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Freeness of conic-line arrangements in P2

Hal Schenck and Ştefan O. Tohaneanu

Abstract. Let C D S
n
iD1 Ci P2 be a collection of smooth rational plane curves. We

prove that the addition–deletion operation used in the study of hyperplane arrangements has an
extension which works for a large class of arrangements of smooth rational curves, giving an
inductive tool for understanding the freeness of the module 1 C/ of logarithmic differential
formswith pole alongC. We also show that the analog ofTerao’s conjecture freeness of 1 C/
is combinatorially determined if C is a union of lines) is false in this setting.

Mathematics Subject Classification 2000). Primary 52B30; Secondary 14J60.
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1. Introduction

One of the fundamental objects associated to a hyperplane arrangement A PK.V /
is the module 1.A/ of logarithmic one-forms with pole along the arrangement or
dually) the module D.A/ of derivations tangent to the arrangement. Both are graded

S D Sym.V / modules; D.A/ DerK.S/ is defined via:

Definition 1.1. D.A/ D f j li/ 2 hlii for all li such that V.li/ 2 Ag:

Over a field of characteristic zero, D.A/ ' E °D0.A/, where E is the Euler
derivation andD0.A/ corresponds to the module of syzygies on the Jacobian ideal of
the defining polynomial ofA. WhenK D C orR, an elegant theoremof Terao relates

the freeness of the module D.A/ to the Poincaré polynomial of V n A. In this note,
we restrict to P2, but broaden the class of curves which make up the arrangement. In
particular, suppose

C D n[
iD1

Ci ;

where each Ci is a smooth rational plane curve; call such a collection a conic-line
CL) arrangement.

Schenck was supported by NSF 03–11142, 07–07667, NSA 904-03-1-0006.
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Example 1.2. For the CL arrangement below, D.C/ ' S. 1/° S. 2/ °S. 5/.

1.1. Line arrangements. We beginwith some facts about hyperplanearrangements;
for more information see Orlik and Terao [5]. A hyperplane arrangementAis a finite
collection of codimension one linear subspaces of a fixed vector space V A is
central if each hyperplane contains the origin of V The intersection lattice LA of
A consists of the intersections of the elements of A; the rank of x 2 LA is simply
the codimension of x. V is the lattice element O0; the rank one elements are the
hyperplanes themselves. A is called essential if rank LA D dim V

Definition 1.3. The Möbius function
W LA Z is defined by

O0/ D 1;

t/ D Xs<t

s/; if O0 < t.

We now restrict to the case that V is complex. A foundational result is that the
Poincaré polynomial of X D V n A is purely combinatorial; in particular

P.X; t/ D X
x2LA

x/ t/rank.x/:

An arrangement A is free if D.A/ ' °S. ai/; the ai are called the exponents of
A. Terao’s famous theorem [11] states that if D.A/ ' °S. ai /, then P.X;t/ D
Q.1 C ait/. If A C3 is central, then A also defines a set of lines in P2, and

obviously X D C3 nA' C Xz, where Xz is the complement of the corresponding
arrangement of lines in P2. Hence

P.Xz; t/ D 1 C n 1/t C Xx2LA
rank.x/D2

x/ n C 1 t2

It follows from Terao’s theorem that if D0.A/ ' S. a/°S. b/, then P.Xz; t/ D
.1Cat/.1Cbt/. This can be generalized [9] to line arrangements which are not free,
using the Chern polynomial. The motivating question of this paper is: what happens

if the arrangement of lines is replaced with a CL arrangement?
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1.2. Rational curve arrangements. In [2], Cogolludo-Agustín studies the complement

of an arrangement of rational curves in P2, where the individual curves can have

singularities, and can meet non-transversally. The main result is that the cohomology
ring of the complement to a rational curve arrangement is generated by logarithmic 1-
and 2-forms and its structure depends on a finite number of invariants of the curve.
One fact is that if Xz is the complement of an arrangement of n irreducible curves in
P2, then

h1
Xz;C/ D n 1;

h2
Xz;C/ D 1 C X

p2Sing.C/
rp 1/ nX

1

COi/ 1/;

where rp is the number of branches passing through p, and COi is the normalization
of Ci Since we are assuming that all the Ci are smooth and rational, we have that

h2
Xz; C/ D X

p2L2.C/

rp 1/ jCj C 1;

where the intersection poset L.C/ is defined precisely as for a linear arrangement
typically, L.C/ is only a poset, not a lattice).

1.3. Milnor and Tjurina numbers. A crucial distinction between line and curve
arrangements, even in our simple setting, is the difference between the Milnor and

Tjurina numbers at a singularity. Let C D V.f / be a reduced but not necessarily
irreducible) curve in C2, let .0;0/ 2 C, and let Cfx; yg denote the ring of convergent
power series.

Definition 1.4. The Milnor number of C at .0; 0/ is

.0;0/.C / D dimC Cfx; ygi
@f
@x

;
@f
@y

:

To define p for an arbitrary point p, we translate so that p is the origin.

Definition 1.5. The Tjurina number of C at .0; 0/ is

.0;0/.C/ D dimC Cfx;ygi
@f
@x

@f
@y f :

Definition 1.6. A singularity is quasihomogeneous iff there exists a holomorphic
change of variables so the defining equation becomes weighted homogeneous;

f x;y/ D P cij xiyj is weighted homogeneous if there exist rational numbers

; such that Pcijxi yj is homogeneous.
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In [6], Reiffen proved that if f x;y/ is a convergent power series with isolated
singularity at the origin, thenf x; y/ is in the idealgeneratedby the partial derivatives

if and only if f is quasihomogeneous see [8] for a generalization).
As noted earlier, for a line arrangement with defining polynomial F D0.A/ consists

of the syzygies on the Jacobian ideal JF of F If V.F/ P2 is a reduced curve,
then after a change of coordinates, we may assume that V.F/ has no singularities on

the line z D 0. Dehomogenizing so that f x; y/ D F.X;Y;1/ yields

deg.JF / D dimCCOEx;y i
@f
@x

;
@f
@y

; f D X
p2Sing.C/

p.f /:

It follows that if all the singular points are quasihomogeneous, then

deg.JF / D X
p2Sing.V.f //

p.f /:

For a line arrangement, the singularities are always quasihomogeneous, but this is
not the case for CL arrangements:

Example 1.7. Let C D V.xy.x y/.x 2y/.x2 xz C y2 yz// be as below:

C has five singular points, all ordinary. When p is an ordinarysingularity and C has n
distinct branches at p, then p.C / D n 1/2, so the sum of the Milnor numbers
is 20. However, deg.J / D 19; at .0 W 0 W 1/ we have D 16 but D 15.

1.4. Criteria for freeness. The first criterion for the freeness of D.A/ is the
following:

Proposition 1.8 Saito, [7]). A is free exactly when there exist n C 1 elements

i D nX
jD0

fij
@

@xj 2 D.A/

such that the determinant of the matrix OEfij is a nonzero constant multiple of the
defining polynomial of A.
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Saito’s criterion holds for an arrangement of reduced hypersurfaces C Pn; let

C D V.F/ where F D f1 : : : fd and gcd.fi;fj / D 1. By induction,

f1 : : :fd/ D f1 f2 : : : fd / C f2 : : : fd f1/ 2 hf1 : : : fd i;
so we have

D.C/ D f 2 DerK.S/ j fi / 2 hfii; i D 1; : : : ; dg

D f 2 DerK.S/ j F/ 2 hF ig:
Any arrangementof reduced)hypersurfaceswillhavea singular locus ofcodimension
two. As for a linear arrangement, D.C/ ' E ° D0.C/, with D0.C/ D syz.JF /,
so freeness is equivalent to pdim.S=JF / D 2 so also equivalent to JF Cohen–
Macaulay). By the Hilbert–Burch theorem ([3]), any codimension two Cohen–
Macaulay ideal I with m C 1 generators is generated by the maximal minors of
an m m C 1/ matrix M, whose columns generate the module of first syzygies
on I So when I D JF appending a column vector OEx0; :: : ;xn to M and taking
the determinant yields a multiple of F by Euler’s formula. Saito’s criterion is most
useful when an explicit set of candidates for the generating set of syz.JF / is known.

There are two other fundamental tools that can be used to prove that a line
arrangement is free. The first method is based on an inductive operation known as

deletion-restriction: given an arrangement A and a choice of hyperplane H 2 A, set

A0 D A n H and A00 D AjH:
The collection A0; A;A00/ is called a triple, and a triple yields see Proposition 4.45

of [5]) a left exact sequence

0 D.A0/. 1/
H

D.A/ D.A00/:

For a triple with A P2, more is true see [10]): after pruning the Euler derivations
and sheafifying, there is an exact sequence

0 D00. 1/ D0 i D0 00 0; 1)

where i W H P2; i D0 00 ' OH.1 jA00j/: In [12], Terao showed that freeness of
a triple is related via:

Theorem 1.9 Addition–Deletion). Let A0; A; A00/ be a triple. Then any two of the
following imply the third:

D.A/ 'L
n
iD1 S. bi /;

D.A0/ ' S. bn C 1/L
n 1

iD1 S. bi /;

D.A00/ 'L
n 1
iD1 S. bi/.

Theorem 1.9 applies in general, not just to arrangements in P2. A smooth conic
is intrinsically a P1, so it is natural to ask if CL arrangements which admit a short



240 H. Schenck and Ş. O. Tohaneanu CMH

exact sequence similar to 1) have an addition–deletion theorem; we tackle this in the
next two sections.

A second criterion for freeness is special to the case of line arrangements; to state

it we need to define freeness for multiarrangements. A multiarrangement A;m/ is
an arrangement together with a multiplicity mi for each hyperplane. The module of
derivations consists of such that lmi

i j li/. As shown by Ziegler in [15], freeness

of multiarrangements is not combinatorial; for recent progress see [13].

Theorem 1.10 Yoshinaga’s multiarrangement criterion, [16]). A P2 is free iff

A; t/ D .1 C t/.1 C at/.1 C bt/ and for all H 2 A the multiarrangement AjH
has minimal generators in degree a and b.

The main results of this paper Theorems 2.5 and 3.4) show that an addition–
deletion construction holds for CL arrangements with quasihomogeneous singularities;

the freeness of Example 1.2 is explained by our results. As one application,
we show that a free CL arrangement, when restricted to different lines, can yield
multiarrangements with different exponents; hence any version of Theorem 1.10 for
CL arrangements will be quite subtle. An addition–deletion theorem for
multiarrangements has recently been proven by Abe–Terao–Wakefield in [1]; our results are
the first to our knowledge) to give an inductive criterion for freeness for nonlinear
arrangements.

2. Addition–deletion for a line

Let C0; C; C00/be a triple ofCL arrangements in P2, whereC0 D C nfLg, C00 D CjL
and L 2 C is a line. We begin by examining some examples:

Example 2.1. Let C0 be the union of

C1 D x2 xz C 5y2 5yz D 0;

C2 D x2
C 2y2 xz 2yz D 0;

L1 D x D 0;

L2 D y D 0;

L3 D x C y z D 0:

D.C0/ is free with exponents f1; 2; 4g, and the degree of the Jacobian ideal is 28,
which is equal to the sum of the Milnor numbers at the intersection points. Therefore
at each singular point D If we restrict to any line, the corresponding
multiarrangement has two pointsof multiplicity 3, and it follows from [13] that theexponents
are f3; 3g. Hence the obvious generalization ofYoshinaga’s criterion does not hold.
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Example 2.2. Let L4 D fx y D 0g and let C1 D C0 [ L4. The degree of the
Jacobian ideal is 39, which is equal to the sum of Milnor numbers at the points. It
will follow from our results that D.C1/ is free with exponents f1;2; 5g.

Example 2.3. Let L4 D fx 2y D 0g and let C2 D C0 [ L4. Then C2 is free with
exponents f1; 3; 4g. The degree of the Jacobian ideal is 37, whereas the sum of the
Milnor numbers is 38; the singularity at .0 W 0 W 1/ has D 15 and D 16.
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For CL arrangements similar to C1, there is an addition–deletion theorem:

Definition 2.4. A triple C0; C; C00/ of CL arrangements is called quasihomogeneous

if D at each singular point of C0 and C.

Theorem 2.5. Let C0; C; C00/ be a quasihomogeneous triple with jL \ Cj D
jC00j D k. The following are equivalent:

1) C0 is free with exponents f1; k 1; ag.

2) C is free with exponents f1;k 1; a C 1g.

Examples 2.1 and 2.2 illustrate the theorem; before giving the proof of Theorem

2.5, we need some preliminaries.

Lemma 2.6. Let L D fx D 0g. Then the maps pW D.C0/ D.C/, p. / D x and

q W D.C/ D.C00/, q.a@x C b@y C c@z/ D b.0; y; z/@y C c.0; y; z/@z are well
defined and yield an exact sequence

0 D.C0/ D.C/ D.C00/:

Proof. Let f D xf 0 be the defining polynomial of C, where f 0 is the defining
polynomial of C0. Then the defining polynomial of C00 is f 00 D Rad.f 0jxD0/. If

0

2 D.C0/, then 0.f 0/ D Pf 0 for some P 2 S;

p. 0/.f / D x 0.xf 0/ D x.f 0 0.x/ C x 0.f 0// 2 hf i:
So p is well defined and injective. Let D a@x Cb@y Cc@z 2 D.C/. Then x/ D
a 2 hxi, so a D xa0. If 2 ker.q/, then b D xb0 and c D xc0, hence D x 0,

where 0 D a0@x C b0@y C c0@z. Because 2 D.C/, f 0/ D x 0.f 0/ 2 hf 0i.
Since x and f 0 are relatively prime, we get that 0.f 0/ 2 hf 0i, which implies that

2 Im.p/.
It remains to show is that q is well defined. For suitable ui; vi 2 C and mi 2 Z

we have that

f 0jxD0 DY
i

uiy C viz/mi ; so f 00 DY
i

uiy C vi z/:

Let L0 be a line in C0 defined by the vanishing of tix C uiy C viz D 0 for some

i and ti 2 C, and let D a@x C b@y C c@z 2 D.C/. Then L0/ 2 hL0i,
so evaluating at x D 0 and using the earlier observation that a D xa0, we find

b.0;y;z/@y C c.0; y; z/@z/.uiy C viz/ 2 huiy C vizi.
Now suppose C is a conic in C0; after a change of coordinates we may assume

C intersects L D fx D 0g in the points .0 W 0 W 1/ and .0 W u W v/. Then
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C D xACy.vy uz/ and CjxD0 D y.vy uz/, where A is some linear form. We
have

C/ D a.A C x@x.A// C x.b@y.A/ C c@z.A//

C b@y.y.vy uz// C c@z.y.vy uz// 2 hCi:

Evaluating at x D 0 and again using that a D xa0 we find

b.0; y; z/@y C c.0; y; z/@z/.y.vy uz// 2 hy.vy uz/i:
Since y and vy uz are relatively prime we obtain

b.0; y; z/@y C c.0; y; z/@z/.y/ 2 hyi;
b.0;y;z/@y C c.0; y; z/@z/.vy uz/ 2 hvy uzi:

This shows that for each factor uiy C viz of f 00,

b.0; y; z/@y C c.0; y; z/@z/.uiy C vi z/ 2 huiy C vi zi;
so the map q is well defined. It follows that D0.C00/ D COEy; z k 1//, where

k D jL \ C0j D deg.f 00/. A similar argument works if C is tangent to L.

Lemma 2.7. Let X and Y be two reduced plane curves with no common component,
meeting at a point p. Then

p.X [ Y / D p.X/ C p.Y / C 2.X Y /p 1;

where X Y /p is the intersection number of X and Y at p.

Proof. See [14], Theorem 6.5.1; the point is that the Milnor fiber is a connected
curve, and the result follows from using the additivity of the Euler characteristic and
the interpretation of p as the first Betti number of the Milnor fiber.

Proposition 2.8. Let C0; C; C00/ be a quasihomogeneous triple. Then

0 D00. 1/ D0 i D000

is also right exact.

Proof. It follows from Lemma 2.6 that quotienting by the Euler derivation and
sheafifying yields the left exact sequence above; so it will suffice to show that

HP.D0; t/ D HP.D00 1/; t/CHP.i D00
0 ; t/, where HP. ; t/ denotes the Hilbert

polynomial. For a CL arrangement C with m lines and n conics, let d D 2nCm 1.
We have an exact sequence:

0 D0.C/ S 3 S.d/ S.d/=J 0;
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where S D KOEx;y;z and J is the Jacobian ideal of the defining polynomial of C.
Since

2
t C 2 C d

HP.D0;t/ D 3
t C 2

2 C deg.J /;

HP.D00
2

t C d
1/; t/ D 3

t C 1

2 C deg.J0/;

we find that

HP.D0; t/ HP.D00 1/;t/ D deg.J / deg.J 0/
C t 2d C 2:

By the assumption that C0; C; C00/ is a quasihomogeneous triple,

deg.J / D X
p2Sing.C/

p.C / and deg.J0/ D X
p2Sing.C0/

p.C0/:

Let be the sum of Milnor numbers of points off L, so

deg.J / D C X
p2L\C0

p.C/:

Since p.L/ D 0, by Lemma 2.7, the above is

C X
p2L\C0

p.C0/ C 2.L C0/p 1/:

As deg.J0/ D CPp2L\C0 p.C 0/ and j L\ C0 jD k, we obtain

deg.J / deg.J 0/ D 2 X
p2L\C0

L C0/p k:

By Bezout’s theorem,

X
p2L\C0

L C0/ D d;

so deg.J/ deg.J0/ D 2d k, hence

HP.D0; t/ HP.D00 1/; t/ D t C 2 k D t C 1 jC00j 1/:

Since i D000 D OL.1 jC00j/, this yields the result.

Definition 2.9. A coherent sheaf F on Pr is m-regular iff HiF m i/ D 0 for
every i 1. The smallest number m such that F is m-regular is denoted by reg.F /.
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Lemma 2.10. For a quasihomogeneous triple with jC00j D k,

reg.D0/ maxfreg.D00/ C 1; k 1g:

Proof. Immediate from Proposition 2.8 see [10]).

Lemma 2.11. If D00 D OP2.1 k/ °OP2 a/, then there is an exact sequence of
S-modules

0 D00 1/ D0 D000 0:

Proof. For all t H1.D00 t 1// D 0, so the long exact sequence in cohomology
arisingfrom Proposition 2.8 and the vanishingofH1.D00 t// yield an exact sequence:

0 M
t

H 0
D00 1/.t// M

t

H0 D0.t// Mt
H 0 D000 t // 0:

Theorem A.4.1 of [3] relates a graded module to its sheaf and local cohomology at

the maximal ideal m) modules:

0 H0m D0/ D0 Mt

H0 D0.t// H1m D0/ 0:

This is true also for D00 1/ and D00
0 By [3], A.4.3, H0m M/ D H1m M/ D 0 if

depth.M/ 2. Lemma 2.1 of [4] gives the desired bound on depth for the modules
of derivations, which concludes the proof.

The next two lemmas prove the two implications .1/ .2/ and .2/ .1/ of
Theorem 2.5. In what follows, C0; C; C00/ is a quasihomogeneous triple, with L a

line and jL\Cj D jC00j D k.

Lemma 2.12. If C0 is free with exp.C0/ D f1;k 1; ag, then C is free with
exp.C/ D f1; k 1; a C 1g.

Proof. First, if S D KOEx1; : : : ; x` and S. i/ is a free graded S-module with
generator in degree i then the Hilbert series satisfies

HS.S. i/; t/ D
t i

.1 t/`
:

If C0 is free with exponents f1;k 1; ag, thenD00 1/ ' S. k/°S. 1 a/. It
follows from the proof of Proposition 2.8 that HS.D000 ; t/ D

tk 1

.1 t/2
So by Lemma 2.11

and the additivity of Hilbert series on an exact sequence,

HS.D0/ D
tk C taC1

.1 t/3 C
tk 1

.1 t/2 D
taC1 C tk 1

.1 t/3 :
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Since D00 ' S. k C 1/ °S. a/, reg.D00/ D maxfk 1; ag. By Lemma 2.10, if
a k 1, then reg.D0/ aC1; and if a k 2, then reg.D0/ k. If a k 2,
then a free resolution for D0 is of the form

0 D0 S. k C 1/ °S. a 1/°S. b/d S. b/d 0:

From regularity constraints, b must be at most k. As this is a minimal free resolution,
and it is impossible to have a syzygy on a single generator, the only situation which
can actually arise occurs when b D k:

0 D0 S. k C 1/° S. a 1/ °S. k/d S. k/d 0:

Let t1, t2 be two independent derivations in D0 of degrees deg.t1/ D a C 1 and

deg.t2/ D k 1; our computation of the Hilbert series, combined with the fact that
pdim.D0/ 1 means such derivations must exist. Let E, t01 t02 be a basis for D0
with deg.t01/ D a and deg.t02/ D k 1, and E the Euler derivation.

Now note that t01 2 D00 n D0, for otherwise in D0 there would be an element

of degree a. So t01 x/ … hxi. Since D D0, then t1 D f1E C xt01 and t2 D
f2E C ut02 C f t01 where u is a constant, deg.f / D k 1 a, deg.f1/ D a and
deg.f2/ D k 2. For a resolution as above, gt1 D Lt2, where L is a linear form and

deg.g/ D k a C 1/. Hence

gf1 Lf2/E C gx Lf /t01 C Lu/t02 D 0;

and since E, t01 and t02 form a basis, we find that u vanishes and gx D Lf But
t2 f2E/.x/ 2 hxi and t01 x/ … hxi. Since u D 0, x must divide f and so

g D Lg0 for some g0. Since gt1 D Lt2, we obtain t2 D g0t1, a contradiction. If
a k 1, simply switch the roles of a and k above.

Lemma 2.13. If C is free with exp.C/ D f1;k 1;a C 1g, then C0 is free with
exp.C0/ D f1;k 1; ag.

Proof. In order to obtain an appropriate vanishing, we need to dualize. Apply
Hom. ; OP2/ to the exact sequence

0 D00. 1/ D0 i D0 00 0:

The vanishing of HomOP2 OP1 t /; OP2/ and Ext1OP2
D0;OP2/ yields an exact

sequence

0 D_0 D0_
0 .1/ Ext1S.OL.1 k/; OP2/ 0:

The free OP2 resolution for OL.1 k/ is

0 OP2 k/ OP2.1 k/ OL.1 k/ 0;
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so Ext1S OL.1 k/; OP2/ ' OL.k/. Since D_0 D OP2.k 1/ ° OP2.a C 1/,
combining this with the long exact sequence in cohomology yields a regularity bound

reg.D0_0 / maxfreg.D_0 / C 1; 1 kg;

and the exact sequence of S-modules

0 D_0 1/ D0_
0 S.k 1/=L 0;

with D_0 D S.k 1/° S.a C 1/. So

HS.D0_0 / D
t a

C t1 k

.1 t/3
:

An argument as in the proof of Lemma 2.12 shows that D0_0 D S.a/° S.k 1/,
hence D.C0/ is free with exponents f1; k 1;ag.

Corollary 2.14. A free CL arrangement, when restricted to a line, can yield different
multiarrangements.

Proof. In Example 2.2, add the line L D fx y C 1/z D 0g, where
62

f0; 1; 5; 2; 1g. Then L passes through .1 W 1 W
1/, and the choices for ensure

thatLis not tangent to any conic, andmissesall singularities save.1 W 1 W 1/. The new
arrangement is quasihomogeneous, and L meets C1 in six points. By Theorem 2.5,
the new arrangement is free with exponents f1;3;5g.

Restrict this new arrangement to the line L3 D fx Cy z D 0g. After a change

of coordinates, we obtain a multiarrangement with defining polynomial

x3y3 x y/. x y/:

This is exactly Ziegler’s example from [15]: D 1 gives exponents f3;5g, and for

¤ 1, the exponents are f4; 4g.

3. Addition–deletion for a conic

Let C0; C; C00/ be a triple of CL arrangements in P2, where C is a conic in C, and
C0 D C n fCg, C00 D C0jC We begin with some examples.

Example 3.1. Suppose C is as in Example 2.2, so C has quasihomogeneous
singularities, and is free with exponents f1; 2;5g. If we delete one of the conics, the
resulting arrangement C0 is free and quasihomogeneous, with exponents f1; 2;3g.

When k is odd, the situation is more complicated:
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Example3.2. LetC0 be the braidarrangementA3 D V.xyz.x z/.y z/.xCy z//,
and C D C0[C, where the conicC D V.xyC7xzC13yz/. C0 is a freearrangement
with exponents f1; 2; 3g, and jC00j D 7. C is also quasihomogeneous, but not free.

Example 3.3. Let C be the quasihomogeneous CL arrangement with defining
polynomial x2 xzC2y2 2yz/xy.xCy z/. D.C/ is free with exponents f1; 2; 2g.
Deleting the conic yields a free line arrangement with exponents f1; 1; 1g.

Theorem 3.4. Let C0; C; C00/ be a quasihomogeneous triple, with jC \ C0j D
jC00j D k. If k D 2m then the following are equivalent:

1) C0 is free with exp.C0/ D f1; m; ag;
2) C is free with exp.C/ D f1;m; a C 2g.

If k D 2m C 1 then:

1) exp.C0/ D f1; m;mg” exp.C/ D f1; m C 1; m C 1g;

2) if exp.C0/ D f1; m; ag with a ¤ m then C is not free;

3) if exp.C/ D f1; m C 1; a C 1g with a ¤ m then C0 is not free.

We begin with some preliminaries. After an appropriate change of coordinates,
we may suppose that C D fy2 xz D 0g. Let i be the composition of the maps

P 1 v
C P2;
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where v.s W t/ D s2
W st W t2/, and let be the composite map

S D KOEx; y; z KOEs2; st;t2 KOEs; t ;

where x/ D s2, y/ D st, z/ D t2.

Let D a1@x Ca2@y Ca3@z 2 D.C/ be a derivation. Then C/ 2 hCi, which
means za1 C 2ya2 xa3 D y2 xz/P for some P 2 S. Via the map this
translates into

t2 a1/ 2st a2/ C s2 a3/ D 0:

So there exist Q1; Q2 2 KOEs; t such that

a1/ D sQ1;

a2/ D
tQ1 C sQ2

2
;

a3/ D tQ2:

If W S A is a ring map andM is an A-module, letM denote the S-module
obtained by restriction of scalars.

Proposition 3.5. There is an exact sequence of S-modules

0 D.C0/. 2/
C

D.C/ D.A00/ ;

where

a1@x C a2@y C a3@z/ D Q1@s C Q2@t;

for every a1@x Ca2@y Ca3@z 2 D.C/ and Q1;Q2 are defined as above; and A00 is
the arrangement of the reduced points i 1.C \ C0/ in P1.

Proof. It is easy to check that is a homomorphism. For exactness, note:

D a1@x C a2@y C a3@z 2 ker. /” Q1 D 0 and Q2 D 0

” a1/ D a2/ D a3/ D 0

” a1; a2; a3 2 hy
2

xzi” D C 0 with 0

2 D.C0/:

It remains to show that the image of is in D.A00/ Suppose x C y C z D 0
is a line of C. Let D a1@x C a2@y C a3@z 2 D.C/. Then

a1 C a2 C a3 D x C y C z/P1
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for some P1 2 S. Therefore

a1/ C a2/ C a3/ D s 2
C st C t2/ P1/;

which implies

.2 s C t/Q1 C s C 2 t/Q2 D 2. s2
C st C t2/ P1/:

This means that Q1@s C Q2@t/. s2 C st C t2/ 2 s2 C st C t2/KOEs; t
Since s2 C st C t2 is the defining polynomial of the two points i 1.f xC y C

z D 0g\ C/ in P1, we get that Q1@s CQ2@ t is a derivation on the arrangement of
these two points.

Suppose C0 D fu0x2 C u1xy C u2xz C u3y2 C u4yz C u5z2 D 0g is a conic
in the CL arrangement C. Let D a1@x C a2@y C a3@z 2 D.C/. Computations as

above show that

Q1@s C Q2@ t/.u0s 4
C u1s 3t C u2 C u3/s2t 2

C u4st3
C u5t4/

2 u0s4
C u1s3 t C u2 C u3/s 2t2

C u4st3
C u5t4/KOEs; t :

Since u0s4 C u1s3t C u2 C u3/s2t2 C u4st3 C u5t4 is the defining polynomial
of the four points i 1.C 0 \ C/ in P1, we get that Q1@s C Q2@ t is a derivation
on the arrangement of these four points. Similar arguments work in the case of
tangencies.

Let D a1@x C a2@y C a3@z 2 D.C/d such that / D s@s C t@t Then
a1; a2; a3 2 Sd with a1/ D s2; a2/ D st; a3/ D t2. Thus d D 1 and is
the Euler derivation in D.C/. So quotienting by the Euler derivations yields an exact
sequence:

0 D00 2/
C

D0 D.A00/0/ :

Since jA00j D k, after sheafifying, D0.A00/ D OP1 k/, and hence the sheafification
of D0.A00/ is i OP1 k/.

Lemma 3.6. HP.i OP1 k/; t/ D 2t C 1 k.

Proof. Case 1: k D 2m. Let E be the divisor of the reduced k points i 1.C \ C0/.

Then the ideal sheaf IE D hf i, where f 2 KOEs; t of degree k D 2m. There exists

g 2 Sm, unique modulo y2 xz/, such that g.s2; st;t2/ D f Clearly y2 xz
cannot divide g, otherwise g.s2; st;t2/ D 0 D f so the ideal of the reduced k
points on C is hy2 xz;gi. Hence i IE D hNgi as an ideal of S=hy2 xzi. As an

S-module, it has free resolution

0 S. 2 m/
C

S. m/ hgNi 0;
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which yields

2

t m
HP.i OP1 2m/;t/ D

t C 2 m

2 D 2t C 1 2m:

Case 2: k D 2m C 1. Let E be the divisor of the reduced k points i 1.C \ C0/.
Then the ideal sheaf IE D hf i, where f 2 KOEs; t of degree k D 2m C 1. Let
L1; L2 2 KOEs; t 1 be two independent linear forms which do not divide f and let

fi D Lif Since hL1f;L2f i D hL1; L2i \hf i, then hf1; f2i defines the same

ideal sheaf on P1 as hf i. So IE D hf1; f2i.
Both f1 and f2 are of even degree 2mC2. So there exist g1; g2 2 S D KOEx; y; z

of degree m C 1 such that gi s2; st; t2/ D fi ;i D 1; 2. Next we show that J D
hy2 xz; g1; g2i is the ideal of the reduced points C \C0 on C. To see this, note that
if p 2 C \ C0, then fi i 1.p// D 0;i D 1; 2. So gi.p/ D 0; i D 1;2, and hence

gi 2 J;i D 1;2. Clearly y2 xz does not divide gi otherwise fi is identically zero.
Also, suppose g2 D g1 C P.y2 xz/, where is a constant. Then f2 D f1,
i.e. L2 D L1; a contradiction. So J is the ideal of 2m C 1 points on the conic
y2 xz D 0. By the Hilbert–Burch theorem, such an ideal is minimally generated
by the 2 2 minors of

24

x y
y z35

where both and have degree m. So indeed hy2 xz; g1; g2i D J and i IE D
hgN1;gN2i S=hy2 xzi. As an S-module it has free resolution

0 S2 2 m/
h

x y
yz i

S 2 1 m/ hgN1; gN2i 0;

so for the odd case we find that

2
2

t m
HP.i OP1 2m 1/; t/ D 2

t C 1 m

2

D 2t 2m D 2t C 1 .2m C 1/:

Proposition 3.7. For a quasihomogeneous triple C0; C; C00 D C0jC/, the sequence

0 D00 2/
C

D0 i OL. k/ 0

is exact, where i W L
OEs2

WstWt2 P2.
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Proof. We haveHP.D0; t/ HP.D00 2/; t/ D 2t 4dC9C.deg.Jf / deg.Jf 0 //,
where d C 1 is the degree of the defining polynomial f of C and f 0 is the defining
polynomial of C0. Since C0; C;C00/ is a quasihomogeneous triple, Bezout’s theorem
and Lemma 2.7 imply that deg.Jf / deg.Jf 0/ D 4d 4 k and hence

HP.D0; t/ HP.D00 2/; t/ D 2t C 1 k:

By Lemma 3.6, this is exactly the Hilbert polynomial of the sheaf i OP1 k/
associated to D0.C00/

Lemma 3.8. For a quasihomogeneous triple such that C0 is free with exponents

f1; m;ag,
0 D00 2/ D0 D0.A00/ 0

is exact.

Proof. As we have seen,

M
t

H0 i OL. k//.t// DMt
H 0

OP1.2t k// D D0.A00/ :

With the assumption on C0, H1.D00 t 2// vanishes for all t and exactness follows
as in the proof of Lemma 2.11.

Theorem 3.4 will follow from the next two lemmas.

Lemma 3.9. Let C0; C; C00/ be a quasihomogeneous triple, with jC \ C0j D
jC00j D k. If C0 is free with exponents f1; m; ag, then the following holds.

1) If k D 2m then C is free with exp.C/ D f1; m;a C 2g.
2) If k D 2m C 1 and a D m, then C is free with exp.C/ D f1; m C 1; m C 1g.
3) If k D 2m C 1 and a ¤ m, then C is not free.

Proof. It follows from the computations in the proof of Lemma 3.6 that

if k D 2m C 1, then HS.D0.A00/ ; t/ D
2tmC1

.1 t/2 ;

if k D 2m, then HS.D0.A00/ ; t/ D
tm.1Ct/
.1 t/2

Combining these results yields the Hilbert series of D0.
Case 1: k D 2m. By Lemma 3.8,

HS.D0; t/ D
tm C taC2

.1 t/3 :

Since pdim.D0/ 1, this means that there exist minimal generators ; 2 D0 with
deg. / D m and deg. / D aC2. Suppose fE; 1; 2g basis for D0 with E the Euler
derivation and deg. 1/ D m; deg. 2/ D a. We now use that D D0.
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m < a. Since 2 D0, D fE C c 1 for some c 2 C Then fE; ; 2g is a

basis for D0, so by Saito’s criterion fE; ; C 2g is a basis for D.
m D a. Then D fE Cc1 1 Cc2 2, where c1; c2 constants, not both zero. If
c2 ¤ 0, then fE; 1; g is a basis for D0, so by Saito’s criterion fE; C 1; g is
a basis for D.
m D a C 1. Then D fE C c1 1 C L2 2, where c is a constant and L2
is a linear form, not both zero. If c1 D 0 then L2 2.C/ 2 hCi. Since C is
irreducible, then 2.C / 2 hCi, and so 2 2 D0 is of degreea < m; aC2. This
is inconsistent with the Hilbert series of D0. So c1 ¤ 0, and so fE; ; 2g is a

basis for D0, and again by Saito’s criterion fE; ; C 2g is a basis for D.
m D a C 2. Then D f1E C c1 1 C g1 2, where c1 is a constant and g1
is a quadratic form, not both zero and D f2E C c2 1 C g2 2, where c2 is a

constant and g2 is a quadratic form, not both zero. If c1 D c2 D 0, then either

gi D c0
iC; c0

i ¤ 0; i D 1; 2 or 2 2 D0, a contradiction because deg. 2/ D a).
Therefore c02 c01 2 D0 \ ES D f0g, contradicting the fact that ; are

minimal generators of D0. So if c2 ¤ 0, then fE; ; 2g is a basis for D0, and
so by Saito’s criterion fE; ; C 2g is a basis for D.

m > a C 2. Then D f1E C c1 1 C g1 2, where c1 is a constant and g1
is a polynomial, not both zero and D f2E C c2 1 C g2 2, where c2 is a

constant and g2 is a quadratic form, not both zero. If c1 D c2 D 0, then

g1 D Cg01; g01 ¤ 0 and g2 D c02C, c02 nonzero constant, and the argument used

above yields a contradiction. So c1 ¤ 0 or c2 ¤ 0. Applying Saito’s criterion
yields the desired result.

Case 2: k D 2m C 1; m D a. By Lemma 3.8,

HS.D0;t/ D
2tmC1

.1 t/3 :

This implies there exist degree m C 1 minimal generators ; 2 D0. Suppose

fE; 1; 2g is a basis for D0 where E is the Euler derivation and deg. 1/ D m,
deg. 2/ D m. So D f1E C L1 1 C K1 2 and D f2E C L2 1 C K2 2, where

L1; L2;K1;K2 are linear forms, and for any i D 1;2, Li;Ki cannot be simultaneously

zero. Hence L2 L1 L2f1 L1f2/E D L2K1 L1K2/ 2 2 D.C/.
But 2 is in D.C0/ and 2.C / … hCi, else D0/m is nonzero, which is inconsistent
with the Hilbert series. Hence L2K1 L1K2 D cC, where c is a constant.

If c D 0, then L1 D uK1; L2 D uK2; u ¤ 0 or L1 D vL2; K1 D vK2; v ¤ 0,
where u; v are constants, and that K2f1 D K1f2 and L2f1 D L1f2. If L1 D uK1,
L2 D uK2; u ¤ 0, and K1 ¤ ct K2 we get D K1.gE C u 1 C 2/. Since

K1 ¤ 0 else L1 D 0) then C/ 2 hCi implies gE C u 1 C 2/.C / 2 hCi,
yielding a degree m derivation in D.C/, a contradiction. If K1 D ct K2, then
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and are not minimal generators, also a contradiction. If c ¤ 0, then we find
detOEE; ; D cC detOEE; 1; 2 and Saito’s criterion shows that fE; ; g is a basis

for D.C/.
Case 3: k D 2m C 1; m ¤ a. By Lemma 3.8,

HS.D0;t/ D
taC2 C 2tmC1 tmC2

.1 t/3 :

Sincem ¤ a, there is no cancellation in the numerator, henceD0 cannot be free.

Lemma 3.10. Let C0; C; C00/ be a quasihomogeneous triple, with jC \ C0j D
jC00j D k. If C is free, then

1) If k D 2mand exp.C/ D f1; m;aC2g, thenC0 is freewithexp.C0/ D f1; m;ag.
2) If k D 2mC1 and exp.C/ D f1; mC1; mC1g, then C0 is free with exp.C0/ D

f1; m;mg.
3) If k D 2mC1 and exp.C/ D f1; mC1; aC1g with a ¤ m, then C0 is not free.

Proof. As in Lemma 2.13, apply Hom. ;OP2/ to the exact sequence

0 D00 2/
C

D0 i OL. k/ 0:

Since i OL. k/ is supported on the conic C, Hom.i OL. k/; OP2/ D 0. The
assumption that D0 is free implies that Ext1

S D0; OP2/ D 0. This yields an exact
sequence:

0 D_0 D0_0 .2/ Ext1S.i OL. k/; OP2/ 0:

AsD0 free withknown exponents, soalso isD_0 and the Hilbert series is known. The
proof of Lemma 3.6 provides a free resolution of i IE, which allows us to compute
Ext1S i IE;S/. Combining everything yields the Hilbert series ofD0_0 and the result
follows as in the previous analysis.

4. Freeness of CL arrangements is not combinatorial

We close with a pair of examples which show that in the CL case, Terao’s conjecture
that freeness is a combinatorial invariant of an arrangement is false.

Example 4.1. Let C1 be given by

C1 D fy
2

C xz D 0g;

C2 D fy
2

C x2
C 2xz D 0g;

L1 D fx D 0g:
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L1 is tangent to both C1 and C2 at the point P D .0 W 0 W
1/; C1 and C2 have two

other points in common. Adding the line L D fy D 0g passing through P to C1
yields a quasihomogeneous, freeCL arrangement C, withD0.C/' S. 2/°S. 3/:

The line L0 D fx 13y D 0g passes through P, and misses the other singularities
of C1. The CL arrangement C0 D L0 [ C1 is combinatorially identical to C, but C0

is not quasihomogeneous, and not free:

0 S. 9/ S. 8/3 D0.C0/ 0:

Even for CL arrangements with ordinary singularities, there are counterexamples:

Example 4.2. Let A be the union of the five smooth conics:

C1 D x 3z/2 C y 4z/2 25z2
D 0;

C2 D x 4z/2 C y 3z/2 25z2
D 0;

C3 D x C 3z/2 C y 4z/2 25z2
D 0;

C4 D x C 4z/2 C y 3z/2 25z2
D 0;

C5 D x 5z/2 C y2 25z2
D 0:

A has 13 singular points, all ordinary. At 10 of these points only two branches of A
meet, while at the points .0 W 0 W 1/; .1 W i W 0/; .1 W i W 0/, all five conics meet. The
Milnor and Tjurina numbers agree at all singularities except .0 W 0 W

1/, where D 15
and D 16. Adding lines L1;L2; L3 connecting .0 W 0 W 1/; .1 W i W 0/;.1 W i W 0/
yields a free CL arrangement C, with D0.C/ D S. 6/2.
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Next, let A0 be the union of the following five smooth conics:

C1 D x2
C 8y2

C 21xy xz 8yz D 0;

C2 D x2
C 5y2

C 13xy xz 5yz D 0;

C3 D x2
C 9y2 4xy xz 9yz D 0;

C4 D x2
C 11y2

C xy xz 11yz D 0;

C5 D x2
C 17y2 5xy xz 17yz D 0:

A0 is combinatorially identical toA, but at the points .0 W 0 W 1/; .1 W 0 W 1/; .0 W 1 W 1/
where all the branches meet, D 15 and D 16. Adding the lines connecting these

three points yields a CL arrangement C0 which is combinatorially identical to C but
not free; the free resolution of D0.C0/ is:

0 S. 8/2 S. 7/4 D0.C0/ 0:

As was pointed out by the referee, the complements of arrangements A and A0

are homeomorphic via a Cremona transformation centered on the three multiple
intersection points) to the complements of a pair of line arrangements consisting of
eight lines in general position. The moduli space of such objects is connected, so

the complements are rigidly isotopic, hence homeomorphic. So freeness is also not
a topological invariant.

Concluding remarks

1) As noted in §1.2, for the complement X of a CL arrangement in P2 the Betti
numbers h1.X/ and h2.X/ depend only on the combinatorics, and so if X is
quasihomogeneous and free, there is a version of Terao’s theorem, which we
leave for the interested reader.

2) In the examples above, the Jacobian ideals are of different degrees, so are not
even members of the sameHilbert scheme. Do there exist CL arrangementswith
isomorphic intersection poset and singularities which are locally isomorphic,
one free and onenonfree? Do thereexist counterexamples whereall singularities
are quasihomogeneous?

3) As shown by Example 2.3, quasihomogenity is not a necessary condition for
freeness of CL arrangements. However, without this assumption, the sequences

in Propositions 2.8 and 3.8 may not be exact, which means that any form of
addition–deletion will require hypotheses on higher cohomology.

Acknowledgments. Macaulay2 computations were essential to our work. We also
thank an anonymous referee for many useful suggestions, in particular for pointing
out that we should remove one of our original conditions that C has only ordinary
singularities).
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