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The length of the second shortest geodesic

Alexander Nabutovsky and Regina Rotman

Abstract. According to the classical result of J. P. Serre ([S]) any two points on a closed
Riemannian manifold can be connected by infinitely many geodesics. The length of a shortest
of them trivially does not exceed the diameter d of the manifold. But how long are the shortest
remaining geodesics? In this paper we prove that any two points on a closed n-dimensional
Riemannian manifold can be connected by two distinct geodesics of length 2qd 2nd,
where q is the smallest value of i such that the i th homotopy group of the manifold is
nontrivial.

Mathematics Subject Classification 2000). 53C23, 53C22, 58E10.

Keywords. Length of geodesics, length functional, curvature-free inequalities in Riemannian
geometry

1. Main result

Here is the main result of the present paper:

Theorem 1.1. LetMn be a closed n-dimensional Riemannian manifold, let d denote
the diameter of Mn, and let q D mini f i.Mn/ 6D 0g. Then for each pair of points

x; y 2 Mn there exist at least two distinct geodesics connecting x, y of length not
exceeding 2qd 2nd/.

Observe that if x D y, then the trivial geodesic is theshortest geodesic connecting

x and y. In this case our theorem asserts the existence of a geodesic loop of length
2d based at an arbitrary point x of Mn. This result is the main result of the paper

[R] of one of the authors. Theorem 1.1 can be viewed as a generalization of this
result. Our proof of Theorem 1.1 is heavily reliant on methods of [R]. We would like
also to refer the reader to the foundational paper of M. Gromov [G] that was a source
of motivation for us and inspired some of the techniques of the present paper.
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2. Filling of cages

Let us begin by introducing the following definitions and notations.

Definition 2.1. Let x, y be two points in Mn. An m-cage c based at x; y is a

collection of m paths c1; : : : ;cm from x to y. For every i ci is a continuous map of
OE0; 1 into Mn.) The space Cx;y;m of all m-cages based at x and y can be identified
with the mth power of the space of paths from x to y. For every L let CLx;y;m denote
the space of all m-cages based at x, y such that the length of each of the m paths

forming the cage is at most L. Further, let C L;LN

x;y;m denote the space of all m-cages

c D c1; : : : ; cm/ based at x, y such that the length of c1 does not exceed LN and the
length of ci for every i D 2; 3; : : : ; m does not exceed L.

Let m
D OEv0; v1; : : : ; vm be the standard m-dimensional simplex with edges

of length one. Here v0; v1; : : :; vm are its vertices.) As usual, we use the notation

C. m; Mn/ for the space of continuous maps from m toMn. Of course, this space

can be identified with the space of continuous maps of the m-dimensional ball into
Mn.

Definition 2.2. Let x; y be two points in Mn, L; LN two positive numbers, and N
a positive integer. A coherent N-filling of m-cages based at x; y from C L;LN

x;y;m is a

collection of continuous maps m W C L;LN

x;y;m C. m; Mn/ for all m D 1; 2; : : : ; N
with the following properties:

1. For every m and m-cage c the map m.c/ W

m Mn maps the m 1/-
dimensional face OEv1; : : : ; vm of m into y.

2. For every m and every m-cage c D c1;: : : ; cm/ the map m.c/ maps each of
m one-dimensional simplices OEv0; vi by the map ci Here we identify OEv0;vi
with OE0;1 In particular, v0 is mapped into x, and for every 1-cage c we have

1.c/ D c.

3. Coherence) For every m D 2; 3; :: : ;N every m-cage c and every i D
1; 2; : : : ; m the restriction of m to the m 1/-dimensional face OEv0; : : :; vi 1;

viC1; : : : ;vm of m coincides with m 1.c.i//, where c.i/ denotes the m 1/-
cage c1; : :: ; ci 1; ciC1; : :: ; cm/.

To explain the meaning of conditions 1 and 2 collapse OEv1; : : : ; vm into a point.
Identify this point with the North pole and v0 with the South pole of the ball Dm.
Then m edges OEv0; vi become m meridians on the sphere bounding this ball. We can

view m-cages as maps from this collection of m meridians into Mn. The meaning
of conditions 1 and 2 is that one can regard a coherent N-filling of an m-cage as an
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extension of this map to a map of the whole m-ball. This extension must depend
continuously on the m-cage. The meaning of the coherence condition is that extensions
in different dimensions are compatible.

Proposition 2.3. Let L; LN be positive real numbers such that LN L, and N a
positive integer. Let x, y, z be any three points ofMn such that the distance between

any two of them does not exceed L. Assume that there exists exactly one geodesic
between x and y of length LN C .2N 3/L. If x D y, then this geodesic is the
constant geodesic.) Then there exists a coherent N-filling of m-cages based at x, z

from C L;LN

x;z;m.

Proof. We present aproof by induction onN. Itsbase corresponds to the caseN D 1.
In this case 1.c/ D c. Recall that each 1-cage is, by definition, a path in Mn, i.e.

a continuous map of 1
D OE0; 1 into Mn.) The proof of the induction step is based

on the following lemma:

Lemma 2.4. Let LN ; L be positive numbers. Assume that x; y; z are three points in
Mn such that all distances between them do not exceed L. Assume that there exists
only one geodesic between x and y of length maxfLN ; LgCL. Then any two paths

1; 2 starting at x and ending at z such that the length of 1 is LN and the length
of 2 is L can be connected by a path homotopy that passes only through paths of
length LN C 2L. This path homotopy depends continuously on 1 and 2.

Proof. Let be the unique shortest geodesic from x to y, be one of the shortest
geodesics from z toy see Figure 1). Everypath from x toy of length 2Lor LNCL
can be connected to by a length non-increasinghomotopy. Otherwise, there willbe

1

z

2 y

x

Figure 1
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a second geodesic of length maxfLN ; LgCL.) Moreover, we can choose a specific
length non-increasing homotopy, e.g. the Birkhoff curve-shortening process with
fixed endpoints. See [C] for a detailed description of the Birkhoff curve-shortening
process.) This homotopy continuously depends on the initial path. In particular, this
homotopy can be used to deform i to i D 1; 2), as well as to deform back
to i

Let 1 denote the path traversed in the opposite direction. One can construct
the desired pathhomotopy from 1 to 2 as follows: 1 1

1 1

2
1 2. Here arrows denote homotopies. Note that all homotopies depend

continuously on 1 and 2, and that for each of these homotopies the length of paths

during the homotopy does not exceed the maximum of lengths of paths at its begining
and its end.

Now assume we have constructed the maps 1; : : : ; m 1. We will next
construct m. Let c D c1; c2; : : : ; cm/ be an m-net. We need to map m

D OEs0;: : : ; sm

toMn. Because of the coherence condition a map m.c/ defined as the restriction of

m to @ m intoMn is already prescribed. By virtue of the induction assumption m
is a continuous function of c. We need only to contract the map of the) sphere m.c/
to a point so that the contracting homotopy depends continuously on c. To achieve

this goal note that according to Lemma 2.4 there exists a path homotopy between

c1 and c2 that passes through paths ct t 2 OE1;2 of length LQ D LN C 2L only.
Here we use the fact that .2m 3/L L for every m 2. So, the assumption of

Lemma 2.4 about the non-existence of a second short geodesic between x and y
follows from a similar assumption in Proposition 2.3.) Consider a 1-parametric family
of m-cages c.t/ D ct; c2;: : : ; cm/. So, c.1/ D c and c.2/ D c2; c2; c3;: : : ; cm/.

Note that c.t/ 2 C L;LQ

x;y;m for every t By virtue of the induction assumption there exists
a coherent filling of all m 1/-subcages of c.t/ obtained by removal of one of m
strands c t/

i and for every t the resulting m maps of m 1/-dimensional simplices
can be “glued” to each other into a map m.c.t//W

@ m Mn. Of course, it is
important here that LQ C .2.m 1/ 3/L D LN C .2m 3/L, and so the required
assumption about the non-existence of a second geodesic between x and y of length

LQ C .2.m 1/ 3/L holds. Thus, one obtains a homotopy m.c.t// between

m.c/ and m.c.2//.
It remains to show that m.c.2// is canonically and, therefore, continuously

contractible. Here we are concerned about the continuity of the contracting homotopy
as a function of c.) Note that the boundary of m consists of m C 1/ simplices of
dimension m 1/. The maps m 1 and, thereby, m map two of these faces, namely,
faces corresponding to two copies of the m 1/-cage c2; c3; : : : ; cm/ in an identical

way. Together these two cells form a “folded” map of Sm 1 to Mn that factors
through the projection of Sm 1 to the disc Dm 1. This map is obviously canonically
contractible. In order to construct a homotopy of m.c.2// to this “folded” map we
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need to “eliminate” the remaining m 1/ maps of m 1/-dimensional faces of
m. But one of these maps is constant, and the remaining m 2/ maps correspond

to m 1/-cages of the form c2; c2; : : : /. Therefore each of these maps is similarly
“folded” and can be connected by a canonical homotopy over its image) to a map
of the corresponding face which is a composition of the projection of the considered
face to one of its codimension one faces and m 2..c2; c3; : : : ;ci 1; ciC1; : :: ; cm//
for an appropriate i These homotopies eliminate the remaining m 1 faces, as

desired.

3. Filling of m; "/-umbrellas

Let m 1
D OEs1; : : : ; sm denote the standard m 1/-dimensional simplex such that

the lenghs of all of its edges are equal to 1. Let s denote the center of m 1.

Definition 3.1. An m;r/-umbrella based at x, y consists of a singular m 1/-
simplex W

m 1 Mn, a point x 2 Mn and m paths in Mn connecting x with
images of the vertices of m 1 under so that y D s / the image of is contained
in a metric ball of radius r inMn centered at y, and the length of the image of every
straight line segment in m 1 under is less than r.

y

x

Figure 2. m; r/-umbrella.

This notion generalizes the notion of m-cages that can be considered as m; 0/-
umbrellas with a constant The goal of this section is to generalize the notion of
coherent filling for m;r/-umbrellas and to extend Theorem 1.1 to m;"/-umbrellas
for small positive". Denote thespaceof all m; r/-umbrellas basedat x, y byUm;r;x;y
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and its subspace formed by all umbrellas where the length of the paths connecting x
with the first vertex of does not exceed LN and the lengths of all paths connecting
x with the remaining m 1 vertices of the singular simplex do not exceed L
by UL;LN

m;r;x;y. Each umbrella u can be represented as c1; :: : ;cm; / where ci are
continuous paths from x to the vertices of the singular simplex It is obvious that
1-umbrellas based at x, y are merely continuous paths starting at x and ending at y.

Definition3.2. LetN be a positive integerandL; LN positive real numbers. Acoherent

N-filling of m; r/-umbrellas based at x; y from U L;LN

m;r;x;y is a family of continuous

maps m W U L;LN

m;r;x;y C. m; Mn/ for m D 1; 2; : : : ; N such that for every m; r/-
umbrella u D c1;c2; : : :; cm; / 2 U L;LN

m;r;x;y the following conditions hold:

1. The restriction of m.u/ to the m 1/-dimensional face OEs1; s2; : : : ; sm coin¬

cides with ;
2. The restrictions of m.u/ to 1-dimensional simplices OEs0si coincide with ci for

i D 1; 2; : : : ; m. In particular, 1.u/ D u for all 1-umbrellas u;
3. Coherence) For every i D 1; 2; : : : ; m the restriction of m.u/ to m 1/-

dimensional simplex OEs0;s1; : : : ; si 1; siC1;: : : ; sm coinsides with m 1.ui/,
where ui D c1; c2; : :: ; ci 1; ciC1; : : : ; cm; i /, and i is the restriction of
to the m 2/-dimensional face of the standard simplex m 1 obtained by
exclusion of the i th vertex.

The notion of m; "/-umbrellas can be regarded as a generalization of the notion
of m-cages, where one of the endpoints is being “enlarged” into a small simplex.
If this simplex degenerates into a point, the umbrella becomes a cage.) The next

proposition asserts that there exists a generalization of the process of filling of cages

described in the proof of Proposition 2.3 to m; "/-umbrellas for small ". The idea of
the proof of this generalization is very simple: One can just shrink the small simplex

in the definition of umbrellas over itself to a point, thus, obtaining a cage, which
then can be filled as in the proof of Proposition 2.3.

Proposition 3.3. Let L; LN be positive numbers such that LN L. Let x; y; z be any
three points in a closed Riemannian manifold Mn such that the distance between

any two of these three points does not exceed L. LetN > 1 be an integer. Then

for every 0 < " < injMn
2

where injMn is the injectivity radius of Mn, the following
assertion holds: Provided there exists exactly one geodesic between x and y of
length LN C .2N 3/L C .2N 2/", then there exists a coherent N-filling of

m;"/-umbrellas based at x; z from UL;LN

m;";x;z.

Proof. The proof is inductive on N. It follows the same pattern as the proof of
Proposition 2.3. To prove the base of induction we define 1.u/ D u for every 1-
umbrella u. Assume that the theorem holds for N D m 1, m > 1/. To prove
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the theorem for N D m note that conditions 1 and 3 imply that we have no choice
in construction of m.u/ D m.u/j@ m: One of m C 1/ faces of m of dimension
m 1/ must be mapped using the mapping whereas the remaining m faces should

be mapped using m 1.ui /. Usinga part of the inductionassumption we canconclude
that m is a continuous function of u.

It remains only to contract m.u/ by a homotopy that continuously depends on u.
The idea is to eliminate the simplex by contracting it over its image and then to
proceed as in the proof of Proposition 2.3.

Recall that s denotes the center of m 1. Fix a contraction ht of m 1
D

OEs1; s2; : : : ; sm to fs g, h0 is the identity map, h1. m 1/ D fs g), such that all
points of m 1 move to s along straight lines with a constant speed. This will
provide us with a homotopy of umbrellas: If u D c1; : : : ; cm; / then Ht u/ is
defined as c1t; :: : ;cmt; B ht /, where cit is the join of ci with OEsiht si/ / for
every i. If u is an m;"/-umbrella, the length of cit does not exceed the sum of the
length of ci and ". For every t 2 OE0; 1 we canconsider m.Ht u///. The composition

m B Ht will constitute the first stage in a homotopy contracting m.u/.
It remains to contract m.H1.u//. Note that H1.u/ looks like an m-cage since

its m 1/-dimensional simplex is constant. Therefore we can contract the resulting

m 1/-dimensional sphere repeating the corresponding step in the proof of
Proposition 2.3 almost verbatim.

Namely, weuse Lemma 2.4 to construct apathhomotopy c1t t 2 OE1;2 / between

c11 D h1.c1/ and c21 D h1.c2/ such that it passes only through paths of length
LN C2LC3". Let ut D ct; c21; : : : ; cm1; Bh1/. The next stage of our homotopy

contracting m.u/ will consist of m 1/-dimensional spheres m.ut /, t 2 OE1; 2
Finally, note that u2 D c21; c21;: : : ; cm1; B h1/, so that m.u2/ will be a

“folded” m 1/-dimensional sphere that can be canonically contracted over itself
exactly as this had been done in the proof of Proposition 2.3.

4. Proof of Theorem 1.1

We are going to prove the theorem by contradiction. Assume that there exists exactly
one geodesic between x and y of length 2qd. Therefore there exists i > 0 such

that there exists exactly one geodesic between x and y of length 2qd Ci. Indeed,
otherwise there will be a sequence of geodesics between x and y with lengths strictly
decreasing to 2qd. The Ascoli–Arzela theorem implies that a subsequence of this
sequence converges to a geodesic between x and y of length 2qd 2d > d.
Therefore, this geodesic cannot be minimizing and, therefore, is the second geodesic
between x and y of length 2qd, which contradicts to our assumption.) Let " D
minf i ; inj.Mn/ where inj.Mn/denotes the injectivity radius ofMn. Let f Sq2n 2 g, W

Mn be a non-contractible map of the q-dimensional sphere into Mn.
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We are going to extend f to a map of the qC1/-dimensional discDqC1 thereby
reaching the desired contradiction. First, choose a fine smooth triangulation of Sq
such that that for every singular simplex

W

i SqC1, i 2 f1; : : : ;q C 1g), the
image under f B of i is contained in an "-ball centered at the image of the center

of i under f B and the length of the image of every straight line segment in i

under f B is less than ".
Triangulate DqC1 as the cone over the chosen triangulation of SqC1. Extend f

to the 1-skeleton of the triangulation of DqC1 by mapping the center of DqC1 to x,
and every new 1-dimensional simplices into a minimal geodesic between the images

of the endpoints of the 1-simplex. Here one can choose any minimal geodesic, if
there is more than one.)

We are going to continue the extension process inductively. Assume that we have

already extended f to the i-skeleton of the triangulation of DqC1. In order to extend

it to the i C 1/-skeleton observe that every new i C 1/-dimensional simplex is a

cone over a i-dimensional simplex of the chosen triangulation of Sq. Consider
a i C 1; "/-umbrella based at x and the image of the center of under f such

that D f B Take LN D L D d. Apply Proposition 3.3 to fill this umbrella.
The coherence condition implies that the resulting map of the i C 1/-dimensional
simplex of the triangulation of DqC1 extends maps of its faces constructed on the
previous steps of the induction.

Once f is extended to the q C 1/-skeleton of DqC1, the extension process

becomes complete, and we obtain the desired contradiction.

5. Concluding remarks

In [NR1] we made the following conjecture:

Conjecture 5.1. There exists a function f n; k/ such that for every positive integer k,
every closed Riemannian manifold Mn and every pair of points x; y 2 Mn there
exist k distinct geodesics between x and y in Mn of length f n; k/d, where d
denotes the diameter of Mn.

In fact, we made even a stronger conjecture that there exist k distinct geodesics of
length kd. This stronger conjecture holds for round spheres and for all closed
Riemannian manifolds with infinite torsion-free fundamental groups. Yet, F. Balacheff,
C. Croke and M. Katz recently constructed Riemannian metrics on S2 arbitrarily
close to round metrics such that the length of the shortest geodesic loop at every point
is strictly greater than 2d ([BCK]). Thus, this stronger conjecture is not true even

when n D k D 2 and x D y.
In the present paper we proved our conjecture for k D 2 for an arbitrary Mn

and arbitrary x; y 2 Mn. Thus, we demonstrated that one can take f n; 2/ D 2n.
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Our paper [NR2] contains another result in this direction: If n D 2 and Mn is
diffeomorphic to S2, then for every k and every pair of points x, y in the Riemannian
manifold there exist k distinct geodesicsbetweenx and y of length .4k2 2k 1/d
Therefore, one can take f .2; k/ D 4k2 2k 1.

Our most recent result in this direction establishes the conjecture for all Riemannian

manifolds homotopy equivalent to the product of S2 and an arbitrary closed
manifold. In this case for every pair of points x, y there exist at least k distinct
geodesics between x and y of length 20kŠd see [NR3]).
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