j; /

R the

R byadding a vertex to each cut edge. The graph y j; /graphobtained from j; /
R gives
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rise to a parameterized plane tropical curve y j; /
R ;w j; /

R ; h j; /
R /, where again the

weightfunctionw j; /
R is induced byw.j /, the restriction ofh j; /

R on j; /
R is given by

a modification of h.j/ on the edges cut without changing the directions of the images

of these edges), and the image under h j; /
R of any added vertex belongs to L 1. The

image of y j; /
R

under h j; /
R is obtained from h.j/. j; /

R / by the extension of the
edgescut by the segmentx D c, " y " up to horizontalnegativelydirected rays.
Denote by T 0 the plane tropical curve defined by the collection of all parameterized

plane tropical curves y j; /
R /, j D 1; : : : ; `, D 1; : : : ; `0

j We sayR ; w j; /
R ; h j; /

that T 0 is the derivation of T
In the case that ‡.j / is empty, then h.j/. j// fx < cg, and we use the notation
j;1/

L ; w j;1/
L ;h j;1/

L / for the parameterized plane tropical curve j /; w.j/; h.j //.
Since the half-planex < c contains only one point of p], Lemma 23 implies that

all thecurves j; /
L ; w j; /

L ; h j; /
L /,j D 1; :: : ; `, D 1; : :: ; `j are ofgenus0,

among the curves j; /
L ; w j; /

L ;h j; /
L /, j D 1; : : : ;`, D 1; : : : ; `j there

exists a curve ; w; h/ such that has exactly one end whose image under h
points upwards i.e., has the direction either .0; 1/ or .1;1/), and exactly one

end whose image points downwards i.e., has the direction either .0; 1/ or
1; 1/),

the image under h of any left end of terminates at a point of p[,

for any curve j; / ;w j; / ; h j; // which is different from ; w; h/ the imageL L L
h j; /
L

j; /
L / is a horizontal straight line; such curves j; /

L ; w j; /
L ; h j; /

L / are
called horizontal.

In particular, the Newton polygon 0 of T 0 is the È-peeling lÈ. / of for certain

È fE0; 1g. Denote by 0 the vertical left-most side of 0.

Let p0/[ p[ be the subconfiguration formed by the images of marked terminal
points of horizontal curves, and let 0 be the corresponding sequence in C.
Since T is nodal, the images of terminal points of left ends of graphs j /

R
are disjoint

from the images of terminal points of left ends of Among the left ends of graphs

j/
R consider the edges whose images terminate at points different from the points

of p[, and denote by 0 the sequence determined by the weights of the edges considered.

Since the image under h of any left end of terminates at a point of p[, we
have 0 Furthermore, J 0CJ 0 D j 0j. Counting the edges cut by the segment

x D c, " y " we obtain that the genus g0 of T 0 is equal to g k
0 kC1.

The curve T 0 belongs to T 0; 0; 0; g0;p0/, where p0 D p0/[; p0/]/, and p0/] is
obtained from p] by removing the point p, and all the edges of T 0 are of odd weights.

Describe now the inverse procedure. Fix two elements 0; 0

2 C such that
0 0 and J 0 C J 0 D j 0j. Put g0 D g k 0

k C 1. Choose
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j /

T j/

"

"

h.j/

a c b

p

p

j;1/
L

j;2/
L D

O
j;1/

R

‡.j /

` h j; /
L ` h j; /

R

Figure 6. Cut in the proof of Theorem 3.
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a subconfiguration p0/[ p[ such that p0/[ corresponds to the sequence 0 the
number of such subconfigurations p0/[ is

0
Consider the configuration p0 D

p0/[ [ p0/], where p0/], as before, is obtained from p] by removing the point p.
By Lemma 31, the configuration p0 is multi-tropically generic. Furthermore, by
Lemma 26 the set T 0; 0; 0; g0; p0/ is finite, and we can assume that the first
coordinate of p is much less than the first coordinates of the vertices of all the curves
in T 0; 0; 0; g0; p0/.

Pick a curve T 0 2 T 0; 0; 0; g0;p0/ without edges of even weight. Let

y i/
R ; w i/

R ;h i/
R /, i D 1; : : : ;m, be simple parameterizations of irreducible subcurves

of T 0. Among the non-marked left ends of `
m

iD1 y i/
R choose k

0

k ends whose

and denote theweights fit the sequence 0 the number of such choices is 0

chosen set by E. Lemma 29 provides a parameterized plane tropical curve ;w;h/
such that

; w; h/ is of genus 0 and has exactly two ends whose images under h are not
horizontal; these ends are of weight 1, and their images point in the directions of
outward normal vectors of the sides >. ; È/ and ;È/ of see the proof
of Lemma 31 for notation),

the images of left ends of terminate at the points of p[n.p0/[, and the weights
of these left ends are given by the sequence 0,

the ends of whose images are horizontal positively directed fit the ends
belonging to E and have the corresponding weights,

p 2 h. /
In the same way as in the proof of Lemma 31, we can glue ; w;h/ with the curves

y i/
R ; w i/

R ;h i/
R /, i D 1; : : : ; m, and obtain a collection of parameterizations of plane

tropical curves T .1/; : : : ;T .`/ whose sum T belongs to T ; ; ;g; p/. Since p
is multi-tropically generic, Lemma 29 implies that the curve ; w; h/ is defined by
the above properties uniquely. Furthermore, the initial curve T 0 is the derivation
of T The multiplicative contribution of the trivalent vertices of to theWelschinger
multiplicity of T is1, and we finallyconclude that, forgiven 0 and 0, the contribution
to W. ; ; ; g/ of the curves T 2 T ; ; ; g;p/ such that p does not belong to

any -end of T is equal to
0

0 W. 0; 0; 0; g0/.

5.3. Proof of Theorem 4. The proof goes in the same way as for Theorem 3.
The only modification concerns the second sum in the right-hand side of 4):
assuming that a plane tropical curve T 0 2 T 0; 0; 0; g0; p0/ is the derivation of
T 2 T irr. ; ; ; g; p/, we have to describe possible irreducible subcurves of T 0

and their contribution to the formula. The first respectively, second) coefficient in
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the second sum of the formula reflects the distribution of the points of p0/[ respectively,

p0/]) among the irreducible subcurves of T 0. The conditions on the numbers
0; 0; g0 and i/; i/; g.i/, i D 1; :: : ;m, come from the conditions in Theorem 3,

and the inequalities k Q.i/k > 0 mean that, for each irreducible subcurve T i/, its

simple parameterization y i/
R ; w i/

R ; h i/
R / must glue with the curve ; w; h/ in the

notation of the proof of Theorem 3).

6. Concluding remarks

6.1. Generating functions. Let be one of the polygons shown in Figure 1, and †
the real toric Del Pezzo surface defined by We say that a convex lattice polygon

0 has the same shape as if and 0 have the same number of sides, and any
side of 0 is parallel to a side of Let „† be the set which consists of all convex
lattice polygons considered up to parallel translation) having the same shape as

and their È-peelings È fE0; 1g being -admissible). The set„† is acommutative
semigroup with respect to the Minkowsky sum.

Following [4], [9] introduce two generating functions

Z†.w; x; y; z/ D Xg2Z; 2„†
; 2C; J CJ Dj /j

W. ; ; ; g/v wg 1 x
Š

y
zr
rŠ

;

† w; x; y; z/ D Xg 0; 2„†
Zirr

; 2C; J CJ Dj /j

Wirr ; ; ;g/v wg 1 x
Š

y
zr
rŠ

;

where / is the intersection of with its left vertical supporting line, x and y are

infinitesequences of variables, and r is defined by 1). These generating functionscan
be seen as formal series in variables w; z and multi-variables x;y with coefficients
in the Novikov ring of the semigroup „†. Using the same arguments as in [9],
Section 6.4, and [4], Section 5.3, one can check that these generating functions are

related by the identity Z† D expZirr and satisfy the differential equations†

X
È fE0; 1g

vlÈ @

@z 1X
kD1

yk
@

@xk
Z† D

1

w restD0 exp

kD1

t kxk C wtk
@

1X @yk
Z†;

X
È fE0; 1g

v lÈ
@

@z 1X
kD1

yk
@

Z irr
@xk †

D
1

w restD0 exp 1X
kD1

† yk7!ykCwtk/ Zirrt kxk C Z irr
† ;
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† yk7!ykCwtk
stands for Zirrwhere Zirr † with yk replaced by yk C wtk, and

vlÈv D ´ vlÈ. / ; if È is admissible;

0; otherwise:

6.2. Non-invariance in the classical setting. The absence of invariants of topological

nature as mentioned in Introduction can be illustrated by the following examples.

Real irreducible plane curves of degree d and genus g passing through a generic
configuration of 3d Cg 1 real points form a finite set. Ifg > 0, then under variation
of the point configuration, this set is subject to codimension one events in which a

pair of real curves with the same embedded topology disappears turning into a pair
of imaginary conjugate curves, or vice versa. In the case of elliptic quartics d D 4,

g D 1), it is shown in [5], Theorem 3.1. Gluing elliptic quartics with one or several
lines, it is not difficult to construct examplesof higher degree and genus. The example
with elliptic quartics shows also that the numberW. .5P1/; .0/; .5/; 0/ does not lift
up to the classical setting as an invariant formulated in purely topological terms.

Another example, demonstrating the same phenomenon, is as follows. Consider
plane rational curves of degree d which pass through 3d C 1 b1 b2 generic
points outside a line P1 P2 and have two non-fixed tangency points with P1, one

of intersection order b1 and the other of intersection order b2, where b1 and b2 are

distinct, odd, and satisfy the inequality b1 C b2 < d. Under variation of the point
configuration, thecollisionof thetwo tangency points intoone tangency pointof order

b1 C b2 is an event of codimension one. Crossing such a wall leads to appearance,
or disappearance, of two real curves which have the same embedded topology even

with respect to P1).
One more phenomenon is the change of theWelschinger multiplicity of precisely

one member of the set of curves. Consider real plane rational curves of degree d 5
passing through a 3 fixed generic real points on P1 P2 and 3d 1 a generic
real points in P2 n P1. Here we observe the following codimension one event:
precisely one of the curves splits into DCP1, where D is tangent to P1 at one point
and transversal to it at d 3 other points. On one side of such a wall the tangency
point turns into a solitary node, and on the other side into a crossing point, whereas
the other singularities do not change.

The above arguments do not exclude the existence of relative real algebraic
enumerative invariants in other situations. For example, such invariants were introduced
by Welschinger [12] in the case of one simple tangency constraint with respect to a

smooth null-homologous curve.



126 I. Itenberg, V. Kharlamov and E. Shustin CMH

References

[1] L. Caporaso and J. Harris, Counting plane curves of any genus. Invent. Math. 131 2)
1998), 345–392. Zbl 0934.14040 MR 1608583

[2] A. Gathmann and H. Markwig, The numbers of tropicalplanecurves through points in gen¬

eral position. J. Reine Angew. Math. 602 2007), 155–177. Zbl 1115.14049 MR 2300455

[3] A. Gathmann and H. Markwig, The Caporaso-Harris formula and plane relative Gro-mov-

Witten invariants in tropical geometry. Math. Ann. 338 4) 2007), 845–868.
Zbl 1128.14040 MR 2317753

[4] E. Getzler, Intersection theory on M1;4 and elliptic Gromov-Witten invariants. J. Amer.

Math. Soc. 10 4) 1997), 973–998. Zbl 0909.14002 MR 1451505

[5] I. Itenberg, V. Kharlamov and E. Shustin, Welschinger invariant and enumeration of
real rational curves. Internat. Math. Res. Notices 49 2003), 2639–2653. Zbl 1083.14523
MR 2012521

[6] G. Mikhalkin, Counting curves via the lattice paths in polygons. C. R. Acad. Sci. Paris
Sér. I 336 8) 2003), 629–634. Zbl 1027.14026 MR 1988122

[7] G. Mikhalkin, Enumerative tropical algebraic geometry in R2. J. Amer. Math. Soc. 18
2005), 313–377. Zbl 1092.14068 MR 2137980

[8] E. Shustin, A tropical approach to enumerative geometry. Algebra i Analiz 17 2) 2005),
170–214. Zbl 1100.14046 MR 2159589

[9] R. Vakil, Counting curves on rational surfaces. Manuscripta Math. 102 1) 2000), 53–84.
Zbl 0967.14036 MR 1771228

[10] J.-Y. Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in
real enumerative geometry. C. R. Acad. Sci. Paris Sér. I 336 2003), 341–344.
Zbl 1042.57018 MR 1976315

[11] J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in realenu¬

merative geometry. Invent. Math. 162 1) 2005), 195–234. Zbl 1082.14052 MR 2198329

[12] J.-Y. Welschinger, Towards relative invariants of real symplectic four-manifolds. Geom.
Funct. Anal. 16 5) 2006), 1157–1182. Zbl 1107.53059 MR 2276536

Received February 15, 2007

Ilia Itenberg, Université Louis Pasteur et IRMA, 7, rue René Descartes, 67084 Strasbourg
Cedex, France

E-mail: itenberg@math.u-strasbg.fr

Viatcheslav Kharlamov, Université Louis Pasteur et IRMA, 7, rue René Descartes,
67084 Strasbourg Cedex, France

E-mail: kharlam@math.u-strasbg.fr
Eugenii Shustin, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty
of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 TelAviv, Israel

E-mail: shustin@post.tau.ac.il


	A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces

