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Complete surfaces with positive extrinsic curvature in product
spaces

José M. Espinar, José A. Gálvez and Harold Rosenberg

Abstract. We prove that every complete connected immersed surface with positive extrinsic
curvature K in H2 R must be properly embedded, homeomorphic to a sphere or a plane
and, in the latter case, study the behavior of the end. Then, we focus our attention on surfaces
with positive constant extrinsic curvature K-surfaces). We establish that the only complete
K-surfaces in S2 R and H2 R are rotational spheres. Here are the key steps to achieve this.
First height estimates for compactK-surfaces in a generalambientspaceM2 Rwith boundary
in a slice are obtained. Then distance estimates for compact K-surfaces and H-surfaces) in
H2 R with boundary on a vertical plane are obtained. Finally we construct a quadratic form
with isolated zeroes of negative index.

Mathematics Subject Classification 2000). 53C42, 53C40.

Keywords. Homogeneous product spaces, positive extrinsic curvature, Hadamard–Stoker type
theorem, height estimates, classification of K-surfaces.

1. Introduction

In 1936, J. Stoker [S] generalized the result of J. Hadamard [H] that a compact strictly
locally convex surface in Euclidean 3-space R3 is homeomorphic to the sphere.
J. Stoker showed that a complete strictly locally convex immersed surface in R3 must
be embedded and homeomorphic to the sphere or plane. In the latter case, the surface

is a graph over a planar domain. Today, this result is known as the Hadamard–Stoker
Theorem. Strict convexity of the surface is equivalent in R3 to positive Gaussian
curvature. Note that in R3, the Gauss equation for a surface says that the Gauss

curvature, i.e., the intrinsic curvature K.I/, and the Gauss–Kronecker curvature, i.e.,

the extrinsic curvature K, are equal. In space forms, the situation is close since both
curvatures are related by a constant.

M. Do Carmo and F. Warner [CW] extended Hadamard’s theorem to hyperbolic
3-space H3, assuming the surface is compact and has positive extrinsic curvature.

J. M. Espinar and J.A. Gálvez were partially supported by Ministerio de Educación y Ciencia Grant No.
MTM2007-65249 and Junta de Andalucía projects FQM325 and P06-FQM-01642.



352 J. M. Espinar, J. A. Gálvez and H. Rosenberg CMH

The complete case in H3 was treated by R. J. Currier in [C] and it is interesting to
remark the difference with the euclidean case. Currier’s theorem says that a complete
immersed surface in H3 whose principal curvatures are greater than or equal to one
is embedded and homeomorphic to the sphere or plane. And we cannot expect a

better result; it is easy to construct examples of complete embedded flat surfaces, i.e.,

K D 1 in H3, homeomorphic to a cylinder.
Recently, the study of surfaces in product spacesM2 R, whereM2 is a Riemannian

surface andRthe real line, hasundergoneconsiderabledevelopment. U.Abresch
and H. Rosenberg [AR1] defined a holomorphic quadratic differential on constant
mean curvature surfaces in the homogeneous 3-manifolds. This enabled them to
generalize Hopf’s theorem to these spaces: immersed constant mean curvature spheres
are rotational and embedded. Aledo, Espinar and Gálvez associated a holomorphic
quadratic differential to constant Gaussian curvature surfaces in S2 R and H2 R,
[AEG1]. This enabled them to prove the same Hopf type theorem for immersed
constant Gaussian spheres in these product spaces. Also, they classified the complete
surfaces with constant Gauss curvature, and established Liebmann and Hilbert type
theorems for these surfaces. More precisely:

Liebmann type theorem. There exists a unique complete surface of constant Gaussian

curvature K.I/ > 1 in S2 R up to isometry), and a unique complete surface
of constant Gaussian curvature K.I/ > 0 in H2 R. In addition, these surfaces are
rotationally symmetric embedded spheres.

Hilbert type theorem. There is no complete immersion of constant Gaussian
curvature K.I/ < 1 into H2 R or S2 R.

Also, there exist complete immersions of every constant curvature K.I/ 1
into H2 R. In [AEG3] the authors prove that there are no complete immersions
with constant Gaussian curvature0 < K.I/ < 1inS2 R. The existence of complete
immersions with constant Gaussian curvature 1 K.I/ < 0 in S2 R remains
open.

In contrast, the case of extrinsic curvature has been rarely considered in these

spaces see [CR]). We note that the classification of surfaces of constant Gaussian
curvature does not help us since the intrinsic and extrinsic curvature differ by the
sectional curvature function in a product space.

We center our attention on complete surfaces with positive non constant and

constant) extrinsic curvature in H2 R, nonetheless some of our results for constant
extrinsic curvature also work in a more general setting, as we will point out.

One of the main results of this paper is that only embedded rotational spheres can
occur when K is a positive constant, see Theorem 7.3.

We organize the paper as follows. In Section 2 we introduce the notation and

definitions we need. In Section 3 we establish the following Hadamard–Stoker type



Vol. 84 2009) Complete surfaces with positive extrinsic curvature in product spaces 353

theorem in H2 R the notion of simple end will be given later).

Theorem 3.1. Let S be a complete connected immersed surface with K > 0 in
H2 R. Then S must be properly embedded and bounds a strictly convex domain in
H2 R. Moreover, S is homeomorphic to S2 or R2. In the latter case, S is a graph
over a convex domain of H2 f0g or S has a simple end.

This result suggests that surfaces with positive extrinsic curvature in H2 R
behave like surfaces withK > 0 in R3, rather than surfaces withK > 0 in H3. This
is because there are many totally geodesic foliations of H2 R by vertical planes
which are isometric to R2.

In Section 4 we construct complete embedded surfaces with positive extrinsic
curvature withasimpleend inH2 R. InSection5we classify thecomplete revolution
surfaces of positive constant extrinsic curvature in H2 R which are topological
spheres. Hereafter we will refer to surfaces with positive constant extrinsic curvature
as K-surfaces.

In Section 6 we establish vertical height estimates for K-surfaces inM2 R, M2
a Riemannian surface. More precisely,

Theorem 6.1. Let W S M2 R be a compact graph on a domain M2,
with positive constant extrinsic curvature K and whose boundary is contained in the
slice M2 f0g. Let k be the minimum of the Gauss curvature on M2. Then,
there exists a constant cK depending only on K and k) such that jh.p/j cK for
all p 2 S h is the height function on the graph).

Also, horizontal height or distance) estimates are obtained,

Theorem 6.2. Let S be a compact embedded surface in H2 R, with extrinsic
curvature a constantK > 0. Let P be a vertical plane in H2 R and assume that
@S P. Then the distance from S to P is bounded; i.e., there is a constant d,
independent of S, such that

dist.q; P/ d for all q 2 S.

We remark that the proof of this result works for H-surfaces in H2 R with
H > 1=2, thus this result, together with the vertical height estimates given in [AEG2]
forH-surfaces withH > 1=2, generalizes Theorem 1.1 in [NR] forH-surfaces with
H > 1=2. More precisely,

Theorem 7.2. ForK > 0 or H > 1=2) there is no properly embedded K-surface

H-surface) in H2 R, with finite topology and one end.

Finally, in Section 7 we classify the complete immersed K-surfaces in H2 R
and S2 R.
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Theorem 7.3. The complete immersions with positive constant extrinsic curvature

K in H2 R and S2 R are the rotational spheres given in Section 5.

2. Notation

In Sections 2, 3 and 4 we will use the Poincaré disk model of H2. In Section 5 we
will work in the hyperboloid of one sheet model of H2 in the Lorentz–Minkowski
3-space L3. We make this precise in Section 5.

In the Poincaré model, H2 is represented as the domain

D D °z x; y/ 2 R2
W jzj

2
D x2

C y2 < 1

endowed with the metric g 1 D 4jdzj2
.1 jzj2/2

The complete geodesics in this model are given by arcs of circles or straight lines
which are orthogonal to the boundary at infinity

S11 D °z 2 R2
W jzj D 1 :

Thus, the asymptotic boundary of a set H2 is

@1 D cl. / \ S11;

where cl. / is the closure of in °z 2 R2 W jzj 1
We orient H2 so that its boundary at infinity is oriented counter-clockwise. Let

be a complete oriented geodesic in H2, then

@1 D ° ; C ;

where D limt! 1 t/ and C D limt!C1 t/. Here t is the arc length
along We will often identify a geodesic with its boundary at infinity, writing

D ° ; C : 2.1)

Definition 2.1. Let 1; 2 2 S11 We define the oriented geodesic joining 1 and 2,

1; 2/, as the oriented geodesic from 1 2 S11 to 2 2 S11 Here we represent
points on the circle as real numbers angles) by their image under the exponential
map.

We observe that given an oriented geodesic D ° ; C inH2, thenH2 n has

two connected components. We will distinguish them using the following notation,

Definition 2.2. Let J be the standard counter-clockwise rotation operator. We call
exterior set of inH2, extH2. / the connected component ofH2 n towards which

J 0 points. The other connected component of H2 n is called the interior set of
in H2 and denoted by intH2. /
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On the other hand, we consider the product space H2 R represented as the
domain

H2 R D ° x; y; t/ 2 R3
W x2

C y2 < 1

endowed with the product metric h ; i D g 1 C dt2. In addition, we denote by

W H2 R H2 f0g the usual projection and @

@t the gradient of the function t in
H2 R.

Given a complete oriented geodesic in H2 f0g, we will call R a vertical
plane of H2 R and we will call a slice H2 f g a horizontal plane. Note that a

vertical plane is isometric to R2 and a horizontal plane is isometric to H2.
The notions of the interior and exterior domains of a horizontal oriented geodesic

extend naturally to vertical planes.

Definition 2.3. For a complete oriented geodesic in H2 f0g H2 we call,
respectively, interior and exterior of the vertical plane P D R the sets

intH2 R.P/ D intH2. / R and extH2 R.P / D extH2. / R:

We will often use foliations by vertical planes of H2 R. We now make this
precise.

Definition 2.4. Let P be a vertical plane in H2 R and let t/ be an oriented
horizontal geodesic inH2 f0g, with t being the arc length along .0/ D p0 2 P,

0.0/ orthogonal to P at p0 and t/ 2 extH2 R.P / for t > 0. We define the
oriented foliation of vertical planes along denoted by P t /, to be the vertical
planes orthogonal to t/ with P D P .0/.

To finish, we will give the definition of a particular type of curve in a vertical
plane.

Definition 2.5. Let P be a vertical plane and let be a complete embedded convex
curve in P. We say that is vertical in P) if there exist a point p 2 called a

vertical point, and a vertical direction v D
@

@t
such that the half-line pCsv, s > 0,

is contained in the convex body bounded by in P cf. Figure 1).

3. A Hadamard–Stoker type theorem

This section is devoted to the proof of a Hadamard–Stoker type theorem in H2 R.
Let us consider a surface S and

W S H2 Ran immersion with positive extrinsic
curvature K D det.II/= det.I/, where I and II are the first and second fundamental
forms of S.
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P

H R

p0

Figure 1. Definition of vertical point.

Observe that the definition of K does not depend on the local choice of a unit
normal vector field N. Nevertheless, N can be globally chosen sinceK > 0, that is,
II is definite. From now on we will identify S/ with S.

We begin with an elementary, but useful, result.

Proposition 3.1. Let S be an immersed surface with positive extrinsic curvature in
H2 R. Let P be either a horizontal or a vertical plane in H2 R. If S and P
intersect transversally then each connected component C ofS\P is a strictlyconvex
curve in P.

Proof. Let us parametrize C as t/, where t is the arc length. Then since P is a

totally geodesic plane, we have

0

0

DxrrP
0

0

D rS
0

0

C II. 0; 0/N;

whererP
xr and rS are the connections on P, H2 R and S respectively. Since

the extrinsic curvature is positive we have II. 0; 0/ ¤ 0. Thus rP
0

0 ¤ 0, that is,
the geodesic curvature of C vanishes nowhere on P.
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Definition 3.1. Let S H2 R be a surface. We say that S has a simple end if the
boundary at infinity of S/ H2 f0g H2 is a unique point 0 2 S11 and, in
addition, for all 1; 2 2 S11 nf 0g the intersection of the vertical plane 1; 2/ R
and S is empty or a compact set.

Now, we can establish the main theorem of this section.

Theorem 3.1. Let S be a complete connected immersed surface in H2 R with

K > 0. Then S must be properly embedded and bounds a strictly convex domain in
H2 R. Moreover, S is homeomorphic to S2 or R2. In the latter case, S is a graph
over a convex domain of H2 f0g or S has a simple end.

Proof. We first distinguish two cases, depending on the existence of a point on S
with horizontal unit normal, or equivalently, depending on the existence of a vertical
tangent plane.

Suppose there is no point p 2 S with a vertical tangent plane at p. We will show
that S is a graph and homeomorphic to R2.

Let P be a vertical plane which meets S transversally. Let be an oriented
horizontal geodesic orthogonal to P and consider the foliation P t/ of vertical
planes along see Definition 2.4). Now, if P t/ \ S ¤ ;, using that there is no

point p 2 S with a vertical tangent plane at p and Proposition 3.1, each connected
component of P t/\S is a non-compact complete embedded strictly convex curve.
Otherwise, if a connected component has a self-intersection or it is compact, then it
has a point with a vertical tangent line, which means that S has a point with a vertical
tangent plane at that point cf. Figure 2).

Let C.0/ be an embedded component of P \ S D P .0/ \ S. Let us consider
how C.0/ varies as t increases to C1. No two points of P t0/ \ S can join at

some t0 > 0, since this would produce a vertical tangent plane at some point. So
the component C.0/ of P .0/ varies continuously to one embedded curve C.t/ of
P t/ \ S as t increases. The only change possible is that C.t/ goes to infinity as t
converges to some t1 and disappears in P t1/.

Similarly C.0/ varies continuously to one embedded curve of P t/ \ S as

t 1. Hence S connected yields P t/ \ S is at most one component for
all t So, we conclude that S is a vertical graph. To finish, we observe that P t/\ S
is empty or homeomorphic to R for each t hence S is topologically R2.

Now, for the rest of the proof we suppose that there is a point p0 2 S with a

vertical plane P tangent at p0. We will show that S is homeomorphic to S2 or S is
homeomorphic to R2 and has a simple end.

By assumption, it is easy to see that there exist neighborhoods p0 2 U S and

V P such that U is a horizontal graph over V Also, because of K.p0/ > 0, S is
strictly locally convex at p0, hence we can assume that U S is on one side of P
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P

H R

Figure 2. No self-intersection.

cf. Figure 3). Let P t/ be the foliation of vertical planes along a horizontal
geodesic with .0/ D p0 and 0.0/ orthogonal to P. Note that, up to an isometry, we
can suppose that U n fp0g extH2 R.P /, p0 2 H2 f0g and D f 2; 3 2g.

From Proposition 3.1 and the fact that locally S is a graph, there exist " > 0 such

that P t/\U are embedded compact strictly convex curves for all 0 < t < ". For
0 < t < ", let C.t/ denote the connected component of P t/\ S which coincides
with P t/\ U cf. Figure 4). Perhaps P t/ \S has other components distinct
from C.t/ for each 0 < t < ", but we only care how C.t/ varies as t increases. We
also denote by C.t/ the continuous variation of the curves P t/ \ S, when t > ".

We distinguish two cases:

A. C.t/ remains compact as t increases.

By topological arguments it is easy to show that, if C.t/ remains compact and

non-empty as t increases, then the C.t/ are embedded compact strictly convex
curves or a point.

A.1. If C.t/ remains compact and non-empty as t C1, then since S is con¬

nected, S must be embedded. In addition, because C.0/ is a point and C.t/ is



Vol. 84 2009) Complete surfaces with positive extrinsic curvature in product spaces 359

V

p0

U

Figure 3. S is strictly locally convex at p0.

P
H R

P t/

p0

C.t/

Figure 4. C.t/ are embedded compact strictly convex curves for all 0 < t < ".

homeomorphic to a circle for every positive t S is homeomorphic to R2.

Now, from the fact that C.t/ remains compact, then

@1 S/ D f3 2g S11

and S has a simple end cf. Figure 5).
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P

p0

H R

P t/
C.t/

P

p0

H R

Figure 5. C.t/ remains compact as t increases.

A.2. If there exists Nt > 0 such that C.t/ is compact for all 0 < t < Nt and the
component C.t/ disappears for t > Nt then, using that S is connected, S is
either compact, embedded and topologically S2, or non compact, embedded
and topologically R2. That is, if C.t/ converges to a compact set as t converges

to Nt then C.Nt/ must be a point because our surface has no boundary) and S is
a sphere cf. Figure 6). Otherwise the C.t/ drift off to infinity as t converges
to Nt and S is topologically a plane.

P

p0

H R

P t/

C.t/

P

p0

H R

Figure 6. C.t/ goes to a point.

Wenowshowthat in the latter case, the vertical projection of S has asymptotic
boundary one of the two points at infinity of P Nt//.



Vol. 84 2009) Complete surfaces with positive extrinsic curvature in product spaces 361

Without lost of generality we can assume that P Nt/ D R where D
° ; C Consider the vertical plane Q D R. Let zC be the component

of Q \ S containing p0. First observe that zC is compact, otherwise it would
intersect the line Q \P Nt/ in two points, which is not the case. Thus, we can

consider the disk Dz bounded by Cz on S.

Let Q t/ denote the foliation by vertical planes along Q .0/ D Q. There

exists t0 we can assume t0 < 0) satisfyingQ t0/ touches Dz on one side of Dz

by compactness. Let q0 2 Dz\Q t0/ be the point where they touch. Consider

the variation zC.t/ of q0 on S \Q t/ from t D t0 to infinity. Then, zC.t/ is a

convex embedded curve for t in a maximal interval t0; Nt0/ with 0 < Nt0 1.
Hence, S is foliated by the zC.t/, zC D zC.0/ D Q \ S and 62

@1 S/
because S is on one side of Q t0/.

Now, we will show that @1 S/ D °
C Let / denote the complete

horizontal geodesic starting at p0 and making an angle with at p0. Assume

/ enters the side of Q containing C, for 0 < < 2. Let N be the value

of such that N/ is asymptotic to C. Let Q. / D / R. For each

0 < N, we have S \ Q. / is one connected embedded compact curve
C0. / The proof of this is the same as the previous one for zC. Notice that each

C0. / is non empty, since p0 2 C0. /
Now C0. N/ can not be compact, otherwise S could not be asymptotic to the
plane P Nt/, a contradiction.

In order to complete the proof of the Case A.2 we show that S has a simple
end. Observe that C0. / is compact, N < < 2because S D S0 t<tN

C.t/.
Moreover, C0. / Dz, 2 < < 0, and Dz is compact. Thus, it is easy to
conclude that S has a simple end.

Thus we have proved that in Case A.2, S is either a properly embedded sphere

or S is a properly embedded plane with a simple end at C cf. Figure 5, picture
on the right).

B. C.t/ becomes non-compact.

Let Nt > 0 be the smallest t with C.Nt/ non-compact, C.Nt/ the limit of the C.t/
as t Nt C.Nt/ is an embedded strictly convex curve in P Nt/.

Claim 1. We now show that C.Nt/ is not vertical see Definition 2.5).

Let us assume that C.Nt/ is vertical, and let q 2 C.Nt/ be a vertical point cf.
Figure 7). First of all, note that zS D S0 t Nt

C.t/ S is embedded. Let
q0 D q/ 2 H2 f0g and let us consider p0q0 the complete horizontal
geodesic joining p0 and q0. LetQ D p0q0 R, and consider r0 D Q\P .0/
and rNt D Q \ P Nt/. Note that r0 and rNt are parallel lines in Q. Also,
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P
H2

p0 Nt/

q

Nt/

H2

Figure 7. C. Nt/ becomes vertical.

Q DQ\ Sz is a non-compact embedded strictly convex curve in Q such that

r0 is tangent to Q at p0 2 Q and Q \ rNt
is exactly one point, since C.Nt/ is

vertical. But this is a contradiction because Q is a strictly convex curve in Q,
which is isometric to R2, and it must intersect rNt twice.

Thus, C.Nt/ is not vertical, and we claim that

Claim 2. @1 C.Nt// is one point.

Let us denote by D.t/ the convex body bounded by C.t/ in P t/ for each

0 < t < Nt Thus, the limit, D.Nt/, of D.t/ as t increases to Nt is an open convex
body bounded by C.Nt/ in P Nt/, which is isometrically R2. If @1 C.Nt// has

two points, the only possibility is that C.Nt/ is vertical, which is impossible by
Claim 1 cf. Figure 7)

Let i0 > 0 and ti0 < Nt such that P.ti0/ D i0/ R where i0/ D
fi0; i0g. We denote by S1z D S0 t ti0 C.t/ S and note that S1z is

connected and embedded.

Let us consider the complete horizontal geodesic given by

i0; s/ D fi0; i0 C sg

and the vertical planeQ.s/ D i0;s/ R, foreachs 0. So, Q.0/ D P ti0/
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and Q.0/\ zS1 D C.ti0/ is an embedded compact strictly convex curve. Let us

consider how s/ D Q.s/ \ S varies as s increases to C i0. At this point,
we have two cases:

B.1. s/ remains compact for all 0 s < C i0.
This case, letting i0 0, corresponds to Case A.1 cf. Figure 8).

H2 R

P

p0 Nt/

H2

Figure 8. s/ remains compact.

So, without lost of generality we can assume that P Nt/ D Nt/ R where

Nt/ D f0; g and cf. Figure 9)

@1 C.Nt// D f0g: 3.1)

P

p0

H2 R

Nt/

H2

Figure 9. S has a simple end.
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B.2. s/ becomes non-compact.

Let 0 < Ns < C i0 be the smallest s with Ns/
non-compact,

Ns/
is the

limit of the s/ as s Ns. So, without lost of generality we can assume that

P Nt/ D Nt/ R where Nt/ D f0; g and

@1 C.Nt// D f0g: 3.2)

Also,
@1 Ns// D f i0 C Nsg;

otherwise it must be fi0g which contradicts 3.2).

Clearly i0 < Ns. For each i i0 we consider the complete horizontal geodesic
given by i/ D fi; C Ns i0 ig and the vertical plane T.i/ D i/ R.
Let us denote by zS2 D S0 s Ns 2i0 s/ S and note that zS2 is connected

and embedded, so, zS D zS1[ zS2 S is connected and embedded. For each i,
0 < i i0, E.i/ D T.i/\ zS is a strictly convex compact embedded curve
in T.i/. As i 0, these curves converge to a convex curve in T.0/ with
@1 E.0// the two points f0; i0 C Nsg. This contradicts Claim 2. Hence

s/ can not become non-compact and we are in the Case B.1.

Finally, S bounds a strictly convex body follows from Proposition 3.1, and the
fact that every geodesic in H2 R lies in a vertical plane, i.e., let p and q be two
points in the domainW ofH2 Rbounded by†, such that the mean curvature vector
of † points into this domain W Let P be a vertical plane containing p and q. The
intersection of P with † is convex in P, hence the geodesic of P which is also an
ambient geodesic), is contained in W Thus W is convex.

This completes the proof of Theorem 3.1.

4. Complete surfaces in H2 R withK > 0 and a simple end

This section is devoted to the construction of some examples of complete embedded
surfaces with positive extrinsic curvature and a simple end.

Note that if S has a simple end, then for each t 2 R where S \ H2 ftg/ is not
compact, the intersection is a convex curve in H2 ftg with asymptotic boundary
one point. Also, the point at infinity of each horizontal section is the same, that is,
@1 S \ H2 ftg/ D °

N 2 S11
Bearing this in mind, we fix a point N 2 S11 say N D 0 .1; 0/, and consider

the 1-parameter isometry group given by

Ft.x;y;z/

D 1 C
4.x 1/

4 C 4ty C t2..x 1/2 C y2/;
4y C 2t..x 1/2 C y2/

4 C 4ty C t2..x 1/2 C y2/
;z :
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Here, the orbit of any point p 2 H2 R is a horocycle Hp contained in a slice such

that @1 Hp/ D f Ng:

LetP be a plane orthogonal to every orbit, sayP D f.x; y; z/ 2 H2 R W y D 0g.
We parametrize P as

x;y/ D
ex 1
ex C 1

; 0; y

in such a way that its induced metric is dx2 C dy2.
Now, let y/ D y/;y/ be a curve in the vertical plane P for a suitable

function and consider the helicoidal surface S given by f y; t/ D Ft. y//.
Then, it is easy to check that the extrinsic curvature of S is

K D
00.y/

.1 C 0.y/2/2
:

Thus, we obtain

Proposition 4.1. Let I D y1; y2/ be an open interval where 1 y1 < y2

C1, and
W I R a function such that 00.y/ > 0 for all y 2 I, limy!y1 y/ D

limy!y2 y/ D C1. Then the surface S is a properly embedded surface with
positive extrinsic curvature and a simple end cf. Figure 10).

H2 R

Figure 10. Example of a surface with a simple end.
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5. Complete revolution surfaces of constant positive extrinsic curvature

In this section we focus our attention on the study of the complete revolution surfaces

of positive constant extrinsic curvature in H2 R.
Let us consider the Lorentz–Minkowski 4-space L4 with induced metric dx21 C

dx22 C dx23 C dx24 Here, we consider H2 R as the submanifold of L4 given by

H2 R D f.x1; x2; x3;x4/ 2 L4
W x2

1 C x2
2 C x2

3 D 1; x1 > 0g:

It is well known that the special orthogonal group SO.2/ can be identified with
the subgroup of isometries of H2 R rotations) which preserves the orientation and
fixes an axis fpg R, with p 2 H2 f0g.

Up to isometries, we can assume that the axis is given by f.1; 0; 0/g R. In this
case, the set P D f.x1;x2; x3; x4/ 2 H2 R W x2 0; x3 D 0g intersects every
SO.2/-orbit once. Thus, every revolution surface with that axis can be obtained under
the SO.2/-action of a curve on P.

Let t/ D coshk.t/; sinh k.t/;0;h.t// P, where k.t/ 0 and t the arc
length of that is, k0.t/2

C h0.t/2
D 1. If t/ generates a complete surface with

positive extrinsic curvature then, from Theorem 3.1, this revolution surface S must
be topologically a sphere or a graph on an open domain in H2, and so t/ intersects
the axis at least once. In fact, the curve intersects the axis orthogonally; otherwise
the revolution surface would not be smooth. But, from the vertical height estimates

of Section 6, there is no complete revolution K-surface with one end.
Now, S can be parametrized by

t; v/ D cosh k.t/;sinh k.t/ cos v; sinh k.t/sin v; h.t//:

A straightforward computation shows that the principal curvatures of S are given
by

1 D k0h00 k00h0; 5.1)

2 D h0 coth k; 5.2)

and so its extrinsic curvature is

K D h0 coth k.k0h00 k00h0/;

where 0 denotes the derivative with respect to t Since k02 C h02 D 1, we have
k0k00 C h0h00 D 0 and so

K D k00 coth k: 5.3)

Let us assume that K is a positive constant, then

k0/2 D C1 2K ln cosh k;
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where C1 is a constant to be determined by the boundary conditions.
As must cut the axis orthogonally, we can assume that the lowest point occurs

at t D 0. Then k.0/ D 0 and k0.0/ D 1, thus C1 D 1, that is

k0/2 D 1 2K ln cosh k: 5.4)

Since the lowest point occurs at t D 0, h0.t/ > 0 and hence, by 5.2), 2.t/ > 0
for sufficiently small t But 2 must have the same sign, so h0.t/ > 0for all t Hence,

h increases as t increases and S must be embedded).
Suppose z is the highest point of S, then k.tz/ D 0 for some tz > 0. Hence the

domain of t is OE0; tz and

k.0/ D k.tz/ D 0; h0.0/ D h0.tz/ D 0; k0.0/ D 1; k0.tz/ D 1:

On theother hand, by 5.3), k00 < 0which implies that k0 decreases from k0.0/ D 1 to
k0.tz/ D 1. So, ast increases from 0 to tz, k first increases from 0 to kmax D k.tmax/,

for some tmax 2 OE0; tz then decreases from kmax to 0.
Thus, k must increase from 0 to tmax and k0.tmax/ D 0. So, from 5.4), one obtains

k.tmax/ D cosh 1 exp .1=2K/.
Now, let u D k0, where 1 u 1, then by equation 5.4) we have

2K
; 1 u 1: 5.5)k D cosh 1 exp

1 u2

Since u D k0, du
dt D k00 D K tanh k, we have by 5.5)

dh
du D

1

K

p1 u2

r1 exp 1 u2
K

:

Then

h D
1

Z
u

K 1

p1 u2

r1 exp 1 u2
K

du C C; 1 u 1; 5.6)

where C is a real constant.
Also, we have

hmin D C;

hmax D
1

K
Z

1

1

p1 u2

r1 exp 1 u2
K

du C C
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and

h0 D
1

K
Z

0

1

p1 u2

r1 exp 1 u2
K

du C C:

Therefore, from 5.5) and 5.6), as u decreases from 1 to 1, h increases from
hmin to hmax, and k first increases from 0 to kmax then decreases from kmax to 0. Also,
S must be symmetric about H2 fh0g. Thus,

Proposition 5.1. Let S be a complete immersed sphere of revolution about the
vertical line f1;0;0g R) in H2 R with constantK > 0, given by

K.u;v/ D cosh k.u/; sinh k.u/ cos v;sinh k.u/ sin v;h.u//;

where u/ D cosh k.u/; sinh k.u/; 0; h.u// is the generating curve of S.
Then, S must be embedded and the generating curve is given by

k.u/ D cosh 1 exp
1 u2

2K
; 5.7)

h.u/ D
1

Z
u

K 1

p1 u2

r1 exp 1 u2
K

du C C; 5.8)

where 1 u 1 and C is a real constant cf. Figure 11).
Also, H2 fh0g, where

h0 D
1

K
Z

0

1

p1 u2

r1 exp 1 u2
K

du C C;

divides S into two upper and lower) symmetric parts.

Remark 5.1. Let us observe that the above analysis is the same, in spirit, as in [CR]
for the case of revolution surfaces in S2 Rwith constant positive extrinsic curvature.
Moreover, we will need that result, so we will state it here:

Proposition 5.2. Let S be a complete immersed sphere of revolution about the
vertical line f1;0;0g R) in S2 R R4 with constantK > 0, given by

K.u;v/ D cos k.u/;sin k.u/ cos v; sin k.u/ sin v;h.u//;

where u/ D cos k.u/; sin k.u/;0;h.u// is the generating curve of S.
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1

3

2

1

K D p0;5

K D 1

Figure 11. Profile curve of a rotational example.

Then,

i) S must be embedded,

ii) S stays inD R, whereD denotes theopen hemisphere of S2 of center .1;0;0/,

iii) the generating curve is given by

k.u/ D cos 1 exp
1 u2

2K
; 5.9)

h.u/ D
1

Z
u

K 1

p1 u2

rexp 1 u2
K 1

du C C; 5.10)

where 1 u 1 and C is a real constant.

Also, D fh0g, where

h0 D
1

K
Z

0

1

p1 u2

rexp 1 u2
K 1

du C C;

divides S into two upper and lower) symmetric parts.
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6. Vertical and horizontal height estimates for K-surfaces

We divide this section in three parts. First, we establish some necessary equations

for surfaces with positive extrinsic curvature inM2 R, M2 a Riemannian surface.
Second, we obtain vertical height estimates for compact embedded surfaces with
constant positive extrinsic curvature inM2 R and boundary in a slice. And finally,
we give horizontal height estimates for K-surfaces in H2 R and boundary on a

vertical plane.

6.1. Necessary equations. We will work in the spirit of [AEG2] but using the
conformal structure induced by the second fundamental form of the surface as in [AEG3].

Let us denote by g the metric of M2. Then the metric of M2 R is given by

h ; i D g C dt2. Let W S M2 R be an immersion with positive extrinsic
curvature K with unit normal vector field N.

Let
W M2 R M2 and R W M2 R R be the usual projections. We

denote by hW S Rtheheight function, that is, h.z/ D R. z//, and D hN;
@

@t i,
@

@t the gradient inM2 R of the function t
SinceK > 0 the second fundamental form II is definite and positive definite for

a suitable normal N). Then, we can choose a conformal parameter z such that the
fundamental forms I and II can be written as

I D hd ; d i D Edz2
C 2F jdzj

2
C xEd Nz

2;

II D hd ; dNi D 2 jdzj
2 ; > 0:

6.1)

Here

K D
2

D
; 6.2)

with D D jEj
2 F 2 < 0. The mean curvature of S is

H D
F
D D

K
F: 6.3)

Let us write
@

@t D T C N;

where T is a tangent vector field on S. Since @

@t
is the gradient in M2 R of the

function t it follows that T is the gradient of h on S. Thus, from 6.1), one gets

T D
1

D
@z C N

@
Nz/; 6.4)

where

D xEhz FhNz: 6.5)
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In addition, we obtain the following equations:

hT; Ti D
1

D
hz C N hNz/; 6.6)

hT; Ti D
1

D z C xEh2Eh2N z 2F jhzj
2 /; 6.7)

hz D
1

D
E C F N/; 6.8)

jhzj
2

D kT k
2F C j j

2

D
: 6.9)

Lemma 6.1. Let
W S M2 R be an immersion with K > 0. Then, for a

conformal parameter z for the second fundamental form, the following equations are
satisfied:

Nz

C
1
12

222/ D Codazzi); 6.10)

hzz D
111hz C

2
11hNz; 6.11)

hz
Nz D

1
12hz C

2
12hNz C ; 6.12)

Nz D
K ; 6.13)

kT k
2

C
2

D 1: 6.14)

Here p/ stands for the Gauss curvature ofM2 at p//, and k
ij i; j; k D

1; 2, are the Christoffel symbols associated to z.

Proof. From 6.1) we have

r@z
@z D

1
11@z C

211@ Nz;

r@z@
Nz D

1
12@z C

212@
Nz C N; 6.15)

r@
NzN D

K
xE@z F @

Nz
:

Thus, the scalar product of these equalities with @

@t
gives us 6.11), 6.12) and

6.13), respectively.
The last equation follows from

1 D h

@

@t
;

@

@t i D hT; Ti C
2:

Finally, from 6.15) we get

hr@
Nzr@z @z r@zr@N

z
@z; Ni D Nz C

1
12

2
22/:
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Hence, using the relationship between the curvature tensors of a product manifold
see, for instance, [O, p. 210]), the Codazzi equation becomes

D
Nz

C
1
12

222/:

That is, 6.10) holds.

Remark 6.1. The equation 6.14) will be used subsequently without comment.

From now on we will assume thatK is a positive constant on S. A straightforward
computation gives us

1
12 C

2
22 D

DNz

2D
: 6.16)

Thus, from 6.10),

DNz

2D
Nz

D 2
1
12 :

Since K is constant, we obtain from 6.2) that

DNz

2D
Nz

D 0 6.17)

and
1
12 D 2

: 6.18)

Using 2
12 D

1
12 6.18), 6.8) and 6.2), one has

ENz D 2hr@ Nz
@z; @zi D 2.E 1

12 C F 212/

D E C F N/ D
D

hz D K
hz:

6.19)

On the other hand, by using 6.12), 6.18), 6.6) and 6.2),

2hz
Nz D hz C N hNz/ C 2 D DkT k

2
C 2

D K
.1 2 / C 2 D K

.2K 1 2//:
6.20)

Now, we compute zNz. From 6.13) and 6.17),

z Nz D z
K K z

2 D z
K K Dz

2D
: 6.21)

Hence, we need to compute z:

z D 2hr@z@
Nz;

@ Nzihz C xEhzz hr@z
@z; @ NzihNz h@z; r@z@ NzihNz FhzNz;
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where we have used 6.5).

If one considers 6.12) and 6.11), then

12 C 2hz xE 2
2hr@z

@
Nz;

@
Nzihz D 2hzF 1

12;

xEhzz D hz xE 1
11 C hNz xE 2

11;

11 hNz xE 2
hr@z

@z; @
NzihNz D hNzF

1
11;

h@z; r@z
@

NzihNz D hNzE
1
12 hNzF

2
12;

Fhz
Nz D hzF 1

12 hNzF
2
12 F:

Therefore,

z D
2
12 C

111/ C
2
12 N

1
12 F D

Dz
2D

F;

where 6.16) is used and that N
1
12 is a real function from 6.18).

Finally, using 6.21) and 6.3),

z Nz D KF D H : 6.22)

Hence, we have obtained the Laplacian of h, and the derivative of the .2; 0/-part

of I with respect to II. That is

Lemma 6.2. Let
W S M2 R be an immersion with constant positive extrinsic

curvature K on S, then

IIh D .2K 1 2//K ;
II

D 2H ;

ENz D K
hz:

Now, we define a quadratic formwhich will play an important role in the following
sections. Let " be a constant equal to 1 or 1. Then, we consider the new quadratic
form

A D I C g. / dh2 ; 6.23)

where g. / is the only solution to the ODE

/ D
2 1

2
g0. /

such that it is well defined for D 1, where

D K
.2K C ". 2 1//g " .1 2/g0:
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That is, g. / is the real analytic function given by

g. / D
2 1 C "K.e".1 2/

K 1/
.1 2/2

: 6.24)

Remark6.2. In order toshowthe aboveassertion,observe that the function
gQ W R!R,

gQ.t/ D
t2 1 C "K.e".1 t2/

K 1/

.1 t2/2
;

is well defined for each t 2 R in particular, if t D 1) and it is an analytic function.
This is easy to see bearing in mind that

e t
D 1 C 1X

nD1

tn
n!

:

In addition
"

2K D g. 1/ g. / g.0/ D 1 C "K.e
"
K 1/:

Let us observe that

/ D 1 C g. /kT k
2

D
"K.e".1 2/

K 1/
1 2

6.25)

satisfies
1 D 1/ / if " D 1;

0 < K.1 e
1

K / D 0/ / if " D 1
6.26)

for all 1 1.
Let us denote

Q D E C g. /h2
z; 6.27)

then Qdz2 can be considered as the .2; 0/-part of the real quadratic form A for the
second fundamental form II.

The extrinsic curvature of the pair II; A/ see [Mi]) is given by

K.II; A/ D
F C g jhzj2/2 jQj

2

2

D
z xEh2zF 2

jEj2/ C g.2F jhzj
2

Eh2N /
2

6.28)

D
1

K C
g
KkT k

2
D

1

K
.1 C gkT k

2/;

where we have used 6.2) and 6.7).
In particular, the previous computation gives us

jQj
2

D F C g jhzj
2/2 C D.1 C g kT k

2 /: 6.29)
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6.2. Vertical height estimates in M2 R. Here, we establish upper bounds for
compact graphs with positive constant extrinsic curvature and boundary in a slice of
a product spaceM2 R.

Theorem 6.1. Let M2 be a Riemannian surface,
W S M2 R be a compact

graph on a domain M2, with positive constant extrinsic curvature K and whose

boundary is contained in the slice M2 f0g. Let k be the minimum of the Gauss
curvature on M2. Then, there exists a constant cK depending only onK and k)
such that jh.p/j cK for all p 2 S.

Proof. We want to compute the Laplacian of a certain function given by h C f /
for a suitable real function f Since, we know hz

Nz
from 6.20) then we focus our

attention on f /zNz. We can assume h 0.
By using 6.13), 6.22), 6.2) and 6.9),

f /z Nz D f 0. / z Nz C f 00. /j zj
2

D f 0. /KF C f 00. /j j2K2
2

D f 0. /KF f 00. /K.jhzj
2 .1 2/F/

D K F. f 0. / .1 2/f 00. // C jhzj
2f 00. / :

First, note that since II must be positive definite and S is a graph, then 0.
Second, we distinguish two cases, k D 0 and k ¤ 0. When k D 0, we consider

f / D pK
;

thus

f /z Nz D
pKF

and, from 6.2),

h C f //z Nz D
2K 1 2/

2K
pKF

D 2K
.1 2/ C

p D F pK

2K
.1 2/ 0I

6.30)

thus, one has II.h C f // 0 on our surface and h C f / 0 on the boundary,
so h pK 1=pK.

Whenk ¤ 0, we cansuppose thatk D ", where " is 1 or1. To do that it is enough
to consider, the new metric onM2 R given by the quadratic form jkj g C dt2 and

the surface S0 D f.x; pjkjt/ 2 M2 R W x; t/ 2 Sg which has constant extrinsic
curvature K=jkj. Here, g denotes the induced metric onM2.
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We consider

f 0. / D
s"

1 e "1 2
K

1 2
:

This function is real analytic and so is every primitive f /
In addition

f 00. / D
e "1 2

K

K
g. /
f 0. /

;

where g. / is given by 6.24).
Thus,

f 0. / .1 2/f 00. / D
e " 1 2

K

K f 0. /
and

f /z Nz D
e " 1 2

K

f 0. /
F C g. /jhzj

2/:

We observe that F C g. /jhzj2/jdzj
2 is the 1,1)-part of the quadratic form A,

given by 6.23), and our quadratic form Qdz2, given by 6.27), is the 2,0)-part of A
for II.

Moreover, from 6.20) and 6.28),

hCf //z Nz D
2K 1 2/

2K f 0. / r 2.1 C g. / 1 2//e "1 2
K

K C jQj
2

Here, we have used that F C g. /jhzj
2 > 0. This fact is clear because K.II; A/ is

positive from 6.28), 6.25) and 6.26), so, A is positive definite or negative definite.
Thus, F C g. /jhzj

2 is positive at every point or is negative everywhere. But, it is
clear that it is positive at a highest point hz D 0 at this point).

Hence,

h C f //z Nz

2K 1 2/

2K f 0. / r 2.1 C g. / 1 2//e "1 2
K

K

D
2K 1 2/

2K
2K

e "1 2

e "1 2
2K 1 C "

1 2

2K
0:

Here, we use that the term between parenthesis is non-negative. This is because the
real function et 1 t is non-negative everywhere.
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By taking,

f / D Z
0

f 0.t/dt

one has II.hCf // 0 on thesurface and hCf / 0 on theboundary because

f 0. / 0 and 0).
Hence, the maximum height is less than or equal to

cK WD Z
0

1
f 0.t/dt:

Remark 6.3. It is clear that the height estimate cK, when k ¤ 0, is not reached for
any graph with positive constant K and boundary on a slice since

e "1 2

2K 1 C "
1 2

2K

is positive for ¤ 1 as well as II.hC //. But then the maximum principle at

the highest point shows that II.h C // vanishes identically; a contradiction.
But, when k D 0, by 6.30), if the maximum height is attained at a point, then

h pK vanishes identically on S. Thus, using 6.30) again, and E vanish
identically. That is, the domain is flat and S is totally umbilical.

As a standard consequence of the Alexandrov reflection principle with respect to
the slicesM2 ft0g, we have the following corollary.

Corollary 6.1. Let
W S M2 R be a compact embedded surface with positive

constantextrinsic curvatureK and whose boundary is contained in the sliceM2 f0g.
Let k be the infimum of the Gauss curvature onM2. Then, there exists a constant cK
depending only on K and k) such that jh.p/j 2cK for all p 2 S.

We also observe that if S is a non-compact properly embeddedK-surface without
boundary in M2 R and M2 is compact then S must have at least one top end and

one bottom end. This is a consequence of our height estimates see, for instance,
[HLR]).

6.3. Horizontal height estimates. Now, we consider a compact embedded K-
surface in H2 R with boundary on a vertical plane and obtain distance estimates to
this plane.

Theorem 6.2. Let S be a compact embedded surface in H2 R, with extrinsic
curvature a constantK > 0. Let P be a vertical plane in H2 R and assume that
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@S P. Then the distance from S to P is bounded; i.e., there is a constant d,
independent of S, such that

dist.q; P/ d for all q 2 S.

Proof. Let q 2 S be a furthest point from P. Up to isometry, we can assume

q 2 H2 f0g and q 2 extH2 R.P /. Let P t/ be the foliation of vertical planes
along with P .0/ D P and q 2 P h/. Let X denote the horizontal Killing field
of H2 R generated by translations along X is tangent to each H2 f g and is
translation along f g); X is orthogonal to the planes P t/.

Now, do Alexandrov reflection with the planes P t/, starting at t D h, and
decrease t. Forh=2 < t h, the symmetry of the part S in extH2 R.P t// does not
touch @S, since @S P. Hence the Alexandrov reflection technique shows that the
symmetry of SC.t/ D S\extH2 R.P t //, by P t/, intersects S only at S \P t/
and S is never orthogonal to P s/ for t s h. Since X is orthogonal to each

P t /, we conclude that X is transverse to SC.h=2/, and SC.h=2/ is a graph over a

domain of P h=2/ with respect to the orbits of X.
Thus, to prove the theorem, it suffices to prove that X-graphs are a bounded

distance from P, assuming the boundary of the graph is in P.
Now, suppose S is an X-graph over a domain D P and chose P t/ as before.

Let SR be the rotationally invariant sphere whose extrinsic curvature K is the same

as that of S. Denote by c D c.K/, the diameter of SR.
We will nowprove thatfor eacht > 2c, the diameterof each connectedcomponent

of S.t/ D P.t/ \ S is at most 2c. Suppose not, so for some component C.t/ of
S.t/, there are points x; y inside the domain D.t/ of P.t/ bounded by C.t/ with
dist.x;y/ > 2c. Let Q be the bounded domain of H2 R bounded by S [D. Let

be a path in D.t/ joining x to y, is disjoint from C.t/. Let be the “rectangle”
formed by the orbits of X joining to P; Q. Let p be a point of whose
distance to @ is greater than c; p exists by construction of

Let be the geodesic through p, each of whose points is a distance greater than c
from @ ; it is easy to find such an in the plane P.t/ containing p. The geodesic

“enters” Q at a first point q0 and “leaves” Q at a last point q1.
Now, consider the family of spheres centered at each point of each sphere

obtained from the rotational sphere SR of extrinsic curvature K) by a translation of
H2 R. Consider the family of spheres as entering Q at q0 cf. Figure 12).

Then, there is some first sphere in the family coming from q0) that touches

for the first moment at an interior point of Then the sphere passes through not
touching @Q initially, and the sphere passes through without touching @ Since
the spheres leave Q at q1, there is some sphere that touches @Q\ S at a first point
of contact. At this first point of contact cf. Figure 13), the mean curvature vectors of
S and the rotational sphere are equal. Hence S equals this sphere by the maximum
principle; a contradiction.
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D
S

D
S

Figure 12. Moving the spheres along

D
S

S

Figure 13. Touching @Q.

Now, if the theorem is false, there is a sequence of graphs Sn over domains

Dn P, with diameter.Dn/ < 2c and dist.Sn; P/ unbounded.

After an ambient isometry we can assume that the Dn are contained in a fixed
disk D and the Sn are contained in the horizontal Killing cylinder C over D, i.e., a

tubular neighborhood of a horizontal geodesic We will use “tilted” vertical planes

to show this is impossible.
We can assume, without lost of generality, that D f0; g, P is the vertical plane

over the geodesic f 2; 3 2g, and the graphs Sn satisfy Sn/ are asymptotic to 0.
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Consider the vertical plane Q.s1; s2/ D fs1; s2g R. A simple calculation shows

that for s1 D 0 and s2 positive and close to 0, the symmetry through Q.0; s2/ of
C \ intH2 R.Q.0;s2// does not intersect P. In particular, the symmetry of the part
of any Sn \ intH2 R.Q.0; s2// does not intersect @Sn D. By continuity, for s1
negative and sufficiently close to 0, theabove last two statementscontinuetohold, i.e.,

the symmetry through Q.s1; s2/ of C\ intH2 R.Q.s1;s2// does not intersect P, and

the symmetry of thepart of any Sn\ intH2 R.Q.s1; s2// does not intersect @Sn D.
Now observe that the symmetry of C\ intH2 R.Q.s1; s2// goes outside C, hence

the symmetry of Sn\ intH2 R.Q.s1; s2// also goes outside C, for n sufficiently large.
Choose a and b between s1 and s2 so that Q.a;b/ is disjoint from C. Let R.t/ be

a foliation by vertical planes of the region of H2 R between Q.a;b/ and Q.s1; s2/
with R.0/ D Q.a; b/ and R.1/ D Q.s1; s2/, 0 t 1.

Consider doing Alexandrov reflection with the planes R.t /. Choose n large so

that thesymmetry of Sn/\ intH2 R.Q.s1;s2// has points outside C. The symmetry
of this part of S.n/ through each R.t/ is disjoint from P, hence disjoint from @Sn.
Also the symmetry of this part of S.n/ through R.1/ goes outside C, and R.0/ is
disjoint from C cf. Figures 14 and 15).

D

C

Sn R.0/

Sn
C

R.0/

Figure 14. No accident ofAlexandrov Reflection. The picture on the right is a horizontalsection.

Hence there is a smallest t such that the symmetry of S.n/ through R.t/ touches

S.n/ at some point. Thus R.t/ is a symmetry plane of S.n/, which is a contradiction.
This completes the proof.

This proof also works for properly embedded surfaces with constant mean curvature

greater than 1=2. Thus, [NR, Theorem 1.2] can be extended for H-surfaces with
H > 1=2, that is,

Corollary 6.2. LetH > 1=2 and let S be a properly embeddedH-surface inH2 R
with finite topologyand one end. Then S is contained in a vertical cylinder of H2 R.

In Theorem 7.2, we use this corollary to prove that no such surface exists.
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D

C

Sn R.1/

Sn
C

R.1/

Figure 15. For n large, the symmetry of Sn goes outside C. The picture on the right is a

horizontal section.

7. Classification of complete K-surfaces in H2 R and S2 R

The aim of this section is to classify the complete surfaces with positive constant
extrinsic curvature as the complete revolution examples established in Section 5.

In this section M2."/ stands for S2 or H2, depending on " D 1 or " D 1,
respectively. We continue working with a conformal parameter z for the second

fundamental form II. We now come to a key lemma.

Lemma 7.1. Let W S M2."/ Rbe an immersedK-surface. If weconsider S as

the Riemann surface with the conformal structure induced by its second fundamental
form, then the quadratic form given by 6.27) verifies

jQNzj
2 Kg0. /2.1 2/2 jhzj

2

4 / jQj
2 ; 7.1)

where g and are given by 6.24) and 6.25) respectively.

Proof. First, we compute the derivative of Q, which is given by

QNz D ENz C g0
Nzh

2
z C 2ghzhz Nz:

So, from 6.19) and 6.20), one gets

ENz C 2ghzhz
Nz D K

.2K C ". 2 1//g " hz:

Moreover, 6.13), 6.8) and 6.6) give

NzE D
E
D D

N

D
F hz;

Nzh
2
z D hz

hz

D D
N

Djhzj
2

kT k
2

hz;
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z D g0jhzj
2 Ng0

Nzh
2

D
g0 kT k

2 hz:

Consequently,

QNz D g0. /
2 1

2 D
: 7.2)hz C jhzj

2 N

So,

jQNzj
2

D
2g0. /2 .1 2/2 jhzj

2

4

.1 2/ jhzj
2

2

hz C N hNz

D D2
/ C jhzj

4 j j
2

D
2g0. /2jhzj

2 .1 2/2

D24 C jhzj
2 j j

2

D D
D

2g0. /2
jhzj

2 .1 2/2

D4 C jhzj
2 j j

2

D Kg0. /2
jhzj

2 D
4 C jhzj

2 1 2/F jhzj
2/ ;

.1 2/2

where we have used 6.6), 6.2) and 6.9).
Thus, from 6.29)

D D jQj
2 F C g. / jhzj2/2

/
:

Hence, from the previous equation of jQNzj2,

jQNzj
2

D Kg0. /2
jhzj

2 jQj
2 F C g. / jhzj2/2

/
.1 2/2

4

C jhzj
2 1 2/F jhzj

2/

D
Kg0. /2.1 2/2 jhzj

2

4 / jQj
2

Kg0. /2
jhzj

2

4 /
.1 2/2 F C g. / jhzj

2/2

4 /jhzj
2 1 2/F jhzj

2/ :
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Now, we show that the last term between parenthesis is non negative. That is,

1 2/F .2 C g. / 1 2 //jhzj
2/2

D .1 2/2F2 2F jhzj
2.2.1 2/ C g. / 1 2/2/

C .4 C 4g. / 1 2/ C g. /2.1 2/2/jhzj
4

D .1 2/2 F2 2Fg. /jhzj
2

C g. /2
jhzj

4/
C .1 2/jhzj

2 4F C 4g. /jhzj
2 / C 4jhzj

4

D .1 2/2 F C g. /jhzj
2 /2 C 4jhzj

2 Fg. / 1 2/2

F.1 2/ C g. / 1 2/jhzj
2

C jhzj
2/

D .1 2/2 F C g. /jhzj
2 /2 4 /jhzj

2
1

2/F jhzj
2/

as we wanted to prove.
Therefore,

jQNzj
2 Kg0. /2.1 2/2 jhzj

2

4 / jQj
2 :

This lemma shows that [J, Lemma 2.7.1, p. 75] can be used.

Lemma7.2. Let
W S M2."/ Rbean immersionwithpositive constant extrinsic

curvature. Then, the zeroes of Q are isolated with negative index or Q vanishes
identically.

As a consequence, using the Poincaré Index Theorem, one has

Theorem 7.1. Let
W S M2."/ R be an immersion with positive constant

extrinsic curvature, with S a topological sphere. Then Q vanishes identically on S.

From Theorem 3.1 we know that every complete K-surface inH2 R is properly
embedded and it is compact or homeomorphic to R2. So, we will show that it cannot
be homeomorphic to R2. This follows from the following result.

Theorem 7.2. ForK > 0 or H > 1=2) there is no properly embedded K-surface

H-surface) in H2 R with finite topology and one end.

Proof. We only outline the main steps of the proof since, in essence, it is the same as

in [NR] for surfaces of constant mean curvature greater than 1=p3.
Note that the Plane Separation Lemma is valid for properly embedded surfaces

with constant positive extrinsic curvature, so, Theorem 6.2 ensures us that such a
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surface must be contained in a vertical cylinder. Thus the Alexandrov reflection
method using horizontal planes and Theorem 6.1 completes the proof as in [NR,
Theorem 1.1].

Analogously, the result is also valid for H-surfaces, H > 1=2, using height
estimates in [AEG2] and Corollary 6.2.

Bringing this all together yields:

Theorem 7.3. A complete immersion with positive constant extrinsic curvature K in
M2."/ R is a rotational sphere cf. Section 5).

Proof. By the Gauss equation [D], the Gauss curvature K.I/ of the surface satisfies

K.I/ D K C " 2:

Thus, for " D 1, K.I/ K > 0 and, so, every complete K-surface in S2 R must
be a topological sphere from the Bonnet and Gauss–Bonnet theorems. On the other
hand, from Theorem 3.1 and Theorem 7.2, we can also state that every complete

K-surface in H2 R must be a topological sphere.
Thus, by Theorem 7.1, Q D 0 on any complete immersion with positive constant

extrinsic curvature K inM2."/ R.
Now we show that the immersion is rotational. Let us take doubly orthogonal

coordinates u; v/ for I; II/, that is,

I D mdu2
C ndv2;

II D k1mdu2
C k2ndv2:

Then, since the metric II and the real quadratic form A given by 6.23) are conformal
because Q is the .2; 0/-part of A for II), we have that huhv 0.

Thus, we can assume that hu vanishes locally. Using the compatibility equations
given in [D] and making a suitable change of doubly orthogonal parameters, as in
[AEG3, Theorem 3.1], one sees that all m; n;k1; k2; h; only depend on the second

parameter v. Therefore, the uniqueness part in [D] gives that the immersion is
invariant under a 1-parameter group of transformations u; v/ 7! u C t;v/). To
finish, as the surface is compact, then it must be invariant by the group of rotations,
so Proposition 5.1 and Proposition 5.2 give us the result.

Note thatTheorem 3.1 together withTheorem 7.2shows that a completeK-surface

S in H2 R must be embedded and topologically a sphere. Then, the Alexandrov
reflection principle with respect to vertical planes proves S is a rotational sphere.
This gives us an alternative proof to Theorem 7.3 in H2 R.

Observe that a similar reasoning does not seem possible in S2 R. That is, the
existence of the quadratic form Q with isolated zeroes of negative index appears to
be essential in this case.
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Concluding remarks. It would be interesting to know which of the results in this
article extend to the other complete, simply connected, homogeneous 3-manifolds.
For example, does the Hadamard–Stoker Theorem hold in Heisenberg space, the
Berger spheres or the universal cover of PSL.2; R/? The space Sol3 is foliated by
totally geodesic surfaces, each isometric toH2 in fact, there are two such orthogonal
foliations, and their intersection is an Anosov flow). Using the above techniques,

it is not hard to see that immersed compact surfaces of positive extrinsic curvature
in Sol3 are embedded spheres. Also each leaf of the two orthogonal foliations is
a symmetry submanifold by an ambient isometry of Sol3. Thus the Alexandrov
reflection technique can be used to show that a compact embeddedH-surface in Sol3
is a topological sphere. Alexandrov reflection with respect to one of the foliations
shows it is a bigraph with respect to one of the leaves. Then using the orthogonal
foliation it is also a bigraph with respect to an orthogonal leaf. Thus it is of genus

zero; hence a sphere. Is this the case in Heisenberg space? If the extrinsic curvature

K is a positive constant, is the surface a rotational sphere?
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