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Relatively hyperbolic groups: geometry and quasi-isometric
invariance
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Abstract. In this paper it is proved that relative hyperbolicity is a quasi-isometry invariant. As
byproducts of the arguments, simplified definitions of relative hyperbolicity are provided. In
particular we obtain a new definition very similar to the one of hyperbolicity, relying on the
existence of a central left coset of a peripheral subgroup for every quasi-geodesic triangle.
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1. Introduction

1.1. Rigidity result. M. Gromov asked ([Gro87], [Gro93]) which properties of
infinite finitely generated groups are invariant under quasi-isometry. Such properties
are sometimes called geometric, while a class of groups defined by a geometric
property is called rigid.

For instance, the class of virtually nilpotent groups is rigid [Gro81], while the
class of virtually solvable groups is not rigid [Dyu00]; but smaller classes of virtually
solvable groups are rigid ([FM98], [FM99], [EFW05]). Recall that a group is said to
virtually satisfy a property P) if a finite index subgroup of it has property P).

Also, different classes of lattices of semisimple groups are rigid this statement

includes many deep results of different authors; see [Far97] and [Dru04] for surveys
of these results).

The present paper focuses on the class of relatively hyperbolic groups.1 This
notion was introduced by M. Gromov in [Gro87]. Other definitions, as well as

developments of the theory of relatively hyperbolic groups can be found in [Bow97],
[Far98], [Dah03b], [Yam04], [DS05b], [Osi06]. In 1.2 and 1.3 we discuss in more
detail different ways to define relative hyperbolicity.

Beside hyperbolic groups, other examples of relatively hyperbolic groups are:

1) fundamental groups of finite graphs of groups with finite edge groups; these
groups are hyperbolic relative to the vertex groups [Bow97];

2) fundamental groups of complete finite volume manifolds of pinched negative
sectional curvature; these are hyperbolic relative to the fundamental groups of
their cusps ([Bow97], [Far98]);

3) fundamental groups of non-geometric) Haken manifolds with at least one hy¬

perbolic component; such groups are hyperbolic relative to fundamental groups
of maximal graph-manifold components and to fundamental groups of tori and
Klein bottles not contained in a graph-manifold component;

4) fully residually free groups, also known as limit groups; it is proved in [Dah03a]
that these groups are hyperbolic relative to their maximal Abelian non-cyclic
subgroups; moreover they are CAT(0) with isolated flats [AB05].

There exist also interesting examples of groups displaying an “intermediate”
version of relative hyperbolicity. Such groups are weakly relatively hyperbolic, not
strongly) relatively hyperbolic, but nevertheless they have some features in common

with strongly) relatively hyperbolic groups, for instance, theirasymptotic cones have

a tree-graded structure in the sense of [DS05b] see Definition 3.1 in the present
paper). Such groups are the mapping class groups of surfaces of complexity at least

1By relatively hyperbolic group we mean what is sometimes called in the literature strongly relatively hyperbolic

group, in contrast with weakly relatively hyperbolic group.
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two ([Beh05], [BDM05]), fundamental groups of 3-dimensional graph manifolds
([KL98], [KKL98], [BDM05]), as well as many Artin groups ([KS04], [BDM05]).

Recently, relatively hyperbolic groups have been used to construct examples of
infinite finitely generated groupswith unusualproperties. Thus in[Osi04] it isproved,
using relatively hyperbolic groups, that there exist torsion-free two-generated groups
with exactly two conjugacy classes.

Convention 1.1. Throughout the paper, relatively hyperbolic groups are assumed to
be finitely generated and hyperbolic relative to finitely many proper finitely generated
subgroups.

If a group G is hyperbolic relative to some subgroups H1; : : : Hm then the
subgroups H1; : : : ;Hm are called peripheral subgroups.

The present paper answers affirmatively to the question whether relative
hyperbolicity is a quasi-isometry invariant Problem 1.15 in [DS05b]).

Theorem 1.2 relative hyperbolicity is geometric, Theorem 5.7). Let G be a group
hyperbolic relative to a family of subgroups H1;: : : ; Hn. If a group G0 is
quasiisometric to G then G0 is hyperbolic relative to H01 ; : :: ; H0m and each H0i can be

embedded quasi-isometrically in Hj for some j D j.i/ 2 f1; 2; : : : ; ng.

Rigidity has previously been proved for some sub-classes of relatively hyperbolic

groups with stronger versions of rigidity theorems): non-uniform lattices in
rank one semisimple groups different from SL.2;R/ [Sch96], fundamental groups
of non-geometric Haken manifolds with at least one hyperbolic component ([KL95],
[KL97]), fundamental groups of graphs of groups with finite edge groups [PW02].

Question 1.3. Can the conclusion of Theorem 1.2 be improved to: “G0 is hyperbolic
relative to H01; : :: ; H0m with each H0i quasi-isometric to some Hj j D j.i/”

This is known to hold only under extra hypotheses on Hj ([DS05b], [BDM05]).
The weakest such hypothesis is that everyHj is not relatively hyperbolic in the sense

of Convention 1.1 [BDM05].
The main steps in the proof of Theorem 1.2 are explained in what follows.

1.2. Metric and algebraic relative hyperbolicity. In order to study rigidity it is
necessary to have a definition of relative hyperbolicity of a group only in terms of its
Cayley graphs. Most definitions except the ones in [DS05b] and in [Osi06]) use not
only a Cayley graph of the group but also a metric space obtained from this graph by
gluing to each left coset of a peripheral subgroup some geometric object a hyperbolic
horoball [Gro87], countably many edges with one common endpoint [Far98] etc.).
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We recall definitions from [DS05b]. A complete geodesic metric space F is
treegraded with respect to a collection P of closed geodesic subsets called pieces), if
the following two properties are satisfied:

T1) two different pieces have at most one point in common;

T2) any simple non-trivial geodesic triangle is contained in one piece.

A metric space X is asymptotically tree-graded with respect to a collection of
subsets A if every asymptotic cone of X is tree-graded with respect to the collection
of limit sets of sequences in A see Section 2.2 for definitions of asymptotic cones,
and of limit sets). Equivalently, X is asymptotically tree-graded with respect to A if
the following three geometric properties are satisfied for details see Theorem 4.1 in
[DS05b], Theorem 4.9 in this paper):

1/ finite radius tubular neighborhoods of distinct elements in A are either disjoint
or intersect in sets of uniformly bounded diameter;

2/ a geodesic with endpoints at distance at most one third of its length from a set

A in A intersects a tubular neighborhood of A of uniformly bounded radius;

3/ any fat geodesic polygon is contained in a tubular neighborhood of a set A in
A of uniformly bounded radius here the meaning of “fat” is the contrary of
“thin” in its metric hyperbolic sense; see Definition 4.5).

The space X is properly asymptotically tree-graded with respect to A if it is not
contained in any finite radius tubular neighborhood of a subset in A.

Convention1.4. Inwhat followsweassume that all asymptotically tree-gradedmetric
spaces are properly asymptotically tree-graded.

The notion of asymptotically tree-graded metric space is a metric version for the
relative hyperbolicity of groups. Other similar notions can be found in [BF01], and

in [HK05] in the context of CAT.0/ metric spaces. The fact that the metric definition
is coherent with the definition for groups is illustrated by the following result.

Theorem1.5 ([DS05b], Theorem 1.11 andAppendix). Afinitely generated groupG is
hyperbolic relative toH1; : : : ;Hm if and only if G is asymptotically tree-graded with
respect to the collection of left cosets L D fgHi j g 2 G=Hi; i 2 f1; 2; : : : ; mgg.

The equivalence inTheorem 1.5 suggests the following question, whichappearsas

Problem 1.16 in [DS05b]: if a group is asymptotically tree-graded in a metric sense,

that is, with respect to a collection of subsets A, does it follow that it is relatively
hyperbolic with respect to some finite family of subgroups The implication was

previously known to be true only under some restrictive metric conditions on A see

[DS05b, Theorem 5.13] and [BDM05]).
We answer this question in the affirmative.
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Theorem 1.6 Theorem 5.4). Let G be an infinite finitely generated group
asymptotically tree-graded with respect to a collection of subsets A. Then G is relatively
hyperbolic with respect to some subgroups H1; : : :; Hm, such that every Hi is
contained in a bounded radius tubular neighborhood of a set Ai 2 A.

Theorem 1.6 implies Theorem 1.2. Indeed, a group quasi-isometric to a relatively
hyperbolic group is asymptotically tree-graded as a metric space with respect to
the images by quasi-isometry of the left cosets of peripheral subgroups [DS05b,
Theorem 5.1].

Theorem 1.6 is also used in [BDM05] to prove the following result: given a group

G hyperbolic relative to H1; : : : ;Hn, every quasi-isometric embedding into G of a

group which is not relatively hyperbolic has its image in a tubular neighborhood of
bounded radius of a left coset gHi ; moreover the radius of the neighborhood depends

only on G, H1; : : : ; Hn and on the constants of quasi-isometry, not on the domain of
the quasi-isometry [BDM05, Theorem 4.1].

From this it is deduced in [BDM05] that in Theorem 1.2 under the extra assumption

that each peripheral subgroup Hi is not relatively hyperbolic the rigidity result
holds, with the stronger conclusion that each H0i is quasi-isometric to some Hj This
generalizes previous results from [DS05b].

An outline of the proof of Theorem 1.6 will be given in the following sections.
Theorem 1.6 is optimal in the sense that if the groupG and the collectionAsatisfy

less properties than those required of asymptotically tree-graded metric spaces then
the group G may not be relatively hyperbolic. This is illustrated by the examples

of groups constructed in [BDM05, 7:1] and in [OOS06]. These groups are not
relatively hyperbolic, although they do contain a collection of subsets A such that
all the asymptotic cones of the group are tree-graded with respect to some limits of
sequences in A. In each cone, not all the limits of sequences in A are considered
as pieces though: there are limits which are geodesic lines, and different such lines
intersect in more than one point. The subsets in A do not satisfy property 1/
requiring uniformly bounded diameter for intersections of bounded radius tubular
neighborhoods of different subsets in A.

1.3. New definitions of relative hyperbolicity. If a group has an asymptotically
tree-graded structure equivariant with respect to left translations, then a standard
argument shows that the group is relativelyhyperbolic Proposition 5.1). Thus, the main
step in the proof of Theorem 1.6 is to construct an equivariant asymptotically
treegraded structure on a group out of an arbitrary asymptotically tree-graded structure.
A natural idea is to consider all the translated asymptotically tree-graded structures

gA D fgA j A 2 Ag of a given asymptotically tree-graded structureAon a groupG,
and to take non-empty intersections of the form

Tg2G
gAg, with Ag 2 A. To make

such an argument work, it is necessary that the asymptotically tree-graded proper-
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ties behave well with respect to intersections. The modification of the list of three
geometric properties defining an asymptotically tree-graded metric space given in
Theorem 4.22 ensures this good behavior with respect to intersections.

Asymptotically tree-graded metric spaces have a property that strongly reminds
of hyperbolic metric spaces. A metric space is hyperbolic if and only if the edges of
every quasi-geodesic triangle intersect a ball of uniformly bounded radius [Gro87,
6]. A space X that is asymptotically tree-graded with respect to a collection of

subsets A satisfies a similar property, called property / see Definition 4.27). If
X; A/ satisfy only property / then the space X is called /-asymptotically

treegraded with respect to A. This notion is weaker than the notion of asymptotically
tree-graded metric space see Remark 4.29, 2)).

Property / was essential in the proof of the fact that the Rapid Decay property
transfers from the peripheral subgroups H1; : : :; Hm of a relatively hyperbolic group
to the group itself [DS05a]. A version of property / in the context of CAT(0) spaces

appears in [Hru04], where it is called the Relatively Thin Triangle Property.

A natural question to ask is under which additional conditions is a /-asymptotically

tree-graded metric space also asymptotically tree-graded. The arguments used

to prove Theorem 4.22 can be adapted to answer this question.

Theorem 1.7 Theorem 4.30). Let X; dist/ be a geodesic metric space and let A be
a collection of subsets of X. The metric space X is asymptotically tree-graded with
respect to A if and only if X; A/ satisfy properties 1/ and 2/, and moreover X
is /-asymptotically tree-graded with respect to A.

1.4. Organization of the paper. Section 2 contains preliminaries on asymptotic
cones, as well as notation.

In Section 3 are recalled some basic facts about tree-graded spaces. Proposition

3.9, proved in this section, is very useful in arguments deducing the general
property T2/ from T1/ combined with T2/ restricted to particular types of geodesic
triangles see for instance property .…3/ below).

Section 4 begins with a short overview of properties of asymptotically tree-graded
metric spaces. In 4.2 an induction argument and Proposition 3.9 are used to show
the following central result. Denote by .…3/ the property T2/ restricted to triangles
with edges limits of sequences of geodesics. If in an asymptotic cone Con! X/ of
a metric space X a collection A! of closed subsets satisfies T1/ and .…3/ then A!
satisfies T2/ in full generality Corollary 4.19).

This statement is the main ingredient in the proof of Theorem 4.22, given in 4.3.
It also plays a central part in the proof of Theorem 1.7 given in 4.4. Another difficult
step in the proof of Theorem 1.7 is to deduce from properties /; 1/ and 2/ the
fact that fat quadrilaterals are contained in finite radius tubular neighborhoods of
subsets in A Lemma 4.33). Once this last statement is proved, from it as well as
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from property / and Proposition 3.9 can be deduced property .…3/. Corollary 4.19
allows to finish the argument.

Theorem 1.6 is proved in Section 5. The first and most difficult step of the proof is
to construct from a given asymptotically tree-graded structure on a group an equivariant

asymptotically tree-graded structure. The subsets in the new equivariant
asymptotically tree-graded structure are indexed by equivalence classes of fat hexagons.

A simple argument then shows that the existence of an equivariant asymptotically
tree-graded structure implies that the group is relatively hyperbolic Proposition 5.1).
This completes the proof of Theorem 1.6 and thus of Theorem 1.2.

Acknowledgement. The author wishes to thank the referee for numerous useful
comments. Thanks are also due to Mark Sapir and Jason Behrstock for remarks that
helped improving the exposition in the paper.

2. Preliminaries

2.1. Definitions and notation. Let Y be a subset in a metric space X; dist/. We
denote by Ni.Y / the set fx 2 X j dist.x; Y/ < ig, which we call the i-tubular
neighborhood of Y We denote by Nxi.Y / the set fx 2 X j dist.x; Y / ig, called
the i-closed tubular neighborhood of Y

WhenY is asingleton y, we alsouse thenotationB.y; i/ and respectively xB.y; i/.

Definition 2.1. An action of a group G on a metric space X is called K-transitive,
where K is a non-negative constant, if for every x 2 X the closed tubular neighborhood

NxK.Gx/ of the orbit of x coincides with X.

An L;C/-quasi-isometric embedding of a metric space X; distX/ into a metric
space Y; distY / is a map qW X Y such that for every x1; x2 2 X,

1

L
distX.x1; x2/ C distY q.x1/; q.x2// LdistX.x1;x2/ C C ; 1)

for some constants L 1 and C 0.

If moreover Y is contained in the C-tubular neighborhood of q.X/ then q is
called an L; C/- quasi-isometry. In this case there exists an L; C/-quasi-isometry

NqW Y X such that Nq B q and q B Nq are at uniformly bounded distance from the
respective identity maps [GdlH90]. The quasi-isometry Nq is called quasi-converse
of q.

If qW OEa;b X is an L; C/-quasi-isometric embedding then q is called an

L;C/-quasi-geodesic segment) in X. The same name is used for the image of q.

Notation 2.2. For every quasi-geodesic segment q in a metric space X, we denote
the origin of q by q and the endpoint of q by qC.
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If qi W
OE0; `i X, i D 1; 2; are two quasi-geodesic segments with q1.`1/ D

q2.0/, then we denote by q1 t q2 the map qW
OE0; `1 C `2 X defined by q.t/ D

q1.t/ for t 2 OE0; `1 and q.t/ D q2.t `1/ for t 2 OE`1;`1 C `2

If an L; C/-quasi-geodesic q is L-Lipschitz then q is called an L; C/-almost
geodesic.

2.2. Asymptotic cones of a metric space. The notion ofasymptotic cone of a metric
space was used implicitly in [Gro81], and it was defined in full generality and studied
in [dDW84] and [Gro93]. For the definition, one needs the notion of non-principal
ultrafilter. This is a finitely additive measure defined on the set of all subsets

of N or, more generally, of a countable set) and taking values in f0; 1g, such that

F/ D 0 for every finite subset F of N.

Convention 2.3. Throughout the paper all ultrafilters are non-principal, therefore we
will omit mentioning it each time.

Notation 2.4. Let An and Bn be two sequences of objects and let R be a relation
that can be established between An and Bn for every n 2 N. We write AnR! Bn if
and only if AnRBn !-almost surely, that is,

fn 2 N j AnRBng/ D 1:

Examples: D!, <!,

Given an ultrafilter an !-limit lim! xn of a sequence xn/ in a topological
space X is an element x 2 X such that for every neighborhood N of x, xn 2! N.
In a Hausdorff separable space if the !-limit of a sequence exists then it is unique. If
xn/ is contained in a compact space then it has an !-limit [Bou65].

Given a space X one can define its ultrapower X! as the quotient XN= where

xn/ yn/ if xn D! yn.
Let now X;dist/ be a metric space, e an element in its ultrapower X!, en/

a representative of e, and d D dn/ a sequence of numbers in .0;C1/ such that

lim! dn DC1. Consider

Se.X/ D ° xn/ 2 XN j there exists Mx such that dist.xn;en/ Mx dn : 2)

Define the equivalence relation

xn/ yn/ lim
dist.xn; yn/

dn D 0:

The quotient space Se.X/= is denoted by Con! XI e; d/ and it is called the
asymptotic cone of X with respect to the ultrafilter the scaling sequence d and
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the sequence of observation centers e. It is endowed with the natural metric dist!
defined by

dist! x; y/ D lim
dist.xn; yn/

dn
:

Every asymptotic cone is a complete metric space.

A sequence of subsets An/ in X gives rise to a limit subset in the cone, defined
by

lim An/ D flim! an/ j an 2! Ang :

If lim! dist.en;An/
dn D C1then lim! An/ D ;. Every non-empty limit subset

lim! An/ is closed.

If each set An is a geodesic gn with length of order O.dn/ and lim! gn/ is
nonempty, then it is a geodesic in Con! XI e; d/. Therefore if X is a geodesic space

then every asymptotic cone of it is geodesic.

Definition 2.5. We call a geodesic in Con! XI e; d/ which appears as lim! gn/
with gn geodesics in X a limit geodesic.

Not everygeodesic inCon! XI e; d/ is a limit geodesic, not even in the particular
case when X is a finitely generated group with a word metric.

Example of a group with continuously many non-limit geodesics in an asymptotic
cone). On the two-dimensional unit sphere S2 consider a family of horizontal circles,
in parallel planes, such that two consecutive circles are at spherical distance

2k
and such that the North and the South poles are at distance

2k
from two respective

horizontal circles. Consider also a family of meridians of endpoints the North and
the South poles, such that the intersection points of two consecutive meridians with
the Equator are at spherical distance

2k
The horizontal circles and the meridians compose a spherical grid 0k We have

that 0k 0k

C1
Let 00

k
be the graph obtained from 0k by joining with spherical

geodesics all pairs of vertices not on the same meridian nor on the same horizontal
circle, and at distance at most k Let k be the graph obtained from 00

k
by deletingp2

all the vertical edges above the Equator, except the one having the East pole .1; 0; 0/
as an endpoint, and replacing each of them by a path of double length 2k 1 see

Figure 1). Let distk be the shortest-path metric on k.

Proposition 7.26 from [DS05b] applied to the sequence of graphs k; distk/,
and Lemma 7.5 from the same paper imply that there exists a two-generated and

recursively presented group G with one asymptotic cone tree-graded, with all pieces

isometric to S2. Moreover, from the construction of G it follows that in each of the
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North

South

East

Figure 1. The graph k.

pieces, for an appropriate choice of the North, South and East poles, all geodesics
joining North and South poles and not containing East pole are not limit geodesics.

The same argument as in [DS05b, 7] allows in fact to construct a two-generated
and recursively presented group with continuously many non-homeomorphic asymptotic

cones with the property that continuously many geodesics in each of these cones

are not limit geodesics.

3. Tree-graded metric spaces

3.1. Definition and properties. The notion of tree-graded metric space has been
introduced in [DS05b]. In this paper we use the following version of this notion.
Recall that a subset A in a geodesic metric space X is called geodesic if every two
points in A can be joined by a geodesic contained in A.

Definition 3.1. Let F be a complete geodesic metric space and let P be a collection
of closed geodesic subsets, called pieces. Suppose that the following two properties
are satisfied:

T1) Every two different pieces have at most one point in common.

T2) Every simple non-trivial geodesic triangle in F is contained in one piece.

Then we say that the space F is tree-graded with respect to P.
When there is no risk of confusion as to the set P, we simply say that F is

tree-graded.
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Remarks 3.2 pieces need not cover the space). 1) In [DS05b] trivial geodesic
triangles are allowed in property T2). This is equivalent to asking that F is covered
by the pieces in P. In the present paper we remove this convention. The reason is
that a main purpose when introducing the notion of tree-graded space is to produce a

convenient notion of relatively hyperbolic metric space called asymptotically
treegraded metric space in [DS05b] and in this paper, see Definition 4.1). The condition
that pieces cover F produces some unnatural restrictions for a space to be
asymptotically tree-graded i.e. relatively hyperbolic) with respect to a list of subsets. See

Remark 4.12 for details.

2) Possibly P is empty, in which case F is a real tree.

3) When a group G acts transitively on F for instance when F is an asymptotic
cone of a group) and G permutes the pieces, the condition that pieces cover F is
automatically satisfied.

All properties of tree-graded spaces in [DS05b, 2:1] hold with the new
definition 3.1, as none of the proofs uses the property that pieces cover the space. In
particular the results below hold. In what follows and throughout the paper by
topological arc we mean a homeomorphic copy of the interval OE0; 1

Lemma 3.3 ([DS05b], 2:1). Let x be an arbitrary point in F and let Tx be the set of
points y 2 F which can be joined to x by a topological arc intersecting every piece

in at most one point.
The subset Tx is a real tree and a closed subset of F, and every topological arc

joining two points in Tx is contained in Tx. Moreover, for every y 2 Tx, Ty D Tx.

Definition 3.4. A subset Tx as in Lemma 3.3 is called a transversal tree in F.

In [KKL98] is defined the notion of space of type I, which is equivalent to that of
a tree-graded space with the extra property that for every x the transversal tree Tx is
a geodesically complete tree which branches everywhere.

Remark 3.5. One can ensure that pieces in a tree-graded space cover it by adding to
the list of pieces the transversal trees. Thus a tree-graded space F with set of piecesP
in the sense of Definition 3.1 can be seen as tree-graded in the sense of Definition 2.1
in [DS05b] with respect to a set of pieces P0 such that P0 n P is a collection of real
trees.

3.2. Topological bigons contained in pieces

Definition 3.6. Let g1 and g2 be topological arcs. A topological bigon or T -bigon,
for short) formed by g1 and g2 is a union of a sub-arc g0

1 of g1 with a sub-arc g0
2 of g2
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such that g01 and g02 have common endpoints x and y. The endpoints of the T -bigon
are the points x and y. The interior of the T -bigon is the set g0

1 [ g0
2 n fx; yg.

If g0
1 and g0

2 intersect only in their endpoints then the T -bigon is called simple it
is a simple loop).

Note that a T -bigon with non-empty interior cannot be trivial, i.e. reduced to a

point.
The results in this sectionare useful inarguments aiming to prove property T2/ for

acollection ofclosed subsetsof a metricspace. In several contexts itproves necessary
to deduce from T1/, and T2/ satisfied only for some special type of geodesic bigons,
the general property T2/.

Lemma 3.7. Let g1 and g2 be two topological arcs with common endpoints. Then
every point z 2 g1 n g2 is in the interior of a simple T -bigon formed by g1 and g2.

Proof. For i D 1;2, gi W
OE0;`i Y is a topological embedding. Let t 2 OE0; `1 be

such that g1.t/ D z. The setK D g 1
1 g2 OE0; `2 // is a compact set not containing t

Let r be the maximal element of the compact set K \ OE0; t and let s be the minimal
element of the compact set K \ OEt; `1 Then g1.r/ D g2.r0/ and g1.s/ D g2.s0/ for
some r0; s0 2 OE0; `2 The union of g1 restricted to OEr; s with g2 restricted to OEr 0; s0

is a simple T -bigon formed by g1 and g2, containing z in its interior.

Lemma 3.8. Let Y be a metric space and let B be a collection of subsets of Y which
satisfies property T1/.

Let g1 and g2 be two topological arcs with common endpoints and with the
property that any non-trivial simple T -bigon formed by g1 and g2 is contained in a

subset in B.
If g1 is contained in B 2 B then g2 is contained in B.

Proof. Take z anarbitrary point in g2ng1. By Lemma 3.7 the point z is in the interior
of a simple T -bigon formed by g1 and g2, of endpoints z1;z2. By hypothesis this
T -bigon is contained in a subset Bz 2 B. As fz1; z2g is in B\ Bz it follows by T1/
that Bz D B and that z 2 B.

Proposition 3.9. Let Y be a metric space and let B be a collection of closed subsets

of Y B with property T1/.
Let L1 and g1 be two topological arcs with common endpoints u; v. Let L2 and

g2 be two, possibly identical, topological arcs with common endpoints v; w. Assume

that:

1) L1\ L2 D fvg;
2) g1 \ g2 contains a point a ¤ v;
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3) all non-trivial simple T -bigons formed either by g1 and g2, or by gi and Li
i D 1; 2, are contained in a subset in B.

Then the T -bigon formed by g1 and g2 with endpoints a and v is contained in a

subset in B.

Proof. Step 1. Let g0
i denote the sub-arc of gi of endpoints a and v, i D 1;2.

We prove that there exists b 2 g01\ g02 n fag, such that the T -bigon formed by g01
and g0

2 of endpoints a; b is contained in some B 2 B.
Hypothesis 1) implies that either a 62 L1 or a 62 L2. Without loss of generality

we may assume that a 62 L1. Then a is in the interior of a simple T -bigon formed
by L1 and g1, of endpoints x and y, with y on g01 Property 3) implies that this
T -bigon is contained in a set B1 2 B.

If y 2 g0
2 then take b D y.

Assume that y 62
g0

2 Then y is in the interior of a simple T -bigon formed by g0
1

and g02 of endpoints y1; y2 with y2 closer to v than y1 on g01 By 3) this T -bigon is
contained in some B2 2 B see Figure 2). The intersection B1\ B2 contains fy; y1g
hence by T1/ we have that B1 D B2 D B. Take b D y2.

The sub-arc of g0
1 with endpoints a and b is contained in B. By property 3) we

can apply Lemma 3.8 and obtain that the sub-arc of g02 in between a and b is also
contained in B.

u
w

v

y2

ax

y

L2
L1

B1
y1

B2

g1 g2

Figure 2. Step 1.

Step 2. Let E be the set of points b 2 g0
1\ g02 n fag, such that the T -bigon formed by

g0
1 and g02 of endpoints a; b is contained in some B 2 B. We prove that there exists

c 2 E such that g1 between c and v contains no other point from E.
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Note that by property T1/ of B all T -bigons of endpoints a and b, for some

b 2 E, are contained in the same B0 2 B.
Let ' W

OE0; ` Y be a parametrization of g1, '.`/ D v, and let r be ' 1.a/. The
pre-image E0 D ' 1 E/ is contained in r;` Let T be the supremum of E0. Then
T D lim tn for some increasing sequence tn/ in E0, hence c D '.T / is the limit of
the sequence of points bn D '.tn/ 2 E. Obviously c 2 g01\g02 nfag. Since B0 2 B
is closed and bn 2 B0, it follows that c 2 B0. Thus the sub-arc of g01 between a
and c is completely contained in B0. By Lemma 3.8 and property 3), the T -bigon
formed by g0

1 and g02 of endpoints a and c is in B0.

Step 3. We prove that the point c obtained in Step 2 coincides with v.
Assume that c ¤ v. Step 1 applied to the point c instead of a implies that there

exists d 2 g01\ g02 nfcg, d between c and v on both g01 and g02 such that the T -bigon
formed by g0

1 and g02 of endpoints c; d is contained in some B0 2 B.
Since c ¤ v it cannot be contained simultaneously in L1 and in L2. Assume that

c 62 L1. Thenc is in the interior ofa simpleT -bigon formedbyg1 andL1. According
to 3) this T -bigon is contained in some B00 2 B. The intersections B0 \ B00 and
B0 \ B00 both contain non-trivial sub-arcs of g01 therefore B0 D B00 D B0. Thus the
point d is in the set E and it is strictly between c and v on g01 This contradicts the
choice of c.

We conclude that c D v.

4. Asymptotically tree-graded metric spaces

4.1. Definitions and properties. Let X; dist/ be a geodesic metric space and let

A D fAi j i 2 Ig be a collection of subsets of X. In every asymptotic cone

Con! XIe; d/, we consider the collection A! of limit subsets

°lim Ain/ j i D in/! 2I such that there exists an Mi with

the property dist en;Ain/ Mi dn :

Definition 4.1. The metric space X is asymptotically tree-graded ATG) with respect

to A if every asymptotic cone Con! XI e; d/ is tree-graded with respect to A!.

Following Convention 1.4, in the rest of the paper we shall assume that all ATG
metric spaces are proper, that is, no subset A 2 A contains X in a tubular neighborhood

of it.
The ATG property is meant to be an extension of the property of strong) relative

hyperbolicity from groups to metric spaces. Theorem 1.5 emphasizes that it is the
correct property to work with.
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Remark 4.2. Let X be ATG with respect to A D fAi j i 2 Ig.

1) It is easy to see that for every > 0, the space X is ATG with respect to

fN Ai/ j i 2 Ig.

2) More generally, let B be a collection of subsets of X such that there exists a

constant K 0 and a bijection
W A B verifying distH.A; A// K.

Then X is ATG with respect to B.

The notion of ATG metric space can also be defined by a list of geometric
conditions, without involving asymptotic cones. First we introduce some notation and

terminology.

Notation 4.3. For a given quasi-geodesic p and an r > 0 we denote by
Mpr

the set

p n Nr fp ; pCg/.

We say that a metric space P is a geodesic quasi-geodesic) k-gonal line if it is
a union of k geodesics quasi-geodesics) q1; : : :; qk such that qi/C D qiC1/ for

i D 1; :: : ;k 1. If moreover qk/C D q1/ then we say that P is a geodesic
quasi-geodesic) k-gon.

Let P be a quasi-geodesic polygon, with set of vertices V. Points in P n V are
called interior points of P.

Notation 4.4. Given a vertex x 2 V and q; q0 the consecutive edges of P such that

x D qC D q0 we denote the polygonal line P n q[ q0/ by Ox.P /. When there is
no possibility of confusion we simply denote it by Ox.

Let p 2 P. The inscribed radius in p with respect to P is either the distance
from p to the set Op, if p is a vertex, or the distance from p to the set P n q if p is
an interior point contained in the edge q see Figure 3, taken from [DS05b]).

P n q

x y
Mq

Ox

x

Figure 3. Properties Fat1) and Fat2).
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Definition 4.5 fat polygon). Let > 0, 1 and 4 We call a k-gon P with
quasi-geodesic edges ; ; /-fat if the following properties hold:

Fat1/ large inscribed radii in interior points, large comparison angles) for every
edge q we have, with the notation 4.3, that

dist Mq ; P n q/ I

Fat2/ large inscribed radii in vertices, large edges) for every vertex x we have

that

dist.x; Ox/ :

When D 2 we say that P is ; /-fat.

Lemma 4.6. Let P be a polygon ; ; /-fat for some > 0, 1 and 4
Then any two edges of P without a common vertex are at distance at least from
each other.

Proof. Let q and q0 be two edgeswithouta commonvertex. Assume that there existsa

point a 2 q such that dist.a; q0/ < Property Fat1/ implies that a 2 N fx; yg/,
where x; y are the endpoints of q. Property Fat2/ implies that dist fx; yg; q0/
Therefore dist.a; q0/ / 3 3 This contradicts the assumption that
dist.a; q0/ <

The following lemma describes a situation in which given two consecutive edges

of a geodesic polygon, any two points on each of these edges which are at distance
at least 2 from the common vertex are at distance at least from one another.

Lemma 4.7. LetP be a geodesic polygonwithtwoconsecutiveedges OEx; y and OEy; z
such that dist.x; OEy; z / D dist.x; y/. Then both the distance from OEx; y n B.y; 2 /
to OEy; z and the distance from OEy;z n B.y; 2 / to OEx;y are at least

Proof. The distance from OEx; y n B.y;2 / to OEy; z is 2 because of the hypothesis
that dist.x; OEy; z / D dist.x;y/.

Now assume that there exists p 2 OEy; z n B.y; 2 / and p0 2 OEx; y such that
dist.p; p0/ < Then dist.y; p0/ dist.y; p/ dist.p; p0/ > > dist.p; p0/.
It follows that dist.x;p/ dist.x;p0/ C dist.p0;p/ < dist.x;p0/ C dist.p0; y/ D
dist.x;y/. This contradicts the fact that dist.x;OEy;z / D dist.x; y/.

We shall also need in the sequel a way of obtaining from a fat k-gon a fat kC1/-
gon. This is described in the next lemma.
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Lemma 4.8. Let P be a geodesic k-gon with two consecutive edges OEx;y and OEy; z
such that dist.x; OEy; z / D dist.x;y/. If P is ; /-fat then the k C 1/-gon P0

obtained from P by adding as a vertex the point v 2 OEx; y with dist.v; y/ D 2
is

; 2
-fat.

Proof. Property Fat1/ for P0 follows easily from property Fat1/ for P.
Property Fat2/ holds for all the vertices different from x;v; y, by property Fat2/

in P.
The polygonal line Ox.P 0/ D Ox.P/ [ OEv; y is in the

2
-tubular neighborhood

of Ox.P /, hence at distance at least 2 from x.
The polygonal line Oy.P0/ is equal to Oy.P / [ OEx; v The line Oy.P / is at

distance from y and OEx; v is at distance 2 from y.
Finally, Ov.P0/ D Oy.P/ [ OEy; z Since dist.v;y/ D 2 it follows that

dist v; Oy 2 If there exists p 2 OEy; z such that dist.v; p/ < 2
then

dist.x;p/ dist.x; v/ Cdist.v; p/ < dist.x; v/C 2 D dist.x;y/. This contradicts
the hypothesis that dist.x; OEy; z / D dist.x; y/.

A metric spaceX can be defined to be asymptotically tree-graded withrespect toa

collection of subsetsAwithout using asymptotic cones, simply by putting conditions
on intersections of tubular neighborhoods of subsets in A, and on the behavior of
geodesics and of fat polygons with respect to such neighborhoods.

Theorem4.9 ([DS05b], Theorem 4.1andRemark4.2 3)). Let X; dist/ beageodesic

metric space and let A D fAi j i 2 Ig be a collection of subsets of X. The metric
space X is asymptotically tree-graded with respect to A if and only if the following
properties are satisfied:

1/ For every i > 0 the diameters of the intersections Ni.Ai /\Ni.Aj / are uni¬

formly bounded for all i ¤ j
2/ There exists " in 0; 1

2 andM > 0such that for every geodesicg of length ` and
every A 2 A with g.0/; g.`/ 2 N"`.A/ we have that g.OE0; ` /\NM.A/ ¤ ;.

3/ For every k 2 there exist > 0, 8 and > 0 such that every k-gon

P in X with geodesic edges which is ; /-fat satisfies P N A/ for some

A 2 A.

Remarks 4.10 ([DS05b], Theorem 4.1 and Remark 4.2). 1) Property 2/ from
Theorem 4.9 is a slight modification of the similar property appearing in Theorem 4.1
in [DS05b]. Nevertheless it implies property "

2 from [DS05b, Remark 4.2, 3)],
which accounts for the accuracy of the modified statement.

2
there existsM > 0 such that etc.”

2) As a necessary condition, 2/ can be strengthened to “for every " from 0; 1
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Notation 4.11. We denote by diami a uniform bound provided by property 1/ for
an arbitrary i 0.

Remarks 4.12 on the condition that pieces cover the space). 1) In property T2)
of the definition of a tree-graded space Definition 3.1), we might allow for trivial
geodesic triangles, that is, we might ask that pieces cover the space. This would also
change the definition of an asymptotically tree-graded space; in Theorem 4.9 in order
for the equivalence to hold the following condition would have to be added:

0/ there exists 0 such that X D SA2A N A/.

The difference between these definitions of asymptotically) tree-graded spaces

and the ones that are actually used in the paper consists in the addition of a set of
singletons to the collection of pieces P respectively, to the collection of subsets A).
Indeed, if X; A/ satisfy only 1/, 2/, 3/ but not 0/ then it suffices to add some
singletons toAin order to ensure 0/. For some > 0consider inX

nSA2A N A/
a maximal subset } with the property that dist.p; p0/ for every p; p0 2 }.
The space X coincides with

SA2A N A/ [ Sp2} N fpg/. Properties 1/ and

2/ are obviously satisfied by singletons, whence X is ATG with respect to A0 D
A[ ffpg j p 2 }g; moreover A0 also satisfies 0/.

2) Let H3 be the 3-dimensional real hyperbolic space and let Hbon/n2N
be

a countable collection of pairwise disjoint open horoballs. The complementary
set X0 D X n Fn2N

Hbon and the collection of boundary horospheres A D
f@Hbon j n 2 Ng is the typical example one has in mind when trying to define
relative hyperbolicity for metric spaces. The pair X0; A/ does not in general satisfy

0/, one has to add singletons to A to ensure that property. In order to remove
this inconvenient, we have given up the condition that pieces cover the space in the
Definition 3.1 of tree-graded spaces.

Remark 4.13. If X is a metric space ATG with respect to A, and a group G acts

K-transitively in the sense of Definition 2.1, with K 0) by isometries on X, G
permuting the subsets in A, then property 0/ is satisfied with D K.

It is for instance the case when X is itself a group and A is the collection of left
cosets of a family of subgroups.

4.2. Property T2/ and polygons with limit edges. Property 3/ in the definition
ofametric spaceX ATGwith respect toa collectionA(requiring that fat polygonsstay

in tubular neighborhoods ofsubsets inA) isused to prove property T2/ in an arbitrary
asymptotic cone of X with respect to the collection of limit sets A! requiring that
simple non-trivial geodesic triangles are contained in pieces from A!). If X is such

that any geodesic in an asymptotic cone of it is a limit geodesic for instance if X is a

CAT(0) metric space) then it suffices to have property 3/ for fat hexagons, that is:
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3/ there exists > 0, 8 and > 0 such that any geodesic hexagon ; /-fat
is contained in N A/, for some A 2 A.

This is due to the following general fact.

Proposition 4.14. Let X; dist/ be a geodesic metric space and let > 0 and 8
be two arbitrary constants. In any asymptotic cone Con! XI e; d/, any simple
nontrivial trianglewhoseedges are limitgeodesics is the limit set lim! Hn/ of asequence

Hn/ of geodesic hexagons that are ; /-fat !-almost surely.

Proof. Consider a non-trivial simple geodesic triangle in an asymptotic cone

Con! XIe; d/, whose edges OEa; b OEb; c and OEc; a appear as limit sets of sequences

OEan; b0n OEbn; c0n and OEcn; a0n ofgeodesics inX. We have thatdist.an; a0n/; dist.bn; b0n/
and dist.cn; c0n/ are of order o.dn/ !-almost surely.

Let dAn be the maximumbetweendist.OEan; b0n ; OEa0n; cn / and Note thatdAn > 0
and that dAn D! o.dn/. Take a1n to be the farthest from an point on OEan; b0n at distance
dAn from OEa0n; cn Consider then a2n the farthest from a0n point on OEa0n; cn at distance

dAn from a1n Obviously dist.a1n; a2n/ D dAn
The pairs of points b1n; b2n/ in OEbn; c0n OEb0n; an and respectively c1n; c2n/ in

OEcn; a0n OEc0n; bn are chosen similarly. Since the limit triangle is simple, it
follows that the sets fan; a0n; a1n; a2n g, fbn; b0n;b1n; b2ng and fcn; c0n; c1n; c2ng have !-almost
surely diameters of order o.dn/. Hence the sequence of geodesic hexagons Hn of
vertices a1n ; b2n; b1n; c2n; c1n; a2n with edges OEa1n;b2n OEan; b0n OEb1n; c2n OEbn; c0n

OEc1n; a2n OEcn; a0n has the property that lim! Hn/ is It remains to prove that Hn
is !-almost surely ; /-fat.

Fat1/: The fact that the edge OEa1n; a2n is at distance O.dn/ from OEb2n; b1n [OEb1n; c2n [OEc2n; c1n and Lemma 4.7 imply that OEa1n ; a2n satisfies property Fat1/.
In the same manner it can be shown that the edges OEb1n;b2n and OEc1n; c2n satisfy

Fat1/.
The edge OEa1n; b2n is at distance O.dn/ from OEc1n; c2n The choice of a1n and of the

pair b1n; b2n/ implies that OEa1n; b2n is at distance at least from OEb1n; c2n [ OEc1n; a2n

Lemma 4.7 allows to conclude that OEa1n; b2n satisfies Fat1/.
Similar arguments show that the edges OEb1n; c2n and OEc1n; a2n satisfy Fat1/.

Fat2/: The distance from a1n to OEa2n;c1n is at least by the choice if a1n while the
distance to OEb2n; b1n [ OEb1n; c2n [ OEc2n; c1n is O.dn/. The same kind of argument shows
that Fat2/ is satisfied !-almost surely by all the vertices of Hn.

In general not every geodesic in an asymptotic cone is a limit geodesic see the
example in the end of Section 2.2). Thus, in order to ensure that in every asymptotic
cone every non-trivial simple geodesic triangle is contained in some limit set from

A! i.e. property T2/), in [DS05b] property 3/ is required for all fat polygons, not
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just for hexagons, and it is combined with the fact that limit sets are closed, and with
the following result.

Lemma 4.15 ([DS05b], Proposition 3.34). Let be an arbitrary simple geodesic
triangle in Con! XIe; d/. For every" > 0sufficiently small there exists k0 D k0."/
and a simple geodesic triangle " with the following properties:

a) distH ; "/ ";

b) " contains the midpoints of the edges of ;
c) for every > 0 and 8 the triangle " is the limit set lim! P"n of a

sequence P "
n/ of geodesic k-gons in X, for some k k0, that are ; /-fat

!-almost surely.

Remark 4.16. If is non-trivial then the set of midpoints of edges of has
cardinality 3, hence the triangles " are also non-trivial.

In this section we prove that if in every asymptotic cone property T1/ holds for
the collection of limit sets A! that is, two distinct sets in A! intersect in at most
one point), then property 3/ for the collection A, granting that fat hexagons stay in
tubular neighborhoods of subsets in A, suffices to deduce property T2/ for A! i.e.

that every simple non-trivial geodesic triangle is contained in a set from A!). To this
end, we define the following property in an asymptotic cone Con! XI e; d/:

.…k/ every simple non-trivial k-gon with edges limit geodesics is contained in a

subset from A!.

Corollary 4.17. Assume that in an asymptotic cone Con! XI e; d/ a collection A!
of closed subsets satisfies properties T1/ and .…k/ for every k 2 N; k 3. Then

A! satisfies T2/.

Proof. Consider a simple non-trivial geodesic triangle in Con! XI e; d/. By
Lemma 4.15 for every large enough k 2 N there exists a simple non-trivial geodesic
triangle k at Hausdorff distance at most 1

k
from containing the midpoints of

the edges of moreover k D lim! P k/
n where P k/

n is n-!-almost surely a

geodesic m-gon, m D m.k/. By property .…m/ the triangle k is contained in some

Ak 2 A!. All Ak contain the midpoints of the edges of Property T1/ implies
that there exists A 2 A! such that Ak D A for all k. All k are in A, is the limit
of k with respect to the Hausdorff distance, and A is closed, therefore A.

In view of Corollary 4.17 it suffices to prove that A! satisfies .…k/ for all k 3
to deduce that A! satisfies property T2/.

Obviously .…k/ implies .…i/ for everyi < k. It turns out that with the additional
assumption that T1/ is satisfied, the converse implication also holds.
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Lemma 4.18. Assume that in an asymptotic cone Con! XI e; d/, the collection of
subsets A! satisfies the properties T1/ and .…3/. Then A! satisfies property .…k/
for every k 3.

Proof. We prove property .…k/ by induction on k. The cases k D 2 and k D 3 hold
by hypothesis. Assume that the statement is true for every k m 1 and consider
a simple non-trivial geodesic m-gon P in Con! XI e; d/, m 4, with edges limit
geodesics.

Let OEx; y and OEy; z be two consecutive edges of P, in clockwise order. Denote
by L1 the union of the two edges OEx; y [OEy; z of P, and by L the union of the other
m 2 edges of P, in clockwise order.

Consider a limit geodesic g joining x and z. If g coincides with L1 or with L
then P is a simple geodesic polygon with at most m 1 edges, all of them limit
geodesics. By the inductive hypothesis P is contained in a subset A in A!.

Assume that g does not coincide either with L1 or with L.
Step 1. We prove that g [ L is contained in some A 2 A!.

Let 2 L n g. Lemma 3.7 implies that is in the interior of a simple T -bigon
formed by L and g, of endpoints a and b, with a closer to x than b on L. This
T -bigon is a geodesic polygon with at most m 1 edges which are limit geodesics,
therefore by the inductive hypothesis it is contained in a subset A 2 A!.

If a D x and b D z then g [ L is a simple T -bigon and it is contained in some

A 2 A! by the inductive hypothesis. Assume therefore that a;b/ ¤ x; z/. Without
loss of generality we may assume that a ¤ x.

We apply Proposition 3.9 to L1, g1 D g, and g2 D L2 the sub-arc of L in
between x and Property 3) is satisfied by the hypothesis of the induction. It
follows that the T -bigon formed by g and L of endpoints x and a is contained in
some A1 2 A!.

The point a is in LnL1, hence it is in g nL1. By Lemma 3.7, a is in the interior
of some simple T -bigon formed byL1 and g, and by .…3/ this T -bigon is in a subset
A01 2 A!. Since A0

1\A and A01\A1 contain non-trivial sub-arcs of g property T1/
implies that A D A01 D A1.

If moreover b ¤ z, a similar argument gives that the T -bigon formed by g and

L of endpoints z and b is contained in A see Figure 4).

a b
A1 A A2

x z
A0

1
A0

2

L
g

L1

Figure 4. Step 1 in the proof of Lemma 4.18.
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We conclude that g[L is contained in A.

Step 2. We prove that L1 is also contained in A. Property .…3/ implies that any
non-trivial simple T -bigon formed by L1 and g is contained in a subset in A!. We
apply Lemma 3.8 to L1 and g A and we conclude that L1 A. Consequently A
contains L1[L D P.

Corollary 4.19. Assume that in an asymptotic cone Con! XI e; d/, the collection of
closed subsets A! satisfies properties T1/ two distinct subsets from A! intersect in
at most one point) and .…3/ simple non-trivial triangles with edges limit geodesics
are contained in subsets from A!). Then A! satisfies property T2/ i.e., all simple
non-trivial geodesic triangles are contained in subsets from A!).

Corollary 4.20. LetX be a geodesic metric space andAa collection of subsets inX,
such that property 3/ is satisfied i.e., fat hexagons are contained in tubular
neighborhoods of subsets from A), and such that in any asymptotic cone Con! XI e;d/,
the collection of limit subsets A! satisfies property T1/. Then A! satisfies property

T2/.

Note that the only thing missing in Corollary 4.20 to conclude that X isATG with
respect to A is that A! is composed of geodesic subsets.

Another useful consequence of Proposition 4.14 is the following.

Corollary 4.21. Let X; dist/ be a geodesic metric space. Assume that for some

> 0 and 8 the set of ; /-fat geodesic hexagons is either empty or composed
of hexagons of uniformly bounded diameter. Then X is hyperbolic.

Proof. Proposition 4.14 implies that in any asymptotic cone of X any simple triangle
with edges limit geodesics is trivial. This statement can be extended by induction to
all polygons. Indeed, suppose that in any asymptotic cone of X for all 3 k m 1

all simple k-gons with edges limit geodesics are trivial. Consider P a simple m-gon
with edges limit geodesics in some Con! XI e; d/. Let OEx;y and OEy; z be two
consecutive edges of P and let g be a limit geodesic joining x and z. All simple
T -bigons formed by OEx;y [ OEy; z and g must be trivial by the inductive hypothesis,
thus g D OEx; y [ OEy; z It follows that P is a simple m 1/-gon with edges limit
geodesics, hence by the inductive hypothesis it is trivial.

Lemma 4.15 and Remark 4.16 imply that in any Con! XI e; d/ any simple
geodesic triangle must be trivial. It follows that Con! XI e;d/ is a real tree, and
since this holds for all asymptotic cones we conclude that X is hyperbolic ([Gro93,

2:A], see also [Dru02, 3]).

4.3. New definitions, useful for the rigidity of relatively hyperbolic groups. In
this section new versions of the definition of an ATG metric space are stated and
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proved. They play an important part later on, in the proof of the quasi-isometric
invariance of relative hyperbolicity.

Theorem 4.22. In Theorem 4.9 the following modifications can be made in the list
of properties defining an asymptotically tree-graded metric space:

Modif1/ property 3/ requiring that fat polygons stay in tubular neighborhoods of
subsets inAcan be replaced by property 3/ requiring the same thing but
only for hexagons;

Modif2/ property 2/ can be either maintained or replaced by one of the following
two properties:

2/ there exists > 0 andM 0 such that for any geodesic g of length ` and
any A 2 A satisfying g.0/; g.`/ 2 N ` A/, the middle third g 3̀ ; 2`

3
is

contained in NM.A/;
Qconv/ uniform quasi-convexity of pieces) there exists t > 0 and K0 0 such

that for every A 2 A, K K0 and x; y 2 NK.A/, every geodesic joining
x and y in X is contained in NtK.A/.

Proof. Assume that X is ATG with respect to A. We prove that X; A/ satisfies
properties 2/ and Qconv/. Property 3/ is obviously satisfied, as it is a particular
case of property 3/.

The uniform quasi-convexity condition Qconv/ is satisfied by Lemma 4.3 in
[DS05b].

Property 2/ can be obtained for any < 1
6t where t is the constant from

Qconv/, as follows. Consider a geodesic g of length ` and A 2 A as in 2/. We
may assume that ` K0, otherwise g would be contained in NK0

2
By Qconv/ the

geodesic g is then contained in Nt ` A/. If D t < 1
6 then by Theorem 4.9 and

Remark 4.10 there exists M D M. / such that g 0 ; 3̀
and g 2`

3 ; ` intersect

NM.A/. Uniform convexity implies that g 3̀ ; 2`
3

is contained inNtM0.A/, where
M0 D max.M; D0/.

It remains to prove the converse statements in Theorem 4.22, i.e., that any of
the triples of properties 1/&. 2/&. 3/, 1/&. 2/&. 3/ or 1/&.Qconv/&. 3/
implies that X isATG with respect toA. We begin by proving that the first two triples
of properties are equivalent to the last one.

The implication 1/&. 2/ Qconv/ is proved in [DS05b, Lemma 4.3].

1/&. 2/ Qconv/: The constant K0 in Qconv/ is taken equal to the constant

M in 2/.
Suppose by contradiction that for every n 2 N there exists An 2 A, Kn M

and xn; yn 2 NKn An/ such that a geodesic OExn; yn is not contained in NnKn An/.
For each n 2 N we define Dn to be the infimum over the distances dist.xn; yn/
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between pairs of points satisfying the properties above for some set in A. In what
follows we assume that we chose xn; yn at distance in DnC1 of each other. Since
OExn;yn is in Nin=2.fxn; yng/ Nin=2CKn An/ it follows that 1

2n 2 in Kn. In
particular for n largeenoughKn < in, where > 0is the constant in 2/. It follows
that the middle third OEan;bn of OExn;yn is contained inNM.An/. SinceKn M, the
fact that OExn;yn 6 NnKn An/ implies that either OExn; an or OEbn; yn is not contained

in NnKn An/. It follows that Dn in DnC1 hence that the sequence Dn/ is
3 3

uniformly bounded. This contradicts the fact that Dn .2n 2/M.
1/&.Qconv/&. 3/ 2/; 2/: Let gW OE0; ` X bea geodesic with endpoints

x D g.0/ and y D g.`/ contained in N"`.A/ for some A 2 A. We shall prove that
for a fixed positive constant D, the geodesic g intersects ND.A/.

According to Qconv/, the geodesic g is contained in Nt"`.A/.

Notation 4.23. We denote t" by and we assume in what follows that < 1
8

We
denote byD the maximum between tK0C4 and diami with the notation 4.11)
for i D max. ; tK0/. Here t and K0 are the constants appearing in Qconv/, while
; ; are the constants appearing in 3/.

Supposebycontradiction thatg does not intersectND.A/. Note thatsince ` D
it follows that ` > 8D.

Consider x0 and y0 points in A such that dist.x; x0/ and dist.y; y0/ are at most "`.
By Qconv/, a geodesic g0 joining x0 and y0 is contained in NtK0 A/.

Let c 2 g and c0 2 g0 be two points such that dist.c;c0/ D dist.g; g0/. Without
loss of generality we may suppose that dist.x; c/ 2̀

We may also suppose that
dist.x;x0/ D dist.x; g0/. In order to transform the 4-gon of vertices x;x0; c; c0; into
a fat polygon we make the following choices. Let x1 be the point on g between x
and c which is farthest from x and at distance at most 2 from OEx; x0 Let x2 be the
farthest from x point on OEx; x0 which is at distance 2 from x1.

We prove in the sequel that the geodesic pentagon of vertices x1; x2; x0; c0; c is

; 2 /-fat. To simplify we shall denote its edges by OEv; w if v; w are two consecutive
vertices, keeping in mind that OEx1; c g and that OEx0; c0 g0.

Fat1/: A point in OEc;c0 nN2 fc; c0g/ is at distance at least 1
2 2 ` from OEx; x0

hence at distance at least 1
2 2 ` 2 of OEx1; x2 Since ` > 8D > 32 it

follows that OEc; c0 n N2 fc; c0g/ is at distance at least from OEx1; x2 [ OEx2; x0

The choice of c; c0 implies that all points in OEc;c0 n N2 fc; c0g/ are at distance
at least 2 from g and from g0.

The points in OEx1; c nN2 fx1; cg/ are at distance at leastD tK0 from g0, and at

distance at least 2 from OEx2;x0 Lemma 4.7 allows to conclude that OEx1; c satisfies
property Fat1/.

The distance between OEx1; x2 and OEc; c0 is at least 1
2 2 ` 2 and the one

between OEx1; x2 and OEx0; c0 is at least D tK0 2 Thus, it suffices to verify
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that the distance between OEx1; x2 n N2 fx1;x2g/ and OEc; x1 [ OEx2; x0 is at least
According to the choices of x1;x2 this distance is 2 This, and Lemma 4.7 also
imply that OEx2; x0 satisfies Fat1/.

The fact that the edgeOEx0; c0 is at distance at leastD tK0 2 from g[OEx1; x2
together with Lemma 4.7, imply that OEx0;c0 satisfies Fat1/.

Fat2/: The vertex c0 is at distance at least D tK0 2 from OEc; x1 [ OEx1; x2
and at distance at least 1

2 2 ` from OEx2; x0

The vertex c is at distance at least D tK0 from OEx0; c0 and at distance at least
1
2 2 ` 2 from OEx1; x2 [ OEx2; x0

We have chosen x1 at distance 2 from OEx2;x0 The same vertex is at distance
at least D tK0 from OEx0; c0 and at least 1

2 2 ` 2 from OEc; c0

Similarly, x2 is at distance 2 from OEx1; c at distance at least 1
2 2 ` 2

from OEc; c0 and at least D tK0 2 from OEx0;c0

The vertex x0 is at distance at least D tK0 2 from OEc; x1 [ OEx1; x2 and at

2 2 ` from OEc; c0least 1

The pentagon of vertices x1; x2; x0; c0; c is ; 2 /-fat. Lemma 4.8and the fact that
dist.c;c0/ D dist.c; OEc0;x0 / implies that by adding a vertex on OEc; c0 this pentagon
becomes a hexagon ; /-fat. Therefore by 3/ it is contained in N A0/ for some
A0 2 A. In particular the edge OEx0; c0 is contained in N A0/\NtK0 A/. This edge

has length at least `
4 > 2D and D is at least diami for i D max. ;tK0/. It follows

that A D A0 and thatD < which is a contradiction.
We conclude that property 2/ is satisfied for " < 1

8t and for D chosen above.
Property 2/ is obtained as follows. If a geodesic gW OE0; ` X joins two points

inNi`.A/ then it is contained inNti`.A/ by Qconv/. Ifi < "
3t

then by 2/ the

subgeodesics g 0; 3̀
and g 2`

3 ; 2`
3

is contained in NtM A/.
3 ; ` intersect NM.A/. Then by Qconv/, g `

In order to finish the proof of Theorem 4.22 it now suffices to prove the following.

1/&. 2/&.Qconv/&. 3/ X is ATG with respect to A in the sense of Definition

4.1.

In an asymptotic cone Con! XI e; d/, the limit sets in A! are closed. Property
Qconv/ easily implies that all subsets in A! are geodesic.

The fact that two distinct limit subsets from A! intersect in at most a point i.e.,
property T1/) is deduced from 1/ and 2/ as in [DS05b, Lemma 4.5]. Properties

T1/&. 3/ imply that non-trivial simple geodesic triangles are contained in subsets

from A! i.e. property T2/) by Corollary 4.20.

In the new definitions of ATG metric spaces provided by Theorem 4.22 property

3/ can be still weakened, in the following sense.

Proposition 4.24. For any > 0 property 3/ can be replaced in Theorem 4.22 by
the following version of it, in which only large hexagons are taken into account:
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3/ there exists > 0, 8 and > 0such that any geodesic hexagon ; /-fat
of diameter at least is contained in N A/, for some A 2 A.

Proof. Indeed, as a sufficient condition 3/ is used in combination with Proposition

4.14 to prove that in any asymptotic cone property .…3/ holds i.e., every simple
non-trivial triangle with edges limit geodesics is contained in a limit set lim! An/
with An 2 A).

Given, in an asymptotic cone, such a simple non-trivial triangle with edges limit
geodesics, and the sequence of hexagons Hn provided for this triangle by Proposition

4.14, the sequence of diameters of Hn has !-limit 1. Property 3/ suffices
therefore to obtain property .…3/.

Property 3/ is also used in the proof of Theorem 4.22, combined with 1/ and

Qconv/, to deduce property 2/. Therealso it can be replaced by 3/, for any large
Indeed, it suffices to take, in the proof of the implication 1/&.Qconv/&. 3/
2/, the constant D larger than tK0 C to obtain that the geodesic pentagon with

vertices x1; x2;x0; c0; c has diameter at least dist.c; c0/ D tK0 > That
pentagon is ; 2 /-fat, hence by Lemma 4.8 it can be made into a hexagon ; /-

fat of diameter larger than ; therefore by 3/ it is contained in N A0/ for some
A0 2 A. The rest of the argument is carried out similarly.

Corollary 4.25. Let Ared be the set of A 2 A such that N A/ contains a ; /-fat
geodesic hexagon of diameter at least Then the space X is ATG with respect

to Ared.

Proof. Since Ared A, and A satisfies 1/ and 2/, the same properties are
satisfied by Ared. Property 3 / is also satisfied by Ared, hence by Proposition 4.24,

X is ATG with respect to Ared.

Corollary 4.26. For every > 0 the space X is also ATG with respect to the subset

A in A composed of all the subsets of diameter at least in A.

Proof. Indeed A A implies that properties 1/ and 2/ are satisfied by A
Let D C 2 Then Ared A which implies that property 3/ is satisfied

by A By Proposition 4.24, X is ATG with respect to A

4.4. New definition, closer to the definitionof hyperbolicity. In [DS05a] a version
for groups of the following notion has been introduced.

Definition 4.27. Let X be a geodesic metric space and let A be a collection of
subsets of X. We say that X is /-asymptotically tree-graded with respect to A if
for every C 0 there exist two constants and i such that every triangle xyz with
.1; C/-almost geodesic edges is in one of the following two cases:
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C) there exists a 2 X such that xB.a; / intersects each of the sides of the triangle;

P) there exists A 2 A such that Nx A/ intersects each of the sides of the trian¬

gle, and the entrance resp. exit) points x1; y1; z1 resp. y2;z2; x2) of the sides
OEx; y ; OEy; z ; OEz; x in from) Nx A/ satisfy

dist.x1; x2/ < i; dist.y1; y2/ < i; dist.z1; z2/ < i:

See Figure 5, taken from [DS05b].

x

y

z

x1

y1

z1

y2

z2

x2

Nx A/

Figure 5. Case P) of Definition 4.27.

In Definition 4.27, C) stands for “center”, since the point a is in some sense a

center of the triangle xyz; P) stands for “piece”, since in this case the triangle xyz
has a central piece.

Remark 4.28. IfX isa geodesicmetric space in which for some constant > 0every
geodesic triangle satisfies property C), then X is a hyperbolic space. Conversely, in
a hyperbolic geodesic metric space for every L 1 and C 0 there exists > 0
such that every triangle with L; C/-quasi-geodesic edges satisfies property C).

Remarks 4.29. 1) If a metric space X isATG with respect to a collection of subsets

A then X is /-ATG with respect to A; this follows from [DS05b, Corollary 8.14
and Lemma 8.19].

Moreover, according to [DS05b, Corollary 8.14] if a geodesic triangle is in case

P) then for every 0 there exists i0 such that the pairs of entrance points in
Nx 0.A/ are at distance at most i0.
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2)The notionof /-ATGspace is weaker than the one ofATGspace. For instance

if X is a geodesic hyperbolic space and if A is any collection of subsets covering
X, then X is /-ATG with respect to A, and the collection A needs not satisfy
property 1/ requiring uniformly bounded diameter for intersections of bounded
radius tubular neighborhoods of distinct subsets in A, or property Qconv/ requiring
uniform quasi-convexity for subsets in A.

It turns out nevertheless that one can formulate an equivalent definition of ATG
metric spaces using the /-property.

Theorem 4.30. Let X; dist/ be a geodesic metric space and let A be a collection of
subsets of X. The metric space X is asymptotically tree-graded with respect to A if
and only if X; A/ satisfy properties 1/ and 2/ from Theorem 4.9, and moreover

X is /-ATG with respect to A.

Proof. The direct implication has already been discussed, we now prove the converse
statement, that is, we prove that 1/&. 2/&. / imply that X is asymptotically
treegraded with respect to A.

In order to simplify some technical arguments, we make the assumption that for
allC > 0the constant in the /-property is larger than the constantM appearing in
property 2/. By Remark 4.29, 1), if X isATG then such a choice of is possible.

By [DS05b, Lemma 4.3] properties 1/&. 2/ imply property Qconv/ on the
quasi-convexity of subsets in A. From this property follows that in any asymptotic
cone Con! XI e; d/ the collection A! is composed of closed geodesic subsets.

Again 1/&. 2/ imply property T1/ for A! i.e. that distinct subsets from A!
intersect in at most one point). According to Corollary 4.19, in order to conclude
that Con! XI e;d/ is tree-graded with set of pieces A! and thus finish the proof of
Theorem4.30), it suffices toprove property .…3/, i.e., that simple non-trivial triangles
with edges limit geodesics are contained in subsets from A!.

We split the proof of .…3/ into several steps, which we formulate as separate
lemmata. Themain and mostdifficult step is Lemma4.33 stating that 1/&. 2/&. / imply

that fat quadrilaterals stay close to subsets inA. From Lemma 4.33 it may be first
deduced that property .…2/ is satisfied byA! in any asymptotic cone Lemma 4.35),
then that property .…3/ is satisfied by A! Lemma 4.36).

Lemma 4.31 entrance points in nested tubular neighborhoods). Let X; dist/ be a

geodesic metric space and let A be a collection of subsets of X satisfying property

2/ for some " 2 OE0; 1=2/ andM > 0.
Let M, let g be a geodesic and A a subset in A such that g intersects

Nx A/. If e and e are the entrance points of g in Nx A/ and respectively Nx A/
then dist.e ; e / "
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Proof. If "dist.e ; e / > then by 2/ thesub-arcof g between e and e intersects

NM.A/ N A/, which contradicts the definition of e

Lemma 4.32. If X; A/ satisfy properties / and 2/ then for every C 0 there
exist 0 and 0 such that for any two geodesics g and g0 in X with g D g0

and dist.gC; g0C/ C the following holds:

1) any point z on g0 is either contained in Nx g/ or it is contained in Nx A/ for
some A 2 A such that Nx A/ intersects g;

2) ifNx A/ intersects gand g0, and e; f and e0; f 0 are the entrance andexit points
from Nx A/ of g and respectively g0, then dist.e;e0/; dist.f; f 0/

Proof. Let p be the path gt gC; g0C where gC; g0C is a geodesic segment joining

gC and g0C It is a .1; 2C/-almost geodesic. Let and i be the constants of property

/ for 2C, and let z be an arbitrary point on g0, dividing g0 into two sub-arcs, g1
and g2. The triangle of edges g1, g2 and p is either in case C) or in case P) of
Definition 4.27.

If it is in case C) then there exist a1 2 g1, a2 2 g2 and b 2 p such that the set

fa1;a2;bg has diameter at most 2 The point z is on a geodesic joining a1 and a2,
hence it is at distance at most 3 from b, thus it is contained in Nx3 CC g/.

If is in case P) then there exists A 2 A with Nx A/ intersecting g1, g2 and p.
Let x1; z1, z2; y1 and x2;y2 be the entrance and exit points from Nx A/ of g1, g2
and p respectively. Then dist.x1; x2/;dist.y1; y2/ and dist.z1; z2/ are all at most i.
Since z is on a geodesic joining z1 and z2, z 2 Nx Ci=2.A/. Note that Nx A/
intersects p, therefore Nx CC A/ intersects g.

Take D max 3 C C ; C i2 ; C C
The points x1 and y1 are the entrance and respectively the exit point of g0 from

Nx A/. If we consider e0 and f 0 the entrance and exit points of g0 from Nx A/,
Lemma4.31 implies that dist.x1; e0/ and dist.y1; f 0/are at most " Hencedist.e0; x2/
and dist.f 0; y2/ are at most " C i.

Let e and f be the entrance and exit points of g into from) Nx A/. If either x2
or both x2 and y2 are in g then they are the entrance and respectively the exit point
of g from Nx A/. Lemma 4.31 implies that either dist.x2; e/ or both dist.x2;e/ and

dist.y2; f / are at most " hence that either dist.e; e0/ or both dist.e; e0/; dist.f; f 0/

are O.1/.
Assume that y2 2 OEgC; g0C Then gC is in Nx A/, hence gC D f It follows

that dist.f;y2/ C and that dist.f; f 0/ C C " C i.
Assume that x2 2 OEgC; g0C The point gC is in Nx A/, and if "dist.e; gC/ >

then g intersects NM.A/ between e and gC.
In the beginning of the proof of Theorem 4.30 we made the assumption that for

allC > 0the constant in the /-property is larger than the constantM in property
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2/. It follows that NM.A/ N A/, hence g intersects N A/ between e and

gC. This contradicts the fact that x2 is the entrance point of p into Nx A/. Thus
dist.e; gC/ and dist.e; x2/ C C, whence dist.e; e0/ 2" " " C C C i.

Lemma 4.33. Assume that X; dist/ is /-ATG with respect to A, and that X;A/
satisfies properties 1/, 2/ from Theorem 4.9 and the uniform quasi-convexity
condition Qconv/.

Then there exist > 0, 8 and > 0 such that any geodesic quadrilateral
which is ; /-fat is contained in N A/ for some A 2 A.

Proof. Let P be a ; /-fat geodesic quadrilateral with vertices x; y; z; w in
counterclockwise order. Let OEx; z be a geodesic joining the opposite vertices x and z.

Case 1. Assume that both geodesic triangles xyz and xzw have a center, that is, they
are in case C) of Definition 4.27. Then there exists a1 2 OEx;y ; a2 2 OEy; z and

a3 2 OEx; z such that the set fa1;a2; a2g has diameter at most 2 Likewise there
exists b1 2 OEz;w ; b2 2 OEw; x and b3 2 OEz;x such that fb1; b2; b3g has diameter at

most 2 If > 2 then a1; a2 2 B.y; 2 / and b1; b2 2 B.w; 2 /

a4 a5

Nx A/

a3

Nx A0/

x w

a1

b2

y z
a2

a6

b3
b1

a7

Figure 6. Case 1 in the proof of Lemma 4.33.

Without loss of generality we may assume that a3 2 OEx; b3

Notation 4.34. For C D max .2 ; i/ we denote by and the constants given by
Lemma 4.32.

Lemma 4.32 applied to OEx;b2 and to a3 2 OEx;b3 implies that either a3 2
Nx OEx; b2 / or a3 2 Nx A/ such that the entrance respectively exit point, a4; a5, of
OEx; b3 into from) Nx A/ are at distance at most from OEx; b2 If > 2 C then
by Lemma 4.6 the first case cannot occur.
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In thesecondcasewehave thatdist a3; fa4; a5g/ is at least 2 Lemma4.32
applied to OEz; a2 and to a5 2 OEz;a3 implies that either a5 2 Nx OEz; a2 / or that a5 2
Nx A0/ such that the entrance and the exit point a6; a7, of OEa3; z from Nx A0/ are at

distance at most fromOEz; a2 The first case cannot occur if > C In the second
case dist a5; fa6; a7g/ 2 The intersection OEa3; a5 \ OEa6; a5 has length at

least 2 2 By the uniform quasi-convexity of subsets in A Qconv/ this
intersection is contained in Nt C1.A/\Nt C1.A0/. If > 2 C2 Cdiamt C1C1
then A D A0.

The point a4 is the entrance point of OEx;b3 in Nx A/ while a6 is the entrance
point of OEa3;z in Nx A/. If a4 2 OEa3; b3 then a4 D a6, and this point is at distance
at most from both OEx; w and OEy; z If > 2 then this cannot occur. Thus we may
assume that a4 2 OEx; a3 Likewise we have that a7 2 OEb3;z see Figure 6).

We apply Lemma 4.32 toOEx; a1 and to a4 2 OEx; a3 Ifwe are in thesecondcaseof
the conclusion then a4 2 xN A00/, and the entrance and exit point, a04; a00

4 of OEx; a3
from Nx A00/ are at distance at most from OEx; a1 If dist.a4; a00

4/ diamt C1 C1
then A00 D A and a4 D a04 Thus, in all cases a4 is at distance O.1/ from OEx; a1
Recall that a4 is at distance at most from OEx; w It follows that if is large enough
then a4 2 B.x;2 C /

A similar argument gives that a7 2 B.z; 2 C /
We have thus that fx; zg Nx2 C C A/. Also, since fa3;b3g OEa4; a7

Nxt A/ it follows that fy; wg Nx2 C2 Ct A/. The quasi-convexity property
Qconv/ applied to A implies that P Nx A/ where D t.2 C C 2 C t /

Case 2. Assume that the triangle xyz has a central piece, i.e., it is in case P) of
Definition 4.27, while xzw has a central point, i.e., it is in case C). Then there exists

A 2 A such that Nx A/ intersects all the edges of xyz. Moreover if x2; y1 are the
entranceandexit pointof OEx; y inNx A/, while y2;z1 and z2;x1 are the entranceand

exit points of OEy; z and respectively OEz;x in Nx A/ then dist.x1;x2/; dist.y1;y2/
and dist.z1; z2/ are at most i.

Let also b1 2 OEz; w b2 2 OEw; x and b3 2 OEx; z be such that fb1; b2; b3g
has diameter at most 2 If > 2 then property Fat1/ implies that fb1; b2g
B.w; 2 /
Case 2.a. Assume that b3 2 OEx1; z2 Note that dist.b3; x1/ dist.w; OEx; y / 2
2 i 6 2 i. Same for dist.b3; z2/. Thus for large both dist.b3; x1/ and

dist.b3; z2/ are large.
Lemma 4.32 applied to x1 2 OEx; b3 and to OEx;b2 implies that either x1 2

xN OEx; b2 / or x1 2 xN A1/ such that the entrance and exit points x01; x00
1 of OEx; b3

fromNx A1/ are at distance at most from OEx; b2 In the latter case if dist.x1; x00/ >1
diam where D t max. ; / C 1 then A1 D A and x1 D x01 Thus in all cases

dist.x1; OEx; w / D O.1/. For large enough it follows that x2 2 B.x; 2 / hence

x 2 Nx2 C A/. A similar argument gives that z 2 Nx2 C A/.
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If > i then dist.y;y1/ < 2 and y 2 Nx2 C A/.
Also b3 2 OEx1; z2 Nxt A/, hence w 2 Nxt C2 C2 A/. We conclude by the

quasi-convexity property Qconv/ that P N A/ for some D O.1/.

Case 2.b. Assume that b3 62 OEx1; z2 Without loss of generality we may assume that
OEx1; z2 OEx; b3/.

Lemma 4.32 applied to b3 2 OEz2; z and to OEz1; z implies that either b3 2
Nx OEz1; z / or that b3 2 Nx B/ such that Nx B/ intersects OEz1; z and if b4; b5
are the entrance and exit point of OEz2;z from Nx B/ then these points are at distance
at most from OEz1; z For large enough the first case cannot occur. In the second
case dist.b3; fb4; b5g/ dist.w; OEy; z / 2. C / 6 2

Applying Lemma 4.32 now to b4 2 OEx; b3 and to OEx; b2 gives that for large
enough b4 2 Nx B0/ such that Nx B0/ intersects OEx;b3 and the entrance and exit
points b6; b7 of OEx; b3 from Nx B0/ are at distance at most from OEx; b2 see

Figure 7). Moreover dist.b4; fb6; b7g/ 2 Thus Nxt B/\ Nxt B0/ contains
OEb4; b7 \ OEb4; b3 of length min.6 2 ; 2 / For large we conclude that

B D B0.

b7

w

x1

x

y z

x2

y1

y2
z1

Nx A/

b2

Nx B/

Nx B0/

b6

z2
b4

b3
b1

b5

Figure 7. Case 2.B in the proof of Lemma 4.33.

The point b6 is the entrance point of OEx; b3 into Nx B/ while b4 is the entrance
point of OEz2;z into Nx B/. If b6 2 OEz2; b3 then b6 D b4 and dist.OEy; z ; OEx; w /
2 For large enough this case is impossible. Thus b6 2 OEx; z2

The intersectionOEx1; z2 \OEb6; z2 is inNxt A/\Nxt B/. Note thatdist.b6;z2/
i, thus for large we may assume that dist.b6; z2/ > diam C 1 with

D t max. ; / C 1.

If dist.x1; z2/ diam C1 then fx2; x1; z1g has diameter O.1/ and we are back
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in Case 1 with a1 D x2; a2 D z1 and a3 D x1 and with the constant possibly
larger. We may then use the proof in Case 1 to finish the argument.

Assume now that dist.x1; z2/ > diam C 1. Then A D B and b5, the entrance
pointof OEz; z2 intoNx B/, isalso the entrance pointof OEz; x intoNx A/. Asz2 is the
entrance point of OEz; x into Nx A/, Lemma 4.31 implies that dist.z2;b5/ D O.1/.

By construction b3 2 OEz2; b5 hence dist.b3; z2/ D O.1/. On the other hand

dist.b3; z2/ dist.w; OEy; z / 2 2 i 6 2 i. Thus for large enough
we obtain a contradiction.

Case 3. Assume that both geodesic triangles xyz and xzw have central pieces, that
is, theyare in case P) of Definition 4.27. Then there existsA1 inAsuch thatNx A1/
intersects all the edges of xyz. Moreover the pairs of entrance points in Nx A1/,
x1; x2/, y1;y2/ and z1;z2/ are all at respective distances less than i. Likewise

there exists A2 in A such that Nx A2/ intersects all the edges of xzw, and the pairs
of entrance points in Nx A2/, x01 ; x02/, z01; z02/ and w1; w2/ are all at distances less

than i see Figure 8).

Nx A3/
z4

z2

x01 w2

Nx A2/
x02

x w

Nx A1/

x1
x2

y1

z3

y2 z1

w1

z01

z02

y z

Figure 8. Case 3 in the proof of Lemma 4.33.

If > i then y1; y2 2 B.y;2 / and w1;w2 2 B.w;2 /
If A1 D A2 D A then x1 D x02 z2 D z01 hence dist.x01 ;x2/ and dist.z1; z02/ are

less than 2i. If > 2i it follows that x01; x2 2 B.x;2 / and that z1; z02 2 B.z; 2 /
Thus x; y; z; w 2 Nx2 C A/, which by Qconv/ implies that P N A/ for

> t.2 C /
Assume that A1 ¤ A2. Then OEx1; z2 and OEx02; z01 are either disjoint or they

intersect in a sub-geodesic of length at most diamt C1.
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Let D t max. ; /C1. If either OEx1;z2 or OEx02; z01 is of length at most diam C1
then eitherfx2; x1;z1g or fz01; z02 ; x01g is ofdiameter atmost diam C1C2i. Therefore
we find ourselves in Case 2.B, with the constant possibly larger. We can then finish
the argument as in that case.

If both OEx1; z2 and OEx02; z01 have length larger than diam C1 and their intersection
is non-empty then either x01 and z1 or x2 and z02 are at distance at most 2iCdiamt C1.
If > 2iCdiamt C1

then this is impossible. We may therefore assume that OEx1;z2
and OEx02; z01 do not intersect, and are both of length larger than diam C 1.

Without loss of generality we may also assume that OEx1; z2 OEx; x02/ holds.
Lemma 4.32 applied to the geodesic OEx; x01 and the point z2 2 OEx; x02 implies that

either z2 2 xN OEx; w / or z2 2 xN A3/, where xN A3/ intersects OEx; x01 and the
entrance and exit points z3;z4 of OEx; x02 in Nx A3/ are at distance at most from
OEx; x01 see Figure 8). If > i C then the first case cannot occur. In the second
case we have that dist z2; fz3; z4g/ > i In particular we may assume

that dist.z2; z3/ > diam C 1. We also have the assumption that dist.x1;z2/ >
diam C 1. Then OEx1; z2 \ OEz3; z2 has diameter > diam and it is contained in

xN t A1/\ xN t A3/. Therefore A1 D A3. In particular z4, the exit point of OEx; x02

from xN A1/, and z2, the exit point of OEx; z therefore also of OEx; x02 from Nx A1/
are at distance O.1/ by Lemma 4.31. It follows that z1 and OEx; w are at distance

O.1/, and if is large enough this gives a contradiction.

Lemma 4.35. Let X; dist/ and A satisfy the hypotheses of Lemma 4.33. Then in
any asymptotic cone of X property .…2/ is satisfied by the collection of limit sets A!
i.e., any simple non-trivial bigon with edges limit geodesics is contained in a subset

from A!).

Proof. In an asymptotic cone Con! XI e; d/ consider a simple bigon of endpoints

x; y whose edges are limit geodesics. Then there exist two sequences of geodesics
OExn;yn and OEx0n; y0n such that !-almost surely dist.xn; x0n/ and dist.yn; y0n/ are of
order o.dn/, while dist.xn; yn/ and dist.x0n; y0n/ are of order O.dn/. Let mn and m0n
be the middlepoints of OExn; yn and respectively of OEx0n; y0n Let in be the maximum
between dist.OExn; mn ; OEx0n; m0

n / and where and are the constants provided by
Lemma4.33. Then inD!o.dn/. Similarly, i0n Dmax fdist.OEmn;yn ; OEm0n; y0n /; g
satisfies i0n D! o.dn/. Let x1n be the farthest from xn point on OExn; mn at distance

in from OEx0n; m0
n and let x2n be the farthest from x0n point on OEx0n;m0n at distance in

from x1n We choose in a similar manner y1n 2 OEyn; mn and y2n 2 OEy0n; m0n Since
the limit bigon is simple, it follows that the sets fxn; x0n;x1n;x2ng and fyn; y0n;y1n; y2ng
have diameters of order o.dn/ !-almost surely.

We prove that any quadrilateral having as two opposite edges OEx1n; y1n OExn; yn
and OEx2n;y2n OEx0n;y0n is ; /-fat. This suffices to finish the argument, making use

of Lemma 4.33.



Vol. 84 2009) Relatively hyperbolic groups: geometry and quasi-isometric invariance 537

Fat1/: By construction dist.OEx1n; y1n ; OEx2n; y2n / while the edges OEx1n; x2n and
OEy1n; y2n are at distance O.dn/ from each other. The rest of the property follows by
Lemma 4.7.

Property Fat2/ follows immediately from the fact that dist.OEx1n; y1n ; OEx2n; y2n /
n;x2n ; OEy1n; y2n / D O.dn/.and that dist.OEx1

The following statement ends the proof of Theorem 4.30.

Lemma 4.36. Let X; dist/ be /-ATG with respect toA. If X;A/ moreover satisfy
properties 1/ and 2/ then in any asymptotic cone of X property .…3/ is satisfied.

Proof. Let Con! XI e; d/ be an arbitrary asymptotic cone of X and let A! be the
collection of limit sets of sequences fromA. Since 1/&. 2/ Qconv/ it follows
that the sets in A! are geodesic. Also 1/&. 2/ imply that distinct limit sets from

A! intersect in at most one point, i.e. property T1/.
Let be a non-trivial simple geodesic triangle in Con! XI e; d/, whose edges

OEx; y OEy; z and OEz;x appear as limits of sequences OExn; y0n OEyn; z0n and OEzn; x0n of
geodesics in X. Then !-almost surely dist.xn; x0n /;dist.yn; y0n/ and dist.zn; z0n/ are

of order o.dn/, while the lengths of OExn;y0n OEyn; z0n and OEzn; x0n are of order O.dn/.
Let Tn be a geodesic triangle with vertices xn; yn; zn. We denote its edges by OEu; v
with u;v 2 fxn; yn;zng. The three limit geodesics gx D lim! OEyn; zn / gy D
lim! OExn; zn / and gz D lim! OExn; yn / compose the limit triangle T D lim! Tn/.

Case 1. Assume that !-almost surely the triangle Tn is in case C) of Definition 4.27.
Then there exists a1n 2 OExn; yn a2n 2 OEyn; zn and a3n 2 OEzn; xn such that the set

fa1n; a2n; a3ng has !-almost surely diameter at most 2 for some constant It follows
that lim! a1n D lim! a2n D lim! a3n D a. The point a is on the three edges

of T
Without loss of generality we may assume that a 62 fx; yg. The fact that a ¤ x

implies that either gz ¤ OEx; y or gy ¤ OEx; z Property .…2/ implies that we may
apply Proposition 3.9 to L1 D OEx;y L2 D OEx; z g1 D gz, g2 D gy and to the
intersection point a 2 gz \ gy. We conclude that the T -bigon formed by gz and gy
of endpoints a; x is contained in a subset Ax 2 A!.

Similarly we deduce that the T -bigon formed by gz and gx of endpoints a; y is
contained in a subset Ay 2 A!.

If a D z then gx Ay, gy Ax. Also a 62
OEx;y which by Lemma 3.7 implies

that a is contained in the interior of a simple T -bigon formed by OEx; y and gz. By
property .…2/ this T -bigon is contained in some A 2 A!. The intersections A\ Ax
and A \ Ay contain non-trivial sub-arcs of gz therefore by T1/ we conclude that
A D Ax D Ay. The subset A contains also gz.

Property .…2/ allows us to apply Lemma 3.8 to the pairs of arcs gx; OEy; z /
gy; OEx; z / and gz; OEx;y / and deduce that D OEx;y [ OEy; z [ OEz; x is contained

in A.
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If a ¤ z then again by Proposition 3.9 the T -bigon formed by gx and gy of
endpoints a; z is contained in a subset Az 2 A!. Since a is not a vertex in it
is contained in at most one edge of Without loss of generality we assume that
a 62 OEx; y [ OEy; z

The fact that a 62
OEx; y Lemma 3.7, properties .…2/ and T1/ imply as above

that Ax D Ay. Likewise from a 62
OEy; z we deduce that Ay D Az. Thus A D Ax D

Ay D Az contains T Property .…2/ and Lemma 3.8 imply that is also contained
in A.

Case 2. Assume that !-almost surely Tn is in case P) of Definition 4.27. Then there
exist An in A such that Nx An/ intersects all the edges of Tn. Moreover if x2n; y1n/,
y2n; z1n/ and z2n; x1n/ are the pairs of entranceand exit points fromNx A/ of OExn;yn

OEyn; zn and OEzn; xn respectively, then dist.x1n ; x2n/ ; dist.y1n ; y2n/ and dist.z1n ; z2n/
are less than i.

Let x0 D lim! x1n D lim! x2n y0 D lim! y1n D lim! y2n and z0 D
lim! z1n D lim! z2n

Assume that fx0;y0;z0g has cardinality at most 2. Assume for instance that x0 D
y0. Then the point a D x0 D y0 is in gx \ gy \ gz. With the same argument as in
Case 1 we deduce that both T and are contained in some A 2 A!.

Assume nowthatfx0;y0; z0ghas cardinality 3. The geodesic triangleT 0 ofvertices
x0; y0; z0 and with edges contained in the edges of T is included in the piece A D
lim! An/.

Proposition 3.9 implies that the T -bigon of endpoints x; x0 formed by gz and gy
is either trivial or contained in some Ax 2 A!. Similarly, the T -bigon of endpoints

y; y0 formed bygz and gx is either trivial or insomeAy, and theT -bigon of endpoints
z; z0 formed by gx and gy is either trivial or in some Az.

If x0 ¤ x then x0 cannot be contained both in OEx; y and in OEx; z Suppose that
x0

62 OEx; y Then x0 is in the interior of a non-trivial simple T -bigon formed by gz
and OEx; y This T -bigon is contained insomeBx 2 A! by .…2/, and its intersections
with Ax and with A contain a non-trivial sub-arc of gz. Hence Ax D Bx D A. Thus
the T -bigon of endpoints x;x0 is contained in A.

In the same way we obtain that the T -bigons of endpoints y; y0 and z;z0 are

contained in A. Thus in all cases T A, which by Lemma 3.8 implies that A.

5. Quasi-isometric rigidity of relatively hyperbolic groups

In this section we prove one of our main results: that if a group is asymptotically
tree-graded then it is relatively hyperbolic Theorem 5.4). We begin by proving an

intermediate result: if agroup has an equivariant asymptotically tree-graded structure
then it is relatively hyperbolic.
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Proposition 5.1 equivariantATG structure implies relative hyperbolicity). Consider
a finitely generated group endowed with a word metric G;dist/, which is ATG with
respect to a collection of subsets B. Assume moreover that G permutes the subsets

in B.
Then G is either hyperbolic, or hyperbolic relative to a family of subgroups

fH1; : : :; Hmg such that for each Hi there exists a unique Bi 2 B satisfying Hi
Bi NK.Hi/ where K is a constant depending only on G; dist/ and B.

Proof. Step 1. We first prove that only finitely many subsets in B may contain 1.
According to the quasi-convexity property Qconv/ ofB seeTheorem 4.22) there

exists > 0 such that for any x; y in some B 2 B any geodesic OEx; y is contained
in N B/. Property 1/ for B implies that there exists D such that for B ¤ B0,

N B/\N B0/ has diameter at most D
Assume that B 2 B contains 1 and has diameter at most 3D Then B

xB.1; 3D / As xB.1; 3D / is finite, only finitely many B 2 B can be in this case.

Assume that B contains 1 and has diameter larger than 3D Then B contains
some point x with dist.1; x/ > 3D The geodesic OE1;x is contained in N B/ and

it intersects the sphere around 1 of radius 2D S.1; 2D / We define a map from the
set fB 2 B j 1 2 B; diamB > 3Dg to the set of subsets of S.1; 2D / associating
to each B the non-empty intersectionN B/\S.1; 2D / By. 1/ and the choice of
D two distinct subsets B; B0 have disjoint images by the above map, in particular
the map is injective. Since the set of subsets of S.1; 2D / is finite, so is theconsidered
subset of B.

Notation 5.2. Let F D fB1;B2; : : : ; Bkg be the set of B 2 B containing 1. For
every i 2 f1; 2; : : : ; kg let

i D fj 2 f1; 2; : : : ; kg j gBi D Bj for some g 2 Gg:

For every j 2 i we fix gj 2 G such that gjBi D Bj
Define the constants Ki D maxj2 i dist.1; gj/ and K D max1 i k Ki

Step 2. We show that for every B 2 B the stabilizer Stab B/ D fg 2 G j gB D Bg
is a subgroup of G acting K-transitively on B in the sense of Definition 2.1).

Let x and b be arbitrary points in B. Both subsets b 1B and x 1B contain 1 and
are in B. It follows that b 1B D Bi and x 1B D Bj for some i; j 2 f1; 2; : : : ; kg.
Since b 1xBj D Bi it follows that j 2 i and that Bj D gjBi The last equality
can be re-written as x 1B D gj b 1B which implies that xgjb 1

2 Stab.B/, hence

that x is at distance at most dist.1;gj / from Stab.B/b. This finishes the proof of the
fact that Stab B/ acts K-transitively on B.

In particular we have that

Stab.Bi/ Bi NK Stab.Bi// for all i 2 f1; 2;: : : ; kg. 3)
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Let diam2K be the uniform bound given by property 1/ for G; B/ and i D 2K
see Notation 4.11).

If all the subsets in B have diameter at most diam2K C 1 then G is hyperbolic
by Corollary 4.21. Thus, in what follows we may assume that B contains subsets of
diameter larger than diam2K C 1.

Notation 5.3. Denote by B0 the set of B 2 B of diameter larger than diam2K C 1.
Let F 0

D F \ B0. Let F0 be a subset of F 0 such that for every B 2 F 0, its orbit
G B intersects F0 in a unique element such a subset can be obtained for instance

by considering one by one the elements Bi in F 0, and deleting from F 0 all Bj with

j 2 i; j ¤ i It follows that for every B 2 B0, the orbit G B intersects F0 in
only one element.

Let BN1; : : :; BNm be the elements of F0.

Corollary 4.26 implies that G is ATG with respect to B0. Obviously G also
permutes the subsets in B0.

Step 3. We prove that for every B 2 B0 there exists a unique j 2 f1;2; :: : ;mg and
a unique left coset gStab xBj such that

gStab xBj B NK gStab xBj : 4)

Step 3.a. Existence. Let g 2 B. Theng 1B 2 B0 and 1 2 g 1B, and so g 1B D xBj
for some j 2 f1; 2;: : : ; mg. The double inclusion 3) implies the double inclusion 4).

Step 3.b. Unicity. Assume that gStab xBj and g0Stab xBl both satisfy 4), for

j; l 2 f1; 2;: : : ; mg. Then

g xBj NK gStab xBj NK B/ N2K g0Stab xBl N2K g0 xBl :

Both g xBj and g0 xBl are inB0, in particular g xBj has diameter at least diam2K C1.
Property 1/ implies that g xBj D g0 xBl According to the definition of F0 this can
only happen if j D l Then g 1g0 is in Stab xBj and g0Stab xBl coincides with
gStab xBj

Step 4. We

Hj D Stab
prove that the group G is hyperbolic relative to fH1; : : : ; Hmg, where

Bjx
The fact that G is ATG with respect to B0, Step 3 and Remark 4.2, 2), imply

that G is ATG with respect to
°gHj j g 2 G=Hj; j 2 f1; 2; : :: ; mg : In particular

by Qconv/ each Hj is quasi-convex in G, hence each Hj is finitely generated.
Theorem 1.5 implies that G is hyperbolic relative to H1;: : :; Hm.

If G D Hj D Stab xBj then 3) implies that G D xBj

We are now ready to prove that the existence of an asymptotically tree-graded
structure on a group implies relative hyperbolicity.
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Theorem 5.4. Let G; dist/ be an infinite finitely generated group endowed with a

word metric, which is asymptotically tree-graded with respect to a collection A of
subsets of G.

Then the group G is either hyperbolic or relatively hyperbolic with respect to a

family of subgroups fH1; : : : ; Hmg, such that each Hi is contained in N~.Ai/ for
some Ai 2 A, where ~ is a constant depending only on G; dist/ and A.

Remark 5.5. IfG is hyperbolic then it is hyperbolic relative toH D f1g. Still, in this
case one cannot state that H is contained in some N~.A/ with A 2 A, because in the
definition that we adopt of asymptotically tree-graded metric spaces the finite radius
tubularneighborhoods of setsA 2 Adonot cover the whole space see Remark 4.12).

Remark5.6. Theconstant~ inTheorem 5.4 can be taken tobe themaximum between
the constantM in property 2/ formulated in Theorem 4.22), and the constant in
property 3/ formulated in Section 4.2) of G;A/.

Proof. In view of Proposition 5.1, our goal is to construct a new collection of subsets

B with respect to which the group G is ATG, and which is moreover G-equivariant.

Step 1. We begin by constructing the collection B.
The pair G; A/ satisfies properties 1/, 2/ and 3/. By Corollary 4.21, if

for > 0 and 8 from 3/ either there exists no ; /-fat geodesic hexagon in
the Cayley graph of G, or the ; /-fat geodesic hexagons have uniformly bounded
diameter, then G is hyperbolic.

Assume from now on that for every > 0 there exists a ; /-fat geodesic
hexagon of diameter at least

For ~ as in Remark 5.6 and diam~ given by property 1/ of A according to
Notation 4.11), consider the set

ˆ D fP geodesic hexagon j P is ; /-fat, diam.P / diam~ C 1g:

Let g be an arbitrary element in the groupG. The metric space G; dist/ is
asymptotically tree-graded with respect to the collection of subsets gA D fgA j A 2 Ag,
moreover the constants in the properties 1/, 2/ and 3/ for gA are the same as

for A.
Let P 2 ˆ Then P is contained in N~.gA/ for some A 2 A. If P is also

contained in N~.gA0/ for A0 2 A then N~.A/ \N~.A0/ has diameter at least the
diameter of P, hence at least diam~ C 1, consequently A D A0. Thus P defines a

map
AP

W G A; AP g/ D A such that P N~.gA/:
We may then define

AW ˆ Map G; A/; A.P/ D AP ;
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where Map G; A/ is the set of maps from G to A. Consider the equivalence relation
on ˆ induced by A, that is

P P0 A.P / D A.P 0/ P and P0 are in the same N~.gA/ for all g 2 G.

Let OEP be the equivalence class of a hexagon P inˆ To it we associate the set

BOEP D \g2G

N~ g AP g// :

We consider the whole collection of such sets

B D fBOEP j OEP 2 ˆ g :

Step 2. We prove that G; dist/ is ATG with respect to B.
According to Proposition 4.24 it suffices to prove that G; B/ satisfy property

1/ from Theorem 4.9, property 2/ from Theorem 4.22, and property 3 / from
Proposition 4.24, for some > 0. The proof relies on the simple remark that for
every r > 0,

Nr BOEP / \g2G

NrC~ g AP g// :

We begin by proving property 1/ on the uniformly bounded diameter of
intersections of tubular neighborhoods of distinct subsets in B. Let OEP ¤ OEP 0 which
is equivalent to the fact that there exists g0 2 G such that P N~ g0A/ and
P0 N~ g0A0/ with A ¤ A0. For every i > 0,

Ni BOEP /\Ni BOEP0
NiC~ g0A/\NiC~ g0A0

D g0 NiC~ A/ \ NiC~ A0 :

Property 1/ for A implies that the diameter of Ni BOEP / \ Ni BOEP0 / is
uniformly bounded.

We now prove 2/. Let be the constant appearing in 2/ for A. Take 0

D 2
and take M0 D C1~ We prove that 2/ holds for B with the constants 0 and M0.

Letg be a geodesicof length `and letOEP 2 ˆ be such thatg.0/and g.`/are in
N 0` BOEP / It follows that for every g 2 G, g.0/ and g.`/ are inN 0`C~ g AP g//.

If ~ then g Nx ~
2 ` ` 2~

fg.0/; g.`/g/ N~C~
BOEP / D

NM0 BOEP /
2`. Then for every g 2 G the geodesic g 1g of length ` has itsAssume that~ <

endpoints in N ` AP g//. Property 2/ implies that g 1g
3̀ ; 2`

3
is contained

in NM AP g// N~ AP g//.
We have thus obtained that g 3̀ ; 2`

3
is contained in N~ gAP g// for every

g 2 G. It follows that g 3̀ ; 2`
3 is contained in BOEP
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Property 3/ holds for the constants and same as in 3/ for A, for the
constant equal to 0, and D diam~ C1. Indeed every P 2ˆ is contained in BOEP

Step 3. We now show that the group G permutes the subsets in B.
First we note that if P P0 then gP gP 0 for every g 2 G. Consequently G

acts on the left on ˆ
Indeed, the set AP / is defined by the inclusion P N~ AP //. For every

g 2 G, gP N~ g AP //, hence AgP g / D AP / From this can be deduced

that P P0 gP gP 0.

Next we prove that for every g 2 G and P 2 ˆ gBOEP D BOEgP thereby ending
the proof of the fact that G permutes the subsets in B.

The translate gBOEP D T 2G N~ g AP // is equal to

\2G

N~ g AgP g / D \02G

N~ 0 AgP 0/ D BOEgP :

Proposition 5.1 and the statements proved in Steps 2 and 3 imply the conclusion
of Theorem 5.4.

An important consequence of Theorem 5.4 is the following.

Theorem 5.7. Let G be a group hyperbolic relative to a family of subgroups H D
fH1; : : :; Hng. If a group G0 is L; C/-quasi-isometric to G then G0 is hyperbolic
relative to H0 D fH01; : : : ; H0mg, where each H0 can be embedded ; /-
quasiisometrically

i
in Hj for some j D j.i/ 2 f1; 2; : : : ; ng. The constants ; / depend

only on L;C/ and on G; H/.

Proof. If the group G is finite then the group G0 is also finite. We assume henceforth
that both groups are infinite.

Let q be an L; C/-quasi-isometry from G to G0, and let Nq
be its quasi-converse,

such that dist.q B Nq; idG0/ D and dist.
Nq B q; idG/ D, where D D D.L; C/.

By Theorem 1.5, G is ATG with respect to the collection of left cosets A D fgHi j
g 2 G=Hi; i 2 f1; 2; : : : ; ngg. Theorem 5.1 in [DS05b] implies that G0 is ATG
with respect to q.A/ D fq.A/ j A 2 Ag. Moreover all constants appearing in the
properties i /, i D 1;2; 3 formulated in Theorem 4.9), j /, j D 2; 3; and Qconv/
formulated in Theorem 4.22) for G0;q.A// can be expressed as functions of L;C/

and of the constants in the similar properties for G; A/.
Theorem 5.4 implies that G0 is either hyperbolic or relatively hyperbolic with

respect to a family of subgroups fH01; : : : ; H0m g; moreover each H0i is contained
in N~ q Ai // for some Ai 2 A, where ~ is a constant depending on L; C/, on

the constant M in 2/ for G; A/, and on the constant in 3/ for G; A/ see

Remark 5.6).
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Let 1 W N~ q Ai // q Ai/ be a map such that dist.x; 1.x// ~ Then 1
is a .1; 2~/-quasi-isometric embedding. Let 2 W ND.Ai / Ai be a .1; 2D/-
quasiisometric embedding constructed similarly. The restriction to H0i of 2 B Nq B 1 is a

; /-quasi-isometric embedding ofH0i into Ai D gHj for some j 2 f1;2; : : : ;ng,
with ; / depending on L;C/, ~ and D.

If G0 is hyperbolic then G0 is relatively hyperbolic with respect to f1g ¤ fG0g
and all the statements in the theorem hold.

If G0 D H0i then G0 D N~ q Ai //, which implies that G NC Nq.G0//
NL~C2CCD.Ai /. By Theorem 1.5, this contradicts the fact that G is properly)
hyperbolic relative to H.
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