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Topological rigidity and Gromov simplicial volume

Pierre Derbez

Abstract. A natural problem in the theory of 3-manifolds is the question of whether two
3-manifolds are homeomorphic or not. The aim of this paper is to study this problem for the
class of closed Haken manifolds using degree one maps.

To this purpose we introduce an invariant N/ D Vol.N /;kNk/, where kNk denotes
the Gromov simplicial volume of N and Vol.N/ is a 2-dimensional simplicial volume which
measures the volume of the base 2-orbifolds of the Seifert pieces of N.

After studying the behaviorof N/ under theaction ofnon-zero degree maps, we prove that
ifM andN areclosed Haken manifolds such thatkMk D jdeg.f /jkNk andVol.M/ D Vol.N /
then any non-zero degree map f W M N is homotopic to a covering map. As a corollary we
prove that ifM and N are closed Haken manifolds such that N/ is sufficiently close to M/
then any degree one map f W M N is homotopic to a homeomorphism.

Mathematics Subject Classification 2000). 57M50, 51H20.
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1. Introduction

1.1. Simplicial volume of a manifold. Let Nn be an n-dimensional manifold. The
simplicial volume of N is a homotopy invariant of N defined by M. Gromov in
[G] using the l1-pseudo norm on singular homology as follows: for an element



2 P. Derbez CMH

h 2 H N;@NIR/, the Gromov norm is given by

khk D inf ° PiDr
iD1 ai i represents h :iD1jai j; when PiDr

The Gromov simplicial volume of N, denoted by kNk, is the Gromov norm of
the image of a generator of Hn.N;@NIZ/ under the canonical homomorphism

Hn.N; @NIZ/ Hn.N; @NIR/ ' Hn.N; @NIZ/ R.

1.2. Simplicial volume of a Haken manifold. Let N be a closed Haken manifold.
Given a submanifold K of N we denote by W.K/ a regular neighborhood of K in
N. Denote by TN the JSJ-family of N, by S.N /, resp. H.N/, the Seifert, resp.
hyperbolic, components of N D N n W TN / and by †.N/ D .†.N /; ;/ the
characteristic Seifert pair ofN see [JS] and [J]). TheCutting-offTheorem ofGromov
([G]) combined with the fact that manifolds admitting a fixed point free S1-action
have zero Gromov simplicial volume by the Mapping Theorem of Gromov) implies
that

kNk D X
H2H.N/

kHk:

In particular this means that the Gromov simplicial volume of a Haken manifold
only depends on its hyperbolic pieces. In the following it will be convenient to
decompose S.N / into two parts depending on the geometry of the components of

S.N /. We denote by Sh.N /, resp. by Se.N /, the components of S.N / admitting a

Seifert fibration with hyperbolic, resp. Euclidean, base 2-orbifold.

1.3. Extending the simplicial volume. To get a rigidity theorem for Haken manifolds

we need to add another invariant of N which does not vanish on S.N/ when

S.N/ is “non-trivial” i.e. when Sh.N/ 6D ;). To this purpose we define a kind of
2-dimensional simplicial volume for N. More precisely, let S be a component of

S.N /. Fix a Seifert fibration for S and denote by OS the base 2-orbifold of S with
respect to the fixed Seifert fibration. Then we set Vol.S/ D j OS/j, where OS/
denotes the rational) Euler characteristic of OS. We then define the 2-dimensional
volume of N by setting

Vol.N / D X
S2S.N/

Vol.S/:

Lemma 1.1. If N is a closed Haken manifold, the 2-dimensional volume Vol.N /,
and thus the pair N/ D Vol.N /; kNk/, is an invariant of N. Moreover N/ D 0
iff N is a virtual torus bundle.

It will be convenient to use the following convention: we say that a; b/ c;d/
if and only if a c and b d, where a; b/ and c; d/ are in R2.
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1.4. Nonzero degree maps decrease the volume. It follows from the definition of
the Gromov simplicial volume that non-zero degree maps “decrease the simplicial
volume” in the following sense. Let f W M N be a proper non-zero degree map
between orientable n-dimensional manifolds. Then kMk jdeg.f /jkNk. This
inequality does not hold for N/. In particular the relationVol.M/ jdeg.f /jVol.N/
is not true. However we have the following comparison result.

Theorem 1.2. Let f W M N be a non-zero degree map between closed Haken
manifolds. If kMk D jdeg.f /jkNk then Vol.M/ Vol.N /. Moreover, if there
exists a canonical torus T of M such that f jT W T N is not 1-injective, then
Vol.M/ > Vol.N /.

Note that the condition on the Gromov simplicial volume is necessary in Theorem

1.2. Indeed by a construction of [BW] using null-homotopic hyperbolic knots,
we know that for any aspherical Seifert fibered space † there always exist a hyperbolic

3-manifold M and a degree one map f W M †. In this case Vol.M/ D 0
and † can be chosen so that Vol.†/ > 0.

InviewofTheorem 1.2the followingquestion is natural: If kMk D jdeg.f /jkNk,
whathappens whenVol.M/ D Vol.N /? The answer is given in thefollowing section.

1.5. Volume and topological rigidity. The purpose of this paper is to characterize
those degree one resp. non-zero degree) maps between closed Haken manifolds
which are homotopic to a homeomorphism resp. covering). Then our main result
can be stated as follows.

Theorem 1.3. Let f W M N be a non-zero degree map between closed Haken
manifolds such that kMk D jdeg.f /jkNk. If Vol.M/ D Vol.N / then f is homotopic

to a deg.f /-fold covering.

Remark 1.4. In Theorem 1.3 we can obviously decompose f into two covering
maps which preserve the JSJ-decomposition. This means that after a homotopy, f
induces two covering maps f jH.M/W H.M/ H.N / and f jS.M/W S.M/
S.N /. Since a Seifert fibered space can be seen as a generalized S1-bundle over a

2-dimensional orbifold, it could be convenient to make precise the behavior of the
covering map f jS.M/ with respect to this anisotropic structure. Actually, when the
fibration of a Seifert manifold S is unique up to isotopy), the action of f jS can
be unambiguously decomposed into two transversal actions: a vertical action i.e.

an action along the S1-fibers of S) and a horizontal action i.e. an action along the
2-orbifold of S). Then in the proof of Theorem 1.3 we will see that the hypothesis
Vol.M/ D Vol.N / implies that f jSh.M/ acts only vertically and that the horizontal
action is trivial.
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Remark 1.5. Note that in [W1], S. Wang proved that a proper map of non-zero
degree f W M M from a Haken manifold M to itself necessarily induces an
injective homomorphism at the fundamental group level. Then Theorem 1.3 gives
an extension of this result since when M D N the conditions on the volume are
satisfied.

If we consider only degree one maps then one can relax the hypothesis concerning
the volumes. More precisely, combining Theorem 1.3 and Theorem 1.2 in [D] we
get the following result.

Theorem 1.6. For any closed Haken manifoldM there exists a constant M 2 .0; 1/
depending only on M such that any degree one map f W M N onto a closed
Haken manifold is homotopic to a homeomorphism iff N/ M/.1 M/.

1.6. Some known results on topological rigidity

1.6.1. Rigidity of surface bundles. The aboveproblemhas been studied by S.Wang
and M. Boileau in [W] and [BW] for non-zero degree maps, when the domain M is
a surface bundle over the circle and when the target N is irreducible. In particular,
Wang proved in [W] that if M is a virtual torus bundle over the circle then f is
homotopic to a covering map. When M is a bundle over S1 with a fiber of negative
Euler characteristic, denote by the cohomology class corresponding to the fibration
ofM. Then in [BW], Boileau andWang proved that if there is a rational cohomology
class in N with f / D and such that k kTh D jdeg.f /jk kTh then f is
homotopic to a covering map. Here k kTh denotes the Thurston norm.

Remark 1.7. Notice that the constant Vol.M/ in Theorem 1.3 can be seen as the
analogous of the Thurston norm of in the result of Boileau and Wang in [BW,
Theorem 2.1].

1.6.2. Rigidity of hyperbolic manifolds. The rigidityproblem is completely solved
for hyperbolic manifolds by a result of Gromov and Thurston which reads as follows.

Theorem 1.8 M. Gromov, W. Thurston). Let M and N be two complete finite
volume hyperbolic 3-manifolds. Then a proper non-zero degree map f W M N is
homotopic to a deg.f /-fold covering iff kMk D jdeg.f /jkNk.

Recall that T. Soma gave a generalization see [S2]) of this result for degree one

maps by proving the following result.

Theorem 1.9 T. Soma). For any " > 0 there is a constant " > 0 which depends

only on " such that any degree one map f W M N between closed hyperbolic
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3-manifolds satisfying kMk " and kNk kMk.1 "/ is homotopic to an
isometry.

Notice that lim"!C1 " D 0 see also [S2]). Note also that this kind of result
cannot be extended to Haken manifolds even if the target is a closed hyperbolic
manifold. This results from the Thurston hyperbolic surgery theorem.

Indeed, let Y be a complete finite volume orientable hyperbolic 3-manifold with
@Y ' S1 S1 and let X denote an orientable graph manifold with @X ' S1 S1
in such a way that there exists a simple closed curve l in @X such that the pair X; l/
is pinchable. This means that there exists a proper degree one map

W X; @X/
V; @V /,where V is a solid torusD2 S1 such that W

@X @V is a homeomorphism
which sends l to the meridian m D @D2 f g in @V To perform this operation
it is sufficient to choose X so that l is nul-homologous in H1.XIZ/ for instance

X D F S1, where F is an orientable surface with connectedboundary and l D @F
Let fln;n 2 Ng be asequence of simple closed curves in @Y such that flenght.ln/;

n 2 Ng definesa strictly increasing sequence with limn!1 lenght.ln/ DC1, where
lenght denotes the length for the Euclidean metric on @Y induced by the hyperbolic
metric of int.Y /. Denote byMn the closed Hakenmanifold obtained by gluingX and

Y along @X and @Y in such a way that l is identified with ln and denote by Nn the 3-
manifold obtained fromY after performing aDehn filling along the curve ln. Thus the
map can be extended by the identity to construct a degree one map fn W Mn Nn.
Then kMnk D kY k > 0. By the Thurston hyperbolic surgery theorem, one sees that

the Nn’s are closed hyperbolic manifolds for n sufficiently large and fkNnk;n 2 Ng
is a strictly increasing sequence such that limn!1 kNnk D kY k. Moreover the maps

fn are neither homotopic to a homeomorphism.

1.7. Organization of the paper. This paper is organized as follows.
In Section 2 we recall some terminology and we state some technical results

concerning the following points: finite coverings of Haken manifolds, standard form
of non-zero degree maps, and a thick–thin decomposition of M with respect to a

non-degenerate, non-zero degree map f W M N.
Sections 3 and 4 aredevoted to the studyof non-degenerate proper maps f W M

N of non-zero degree from a Haken graph manifold with toral boundary to a circle
bundle N. The aim of these sections is to give a construction allowing us to compare
the volume of the thick part of M with Vol.N/ using efficient surfaces and minimal
connection graphs see Propositions 3.1 and 4.1). These sections are essential for the
proof of Theorem 1.2.

Section 5 is devoted to the proof of Theorems 1.2, 1.3 and 1.6. Note that in this
paper all the 3-manifolds are orientable.

Acknowledgement. The author would like to thank the referee for many useful
comments and suggestions.
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2. Preliminaries

Let † be an orientable Seifert fibered space. Then † is an S1-bundle over its base

2-orbifold O† and the S1-action is globally well defined since† is orientable. Recall
that if xO† denotes theunderlying spaceofO† and if c1; : : : ; cr denote the exceptional
points of O† with index 1; : : :; r respectively then

O†/ D xO†/
iDr

X
iD1

1
1

i
:

The geometry of O† is hyperbolic, Euclidean or spherical when O†/ is < 0,

D 0 or > 0, respectively. Hence the geometry of † depends of the geometry of

O† combined with the rational Euler number e.†/ of the fibration. More precisely,
when e.†/ D 0 then we get respectively an H2 R, Euclidean, S2 R-structure
and when e.†/ 6D 0 we get respectively a SL2.R/, Nil, spherical structure. Note
that if N is a Sol-manifold then we consider it as a Haken manifold with non-empty
JSJ-decomposition so that the Seifert pieces of N are Euclidean manifolds.

2.1. Two-dimensional simplicial volume. In this paragraph we prove Lemma 1.1.
Since the JSJ-decomposition of closed Haken manifolds is unique up to isotopy, we
only have to check that the volume Vol.N / does not depend on the chosen Seifert
fibration on the components of S.N /. Let † be a Seifert piece of N. Since N is a

closed Haken manifold, † admits one of the following geometries: H2 R, SL2.R/,
Nil or Euclidean geometry. The only aspherical Seifert fibered spaces which admit
more than one non-isotopic Seifert fibration are Euclidean manifolds. But in this case

the Euler characteristic of the base orbifold of † is always zero. Hence the invariance
is immediate.

It remains to check the second assertion of the lemma. Assume that N admits
a finite covering W Nz N which is a torus bundle over the circle. Then Nz is
a geometric manifold and the structure depends on the monodromy of the bundle.
Then N admits a Euclidean, a Nil, or a Sol geometry. In the case of Euclidean or

Nil geometry N is a Seifert fibered space and the base 2-orbifold ON is Euclidean
and thus N/ D 0. If N is a Sol-manifold then each component of N n TN is a

Euclidean manifold and hence N/ D 0. Assume that N/ D 0. If TN D ; then

N has Euclidean or Nil-geometry. In any case N is a virtual torus bundle. If TN 6D ;thenH.N/ D ; and each Seifert piece of N is a Euclidean manifold with non-empty
boundary. Then by minimality of the JSJ-decomposition either

i) N is made of two twisted I-bundles over the Klein bottle glued along their
boundary, or

ii) N is S1 S1 I=h'i, where ' W S1 S1 f0g S1 S1 f1g is an Anosov
diffeomorphism.
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In case ii) N is a torus bundleover the circle actually a Sol-manifold) and in case

i) N admits a 2-fold covering that is a torus bundle over the circle. This completes
the proof of Lemma 1.1.

2.2. Dehn fillings. We define Seifert Dehn fillings. Suppose † is an orientable
Seifert fibered space with @† 6D ; and let T be a component of @†. Since † is
orientable, T ' S1 S1. Let be a simple closed curve in T Performing a Dehn
filling on T along means that we glue a solid torus V D D2 S1 identifying
@D2 S1 with T so that is glued with the meridian @D2 f g of V Denote by
y† D †. / the resulting manifold. When is not isotopic to a generic fiber of † then
the fixed Seifert fibration of † extends to a Seifert fibration of y† and we say that we
have performed a Seifert Dehn filling.

2.3. Morphisms. Let f W † †0 be a map between orientable Seifert fibered
spaces. We say that f is a bundle homomorphism is there exists a Seifert fibration of

† and †0 so that f is a homomorphism for the S1-bundle structures on † and †0.

According to [Ro], for bundle homomorphisms we define the following degrees:

The fiber degree of f is the integer jnj given by f h/ D tn, where h, resp. t
denotes the generic fiber of †, resp. of †0, and we denote it by Gh.f /.

The orbifold degree Gob.f / is the minimum number of regular fibers in g 1.t/,
whereg runsoverall bundle homomorphisms properly homotopic to f and transverse
to t

For a bundle homomorphism f W † †0 we have

jdeg.f /j Gh.f /Gob.f /:

We say that a bundle homomorphism is allowable if jdeg.f /j D Gh.f /Gob.f /. In
particular, a bundle homomorphism f W .†; @†/ .†0;@†0/ between orientable
Seifert fibered spaces with non-empty boundary which is proper i.e. f 1.@†0/ D
@†) is allowable.

2.4. Non-degenerate maps. Let f W S N be a map from a Seifert manifold to
a Haken manifold. We say that f is non-degenerate if f 1S/ is not cyclic and if
f OE / 6D f1g for any fiber of any Seifert fibration on S. A map f W M N from a

Haken manifold with toral boundary M is non-degenerate if f jS is non-degenerate

for any Seifert piece of M. A non-degenerate map f W M N is T -injective if for
any component T of TM [ @M the map f jT W T N is 1-injective.

2.5. Finite coverings of a map. Let f W X Y be a continuous map between

topological spaces. Let pW Yz Y be a covering map and denote by q W Xz X the
covering of X corresponding to the subgroup f 1 p 1 zY //. A finite covering of f
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associated to pW Yz Y is a lifting fQW Xz Yz of f Bq. In particular, if p is a finite
covering then 1 deg.q/ deg.p/ and if f is 1-surjective then deg.p/ D deg.q/.

2.6. Finite coverings of Seifert and Haken manifolds

Lemma 2.1 ([JS, Lemma II.6.1]). Let † be a Seifert fibered space. Then any finite
covering

W z† † admits a Seifert fibration so that is an allowable bundle
homomorphism. Moreover the Euler characteristic of the base orbifolds satisfy

Oz†/ D Gob.f / O†/:

Proof. The proof can be found in [JS].

Let T be a union oftori and letmbe a positive integer. Call a covering pW zT T

m-characteristic if for each component T of T and for each component zT of zT over

T the restriction pjW zT T is the covering map associated to the characteristic
subgroup of index m m in 1T Call a covering Nz N of a Haken manifold N
m-characteristic if its restriction to TNz TN is m-characteristic.

Lemma 2.2. i) Any orientable Seifert manifold endowed with hyperbolic base 2-
orbifold admits a fiber degree one finite covering which is homeomorphic to an
orientable S1-bundle over an orientable hyperbolic surface.

ii) Any closed Haken manifold admits a 1-characteristic 2-fold covering space

which contains no embedded Klein bottle.

Proof. Point i) follows from Selberg’s lemma ([Al]) and point ii) is immediateusing
orientation coverings.

Lemma 2.3. Let f W M N be a non-degenerate map from an orientable aspherical

Seifert manifold to an orientable circle bundle over an orientable hyperbolic
surface F Then each Seifert fibration of M has an orientable base 2-orbifold in
particular M is not homeomorphic to the twisted I -bundle over the Klein bottle).

Proof. Assume first that f 1M/ is abelian. If M admits a fibration over a
nonorientable 2-orbifold, then there exists g 2 1M such that ghg 1

D h 1, where h
denotes the homotopy class of the generic fiber of the fixed Seifert fibration on M.
Since 1N is torsion free this implies that f h/ D 1. This is a contradiction since

f is a non-degenerate map.
Suppose that f 1M/ is non-abelian. If M admits a fibration over a

nonorientable 2-orbifold OM then consider the double covering pW Mz M
corresponding to the orientation covering of OM.

If f 1Mz/ is abelian then f 1M/ contains an index 2 free abelian group H.
Now Rank.H/ 2 since N is a circle bundle over an orientable hyperbolic surface,
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and since f is non-degenerate, Rank.H/ 2. This implies that f 1M/ is the
fundamental group of a Klein bottle. This is impossible since N is an orientable
circle bundle over an orientable hyperbolic surface.

If f 1Mz/ is non-abelian then f hQ/ has a non-abelian centralizer, where hQ

denotes the homotopy class of the generic fiber of Mz Then, since N contains no
embedded Klein bottle, we know by [JS] that f hQ/ 2 hti and thus f h/ 2 ht i,
where t denotes the homotopy class of the fiber of N. Denote by a the non-zero
integer such that f h/ D ta. Since OM is non-orientable, there exists g 2 1M
such that ghg 1

D h 1. Since t is central in 1N, this gives a contradiction. This
completes the proof of the lemma.

Lemma 2.4. Let N be a Haken manifold and let pW Nz N be a finite covering
of N. Then Vol.N/ Vol.Nz/ jdeg.p/jVol.N /. Moreover, if p has fiber degree
one over each component of S.N / then Vol.Nz/ D jdeg.p/jVol.N /.

Proof. Let S be a component of S.N /. Choose a component Sz of p 1.S/ in Nz and
choose a Seifert fibration on zS so that pj zS is a bundle homomorphism. Denote by

OS and by OzS the base 2-orbifold of S and zS. Denote by n the integer such that

p hQ/ D hn, where h and hQ are the homotopy classes of the generic fiber of S and

zS, respectively. Then by Lemma 2.1 we know that

jdeg.pj zS/j D jnj:Gob.pj zS/ and Vol.zS/ D Gob.pj zS/Vol.S/ Vol.S/:

On the other hand, notice that

jdeg.p/j D X
zS2p 1.S/

jdeg.pj zS/j:

Hence jdeg.p/jVol.N / Vol.Nz/ Vol.N /. It remains to prove the second part of
the lemma. Let† bea componentofS.N /anddenote by†1; : :: ; †k thecomponents
of z† D p 1.†/.

Denote by h; h1; : : :; hk the homotopyclass of the generic fiber of†;†1; : : : ; †k.
Since by hypothesis p hi/ D h 1 for i D 1; : : : ; k, each covering pi D pj†i
satisfies jdeg.pi /j D Gob.pi / and thus Vol.†i/ D jdeg.pi /jVol.†/ for any i D
1; : : : ; k. Finally, since jdeg.p/j D jdeg.pjz†/j D jdeg.pj†1/jC Cjdeg.pj†k/j,
we have Vol.z†/ D Vol.†1/C CVol.†k/ D jdeg.p/jVol.†/. This ends the proof
of the lemma.

Lemma2.5. Letf W M N bea 1-surjective non-zerodegree map between Haken

manifolds and assume that there exists a finite covering fQW Mz Nz of f W M N
such that Vol.Mz/ > Vol.Nz/. If the covering Nz N has fiber degree one over the
Seifert pieces of N then Vol.M/ > Vol.N/.
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Proof. We keep the same notations as above. Assume that Vol.Nz/ < Vol.Mz/. Since

q W Nz N induces the trivial covering over the fibers, it follows from Lemma 2.4
that Vol.Nz/ D deg.q/Vol.N/. On the other hand, Vol.Mz/ deg.p/Vol.M/. Since

f W M N is 1-surjective, deg.p/ D deg.q/ and thus Vol.M/ > Vol.N /. This
completes the proof of the lemma.

Lemma 2.6. Let N denote an orientable S1-bundle over an orientable hyperbolic
surface F with bundle projection

W N F and let U D fu1; : : : ; uqg denote a
family of homotopically non-trivial simple closed curves in F Then there exists a

fiber degree one finite covering pW Nz; Fz; Q/ N; F; / such that each component
of Uz D pjFz/ 1.U/ is of infinite order in H1.FzIZ/.

Proof. If ui is not of infinite order in H1.F IZ/, since the group H1.F IZ/ is torsion
free, then ui is a separating curve in F Denote by A and B the components of F nui

Case 1: Assume first thatbothH1.A; uiIZ/ andH1.B; uiIZ/ are non-zero. Then
one can construct epimorphisms A W H1.AIZ/ Z=2Z and B W H1.BIZ/
Z=2Z such that ker A hOEui i and ker B hOEui i. Using the exact sequence

H1.OEui IZ/ H1.AIZ/ ° H1.BIZ/ H1.F IZ/ f0g

we get an epimorphism
W H1.F IZ/ Z=2Z, well defined by the formula x/ D

A.a/ C B.b/, where a; b/ represents x in H1.AIZ/ ° H1.BIZ/. Then denote

by pi W Ni; Fi; i/ N; F; / the 2-fold covering corresponding to the homomorphism

1N 1F H1.F IZ/ Z=2Z:

i
Then

p
pi jFi/ 1.ui/ consists oftwosimpleclosed curvesof infiniteorder inH1.FiIZ/

and hti < / 1Ni/, where t denotes the homotopy class of the fiber of N.
Case 2: Assume that H1.A; ui IZ/ D f0g, say. This means that H1.uiIZ/

H1.AIZ/ is an epimorphism and thus H1.AIZ/ is f0g or Z. In the first case A is
a disk which is impossible since ui is homotopically non-trivial and in the second
case A is an annulus. This means that ui is @-parallel in F Moreover, since ui is
nul-homologous, OEui D OE@F and in particular F has connected boundary. Since F
is hyperbolic, H1.F IZ/ 6D f0g. Then there exists a non-trivial finite abelian group L
and an epimorphism

W H1.F IZ/ L. We denote by pi W Ni;Fi; i/ N; F; /
a finite abelian covering corresponding to the homomorphism

1N 1F H1.F IZ/ L:

i

Then

p
pi jFi/ 1.ui/ consists of Card.L/ simple closed curves of infinite order in

H1.FiIZ/ and hti < / 1Ni /.
Hence the covering of N corresponding to the subgroup p1/ 1N1/ \ \pq/ 1Nq/ of 1N satisfies the conclusion of the lemma.
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2.7. Separability of fundamental groups. The following result is a direct
consequence of a separability result of Allman and Hamilton combined with the residual
q-nilpotence of free groups, for any prime q, proved by Gruenberg.

Lemma 2.7 ([AH], [Gr]). Let F be anorientable hyperbolic surface and let u 2 1F
be a non-trivial element. Then for any prime q there exists a finite group Hq and an
epimorphism

W 1F Hq such that u/ 6D 1 and q divides the order of u/.

Proof. Consider 1F as a discrete subgroup of PSL2.R/.
Assume first that u is a hyperbolic isometry i.e. u has exactly two fixed points

both in @1H2;C). Then the proof of the lemma follows directly from Proposition 1
of [AH] in this case. Indeed the eigenvalues of the matrix representing u in SL2.C/
are not roots of unity.

Assume now that u is a parabolic isometry i.e. u has exactly one fixed point and

it lies in @1H2;C). In this case, necessarily @F 6D ; and thus 1F is a free group.
Then it follows from [Gr] that 1F is residually q-nilpotent for any prime q. This
means that there exists a finite q-group Hq and an epimorphism W 1F Hq such

that u/ 6D 1. This completes the proof of the lemma.

We end this section with the following result which follows from the residual
finiteness of surface groups.

Lemma 2.8. Let f W S † be a T -injective map from an orientable aspherical
Seifert fibered space to an orientable S1-bundle over an orientablehyperbolicsurface

F such that f 1S/ isnon-abelian. Then for any n 2 N there existsa finitecovering
fQn W Szn †zn satisfying the following properties:

i) the covering z†n † has fiber degree one,

ii) each component of zSn has a base 2-orbifold of genus at least n.

Proof. By Lemma 2.3, S is based on an orientable orbifold. Let T1; : : : ; Tp be the
components of @S. Denote by t thehomotopy class of the fiberof† and by W † F
the bundle projection. Denote by d1; : : : ;dp the chosen sections of @S with respect
to the fixed Seifert fibration of S and let c1; : : : ; cr denote the homotopy classes of
the exceptional fibers of S with index 1; : : :; r respectively.

Since f 1S/ is non-abelian, it follows from [JS] that f v/ 2 hti for any fiber
v of S. Denote by OS the base 2-orbifold of S and by xOS the underlying space and

set gS D genus. xOS/.
Let q W

z† † be a finite regular covering. Consider the corresponding
epimorphism ' W 1† K, where K is a finite group, and denote by pW zS S the
finite covering corresponding to the homomorphism ' B f This covering induces a

branched covering of degree between the underlying spaces of the base 2-orbifolds
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OzS of zS and OS of S. Let j denote the order of 'f cj / and for each i D 1; : : : ;p
denote by ri the number of components of @ zS over Ti and set ni D ri Then the
Riemann–Hurwitz formula allows us to compute the genus of OzS using the data of

OS and those of pW zS S:

2g zS D 2 C p C 2gS C r 2

iDp

X
iD1

1
ni

iDr

X
iD1

1
:

i; i/

Case 1: Assume gS 2. First note that since f 1S/ is non-cyclic there exists
an element a 2 1S such that B f a/ 6D 1 in 1F Since surface groups are
residually finite, there exists a finite groupK and an epimorphism " W 1F K such
that ". B f a// 6D 1. Consider the homomorphism ' D "B Note that since the
regular fiber h of S is sent via f to the fiber of †, we necessarily have 2. Then
the Riemann–Hurwitz formula gives

2g zS 2 C .2gS 2/ :

Thus, since gS 2 and 2, we get 2 C .2gS 2/ > 2gS. This proves that

gzS > gS and completes the proof of the lemma in this case.

Case 2: Assume gS D 1. Then we claim that p 1. Suppose the contrary. Let
a and b be the standard generators of 1 xOS and denote by q1;: : : ; qr the sections
corresponding to the exceptional fibers c1; : : : ; cr Since f h/ 2 hti and since 1F
is torsion free, it follows that f qi/ 2 hti for i D 1; : : : ; r. Hence f OEa; b / 2 hti
because OEa; b q1 : : :qr D hb and thus OE f a/; f b/ D 1 in 1F Since F is a

hyperbolic surface, there exists u 2 1F such that hui D h f a/; f b/i. Let
g 2 1† such that g/ D u. Then f 1S/ hg; ti ' Z Z. A contradiction.
Now f di/ 6D 1 in 1F because f j@S

W
@S † is 1-injective. Thus there

exists an epimorphism " W 1F K into a finite group K such that " f di/ 6D 1
for i D 1; : :: ; p. Consider the homomorphisms ' D " and ' B f and the
associated coverings z† and zS. Then it follows from our construction that ni 2 for
i D 1; : : : ; p and 2. Then the Riemann–Hurwitz formula gives

2g zS 2 C
p
2

> 2:

Thus gzS 2 and we have a reduction to the first case.

Case 3: Assume gS D 0. In this case the fundamental group of S admits a

presentation

d1;: : : ; dp; q1;: : : ; qr; h W
OEh; di D OEh; qj D1; q i

i Dh i ; d1 : : : dpq1 : : :qr Dh
b :

Note that when p > 0, i.e., when @S 6D ;, then one can choose b D 0. Since

f h/ 2 htiand since 1F is torsion free, it holds that f qi/ is inhti for i D 1; : : : ; r.
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Then we first check using the presentation above and the fact that f 1S/ is
nonabelian) that p 3. If p 1 then we get f 1S/ hti. A contradiction. Assume
that p D 2. Using the presentation of 1S we get f 1S/ hf d1/; ti ' Z Z,
a contradiction again. From now on may we assume that p 3.

Note that since f j@S W
@S † is 1-injective, it follows that f di/ 6D 1 in

1F Thus there exists an epimorphism "W 1F K into a finite group K such that

" f di/ 6D 1 for i D 1; : : : ; p. Consider the homomorphisms ' D " and 'fand the associated coverings z† and zS. Then it follows from our construction that

ni 2 for i D 1;: : : ; p and 2. Then the Riemann–Hurwitz formula gives

2gzS 2 C
p
2

2 :

Subcase 1: Assume gS D 0 and p 4. This implies that gzS 1 and we have a

reduction to the second case.

Subcase 2: Assume gS D 0 and p D 3. If the number of connected components

zp of zS is 4 then we have a reduction to the subcase 1. Hence assume that zp D 3.
The Riemann–Hurwitz formula gives

2g zS D 2 zp C p C r 2
iDr

X
iD1

1
1 1:

i; /i

Then we get gzS 1. This completes the proof of the lemma.

2.8. Characteristic maps between Haken manifolds. First recall that a codimension

0 submanifold L of a closed Haken manifold M is termed a characteristic
submanifold if L is a component of M n T where T is a subfamily of TM.

Next we define characteristic maps. Let f W M N be a map between closed
Haken manifolds. We say that f is standard if f H.M// intH.N/ and

f S.M// int†.N/, where †.N/ denotes the characteristic pair defined in
Paragraph 1.2. We say that a standard map f is characteristic if for any component

T 2 TN the space f 1.T / is the disjoint union of components of TM.

Lemma 2.9. Let f W M N be a map between closed Haken manifolds and assume

that N is not a virtual torus bundle. If f is standard then it is homotopic to a
characteristic map.

Proof. The proof follows from cut and paste arguments of [Wa].

Lemma 2.10. Let f W M N be a non-degenerate, non-zero degree map between
closed Haken manifolds. Then if kMk D jdeg.f /jkNk then f is homotopic to a
standard map.
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Proof. This follows from the Mapping Theorem of [JS] and from the Rigidity
Theorem of [S1].

More generally we have

Lemma 2.11. Let f W M N be a non-zero degree map between closed Haken
manifolds with kMk D deg.f /kNk. Then there exists a connected characteristic
submanifold M1 M which contains H.M/ in its interior in particular if @Q \@M1 6D ; forQ 2 M thenQis Seifert), a closed Haken manifoldMy1 obtained from

M1 after Seifert Dehn fillings along @M1 and a T -injective non-zero degree extension
fO1 W My1 N of f1 D f jM1 W M1 N such that kMy1k D jdeg.fO1/jkNk.

Proof. The proof of Lemma 2.11 follows from the arguments used in [Ro1] without
any essential change.

2.9. A thick–thin decomposition of Haken manifolds with respect to standard
maps. Let M and N be two Haken manifolds with toral boundary if non-empty)
and let f W M N be a standard map. For each Seifert piece S of M denote by

†S the component of †.N/ such that f S/ int.†S/. Denote by MC the disjoint
union of the Seifert pieces S of M such that there exists a Seifert fibration on S
with fiber h and a Seifert fibration on †S with fiber t such that f OEh / 2 hOEt i at the

1-level) and set M D M n MC [ H.M//.

Lemma 2.12. Let f W M N be a non-degenerate standard map between Haken
manifolds and let S be a Seifert piece ofM. If †S is an S1-bundle over an orientable
hyperbolic surface then we have f 1S/ ' Z Z for S 2 M

Proof. Let S be a Seifert piece of M By Lemma 2.3 each Seifert fibration on
S has an orientable basis. Due to the fact that †S contains no Klein bottles, it
follows from [JS, Addendum toTheoremVI.I.6] thatf 1S/ isabelian. Furthermore

f 1S/ ' Zr as 1N is torsion free. Since f jS is a non-degenerate map, we
have r 2, and since N is a three-dimensional manifold, we have r 3 because
the subgroup f 1S/ must have cohomological dimension at most 3. Finally, the
fundamentalgroup ofN cannot contain a group isomorphic toZ Z Zsince†S isan
S1-bundleoveran orientable hyperbolic surface. Thennecessarily f 1S/ ' Z Z.

Lemma 2.13. Let f W M; @M/ N; @N/ be a non-degenerate, proper non-zero

degree map from a Haken graph manifold with toral boundary to an orientable circle
bundle over an orientable hyperbolic surface.

Let fQW Mz Nz be a finite covering of f and let pW Mz M denote the
corresponding finite covering of M. Then p 1.M / D Mz and MzC D p 1.MC/.
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Proof. If M is a Seifert manifold, then M D MC since f is a non-zero degree map
and thus MzC D Mz and the result is obvious.

Assume thatM is not a Seifert manifold and let S be a Seifert piece ofM. Since

N is an orientable circle bundle over an orientable hyperbolic surface, by Lemma 2.3

S admits an H2 R structure. In particular S admits a unique Seifert fibration. The
proof of the lemma follows.

Proposition 2.14. Let f W G † be a T -injective proper non-zero degree map
from a Haken graph manifold with toral boundary to an orientable S1-bundle over
an orientable hyperbolic surface F Let L be a characteristic submanifold of G
such that each Seifert piece S of L satisfies f 1S/ ' Z Z. There exists a finite
covering fQW Gz †z of f and a finite family of vertical tori TL in †z satisfying the
following properties:

i) z† † has fiber degree one.

ii) After a homotopy, for each component Lz of p 1.L/, fQ.Lz/ is contained in a
component of TL, where pW zG G denotes the finite covering corresponding

to fQ.

To prove this result, we first need some preliminary lemmas.

Lemma 2.15. Let F denote an orientable hyperbolic surface and let f W S1 F be
a geodesic loop and assume that hOEf i is a maximal abelian subgroup of 1F Then
there exists a finite regular covering q W Fy F such that any lifting fOW S1 Fy of

f Bp is an embedding, where pW S1 S1 denotes the finite covering corresponding
to the subgroup f 1 q 1Fy//.

Proof. Denote by pW H2 F the universal covering of F and denote by the
isometry of H2 corresponding to OEf Note that if is a parabolic isometry then
the lemma is obvious. Thus let us assume that is a hyperbolic isometry. Let l be
the unique -invariant geodesic line in H2. Denote by D a compact) fundamental
domain in l for the action of Denote by fg1; : : :; gng the finite subset of 1F
defined by fg 2 1F nh i j g.D/\D 6D ;g. Moreover, there exists a finite group K
and an epimorphism ' W 1F K such that '.gi/ 62 '.h i/, for i D 1; : : : ; n. Then
the finite regular covering H2= ker.'/ F satisfies the conclusion of the lemma.

Lemma 2.16. Let†denotean orientable circle bundle over an orientable hyperbolic
surface F and let f W

S1 S1 † be a 1-injective map. Then there exists
a finite, fiber degree one, regular covering q W

y† † such that for each lifting

fOW S1 S1 †y of f Bp there is a vertical torus Ty in †y such that fO.S1 S1/ yT
where pW S1 S1 S1 S1 denotes the finite covering corresponding to the
subgroup f 1 q 1y†//.
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Proof. Denote by G a maximal abelian subgroup of 1† of rank 2 containing

f 1.S1 S1//. Then G can be written as ht; bi, where b generates a maximal
abelian subgroup of 1F and t denotes the homotopy class of the fiber of †. It is
well known that b is freely homotopic to an element of 1F which can be represented

by a closed geodesic loop g W S1 F Then changing f by a homotopy, we may
assume that b D OEg Denote by qW Fy F the finite regular covering of F satisfying

the conclusion of Lemma 2.15 with the map g. Then the finite, fiber degree one,
regular covering q W y† † obtained as a pullback of q via the bundle projection

W † F satisfies the conclusion of the lemma.

In the sequel we will need the followingdefinition: let T denote a vertical torus in a

Seifert manifold † endowed with a base point x. We say that T is a maximal vertical
torus if there are no rank 2 free abelian subgroups of 1.†; x/ strictly containing

1.T; x/.

Lemma 2.17. Let f W V; @0V / .†; T / be a T -injective map from a connected
Haken graph manifold V with toral boundary to an orientable S1-bundle † over
an orientable hyperbolic surface F with bundle projection

W † F Assume

that @0V is a non-empty subset of @V T is a maximal vertical torus in † and that

f 1S/ ' Z Z for each Seifert piece S of V Then f is homotopic, rel. @0V to
a map g such that g.V / T

Note that 1T can be presented as ht bi, where b/ is represented by an
embedded geodesic curve which generates a maximal cyclic subgroup of 1F and t is
the fiber of †. We first check the following

Claim 2.18. For each Seifert piece S of V the map f jS is homotopic, rel. to f j@0V
to a map g such that g.S/ T

Proof of Claim. Let S be a Seifert piece such that @S \ @0V 6D ;. Let T0 be a

component of @S \ @0V Let x 2 T0 be a base point and let y D f x/ 2 T
Let H be a free abelian subgroup of 1.†; y/ such that K0 D H \ 1.T ; y/ is
a free abelian group of rank 2. Thus K0 is a finite index subgroup of H. Hence,
since K0 1.T ; y/ for any g 2 H, there exists an integer ng 2 Z such that

gng 2 1.T ; y/ D ht; bi. On the other hand, there exists an integer 6D 0 and an
element 2 1† such that / 2 1F n f1g and such that H D ht ; i. Then,
in particular, there exist two non-zero integers n; m 2 Z such that /n D b/m.

It is easy to check that h /; b/i is an infinite cyclic subgroup of 1F using
the classification of isometries of H2;C. Therefore, since T is a maximal torus,

/ 2 h b/i, and thus H 1T
Using theabove construction withH D f 1S/which containsH\ 1.T ; y/

K0 D f 1.T0; x// we deduce that f 1S/ 1T Hence one can change f jS
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by a homotopy, rel. to f j@0V such that f S/ T Since V is connected, this
completes the proof of the claim by repeating the argument for each Seifert piece
of V

Proof of Lemma 2.17. We argue by induction on the complexity of the dual graph

V of V Fix a Seifert piece S0 such that @S0 \ @0V 6D ;. By the claim above we
may assume that f S0/ T

Case 1: Assume that V is a tree. Let S be a Seifert piece of V adjacent to S0.

Note that @S0 \ @S is a connected canonical torus T since V is a tree. Fix a base

point x 2 T and y D f x/ 2 T It follows from the claim above that f 1.S; x// is
a subgroup of 1.T ; y/. Since S0\ S is connected, it follows from the van Kampen
Theorem that f 1.S [T S0// is a subgroup of 1.T ; y/. Hence, after a homotopy
rel. to @0V we may assume that f S [T S0/ T This completes the proof of the
lemma when V is a tree by repeating this process.

Case 2: If V is not a tree then Rank.H1. V IR// 1. Choose a characteristic
non-separating torus T in V By Claim 2.18, one can change f by a homotopy
rel. to @0V such that f T / T Next, consider the space yV obtained by cutting
V along T Then Rank.H1. yV IR// < Rank.H1. V IR//. Denote by U1, U2 the

components of @ yV over T and write @0 yV D @0V [ U1 [ U2. Consider the map

f1 D f j yV W yV ;@0 yV / .†; T /. We know from the induction hypothesis that there
exists a map g1 homotopic to f1 rel. to @0 yV such that g1. yV / T Thus it follows
from our construction that g1 factors through V This completes the proof of the
lemma.

Proof of Proposition 2.14. Let S be a Seifert piece of L. Then, by Lemma 2.16 there
exists a fiber degree one finite covering z†S † satisfying the following property.
Consider the covering fQS W GzS †zS of f corresponding to †zS †. Then for
each component zS over S in zGS there existsa maximal vertical torus in z†S containing
fQS.Sz/. Consider the covering †z of † corresponding to the finite index subgroup

\S2L

1 z†S

of 1†. Denote by fQW Gz †z the covering of f corresponding to †z † and

by pW zG G the corresponding covering of G. Hence for each Seifert piece zS of

p 1.L/, there exists a maximal vertical torus TzS in †z containing fQ.Sz/. It remains to
prove that the same property remains true by replacing zS by the connectedcomponent
zL of p 1.L/ which contains zS. This last point follow directly from Lemma 2.17.
This completes the proof of the proposition.

We end this section with the following result.
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Lemma2.19. Let f W M; @M/ N; @N/be a T -injective, proper, non-zerodegree
map from a Haken graph manifold with toral boundary to an orientable circle bundle
over an orientable hyperbolic surface. Then

i) there exists at least one Seifert piece S ofM such that f 1S/ is non-abelian,

ii) if f 1S/ is non-abelian then S is a component of GC, and

iii) if there exists a component T of TM shared by two Seifert pieces S1 and S2 of

M then S1 or S2 is in G

Proof. If f 1S/ is abelian for any Seifert piece S of M then by Proposition 2.14,
there exists a finite covering fQW Mz Nz such that fQ 1Mz/ ' Z Z. Since
deg.f / 6D 0 also deg.fQ/ 6D 0. This implies that 1Nz contains a finite index abelian
subgroup. This is impossible since N is a circle bundle over a hyperbolic surface.

Assume that f 1S/ is non-abelian. By Lemma 2.3 we know that S admits a

Seifert fibration over an orientable basis. Moreover, the map f jS is homotopic to a

fiber preserving map since N contains no embedded Klein bottle.
Let T be a component of TM shared by two Seifert pieces S1 and S2 of M such

that the maps f jSi are homotopic to fiber preserving maps. Fix a base point x in T
and denote by hi i D 1; 2, the homotopy class of the regular fiber in Si represented

in T Since the f jSi are fiber preserving, the map f jT cannot be 1-injective by
the minimality of the JSJ decomposition. This is a contradiction and completes the
proof of the lemma.

3. Comparing the volume of the base 2-orbifolds

Let f W G;@G/ .†; @†/ be a T -injective, proper, non-zero degree map from a

Haken graph manifold G with toral boundary to an orientable S1-bundle .†; ; F/
over an orientable hyperbolic surface F with bundle projection W † F Then
one can associate to f a thick–thin decomposition of G into GC[G In this section
we give a general formula which allows us to compare Vol.GC/ and Vol.†/. To this
purpose we need to have a relation as precise as possible between Rank.H1. xOCIZ//
and Rank.H1.FIZ//, where xOC denotes the disjoint union of the base surfaces of
the Seifert pieces of GC see Proposition 3.1).

3.1. Efficient surfaces. Let F be a connected, embedded, orientable surface in G.
We say that F is an efficient surface if it satisfies the following properties:

1) F is transversal to TG in the sense that @F \TG D ; and that each component
of F \ TG is an essential simple closed curve in TG.

2) The torus-decomposition ofG gives a “circle” decomposition ofF into F D
F n TG \F /.
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3) The thick–thin decomposition of G induces a thick–thin decomposition of F
such that F D F \ G is incompressible and well-embedded in G and the thick
part FC D F \GC of F is horizontal this means that each component F of FC is
transversal to the fibers of the Seifert piece of GC containing F

We denotebyGo the characteristicsubmanifold ofG which consists of the Seifert
pieces of G which meet F Denote by

GoC
and Go the thick–thin decomposition of

Go and by xOoC
the disjoint union of the base surfaces of the Seifert pieces of GoC

We associate to an efficient surface F a graph in the following way. First
consider the dual graph 0 with respect to the circle decomposition of F and denote

by V0, resp. E0, the vertex space, resp. the edge space of 0. For each edge e 2 E0,
e\ TG then consists of a single point ve.T /, where T denotes the component of TG
such that e\T 6D ;. The set fve.T /; e 2 E0;T 2 TGg D 0\TG will be termed the
middle space of 0 and we denote it by M0. Then consider the graph D 0 \G
with vertex space V D V0\G /[M0. Moreover, we always assume the following
middle condition which can always be performed) for the vertex space:

Let x and y be two vertices of Assume thatx and y are inM0 andcorrespond to
the same canonical torus T of G. Since two Seifert pieces of GC cannot be adjacent,
by Lemma 2.19 there exists at most one Seifert piece S of GC such that T @S.
Then in this case x and y are in the same fiber of S.

We consider the following equivalence relation on Let x and y be two vertices
of Then x y iff either x and y are in M0 and live the same canonical torus of
G or x and y are in V0 \ G and live in the same Seifert piece of G.

Denote by y the quotient space and by q W y the projection. Note that

the vertex space V.y/ of y is equal to q.V /.
We define a “quotient space” of [ FC in the following way. Denote by

…
W GC xOC the Seifert projection. First note that, since …jGoC is compatible

with by the middle condition, …. \ FC/ gives a subset of V.y / Then define

the space
OoCx [ y as the attachment of y to OoCx along …. \ FC/ D y \ OoCx

Hence we get a map … [ q W FC [ xOoC [ y Next, for each component O of

xOoC
we pick a base point xO and we connect each point of V.y / \ @O to xO by an

embedded arc and we denote by F the graph obtained from the union of y with
these embedded arcs whose vertex space V. F / is V.y/ [ SO2Oox fxOg Now

C
y [ xOoC D F [ xOoC but the second presentation is easier for some computations
because F is connected.

A subset 1 of F will be termed a pseudo subgraph if 1 is a graph whose vertex
space V. 1/ is a subset of V. F /. We say that a connected pseudo subgraph 1 of

F is a minimal connection pseudo subgraph of F if
i) 1[ xOoC

is connected,

ii) for each component O of xOoC
the set 1 \O is simply connected,
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iii) the edge and the vertex space of 1 satisfy

Card.V 1// D Card. 0..Go/ //;
Card.E. 1// X

S2.Go /
Card. 0.@S//;

where Go/ resp. Go / denotes the disjoint union of the Seifert pieces of Go,
resp. Go Then the main result of this section is

Proposition 3.1. Let f W G; @G/ .†;@†/ be a T -injective, proper, non-zero

degree map from a Haken graph manifold G with toral boundary to an orientable
S1-bundle .†; ; F / over an orientable hyperbolic surface F with bundle projection

W † F Assume moreover that for each component L of G there exists a
maximal vertical torus TL in † such that f L/ TL. Then there exists an efficient
surface F in G and a minimal connection pseudo subgraph 1 of F such that

1. 1 [ OoCx / 1.F /.

In the following we will denote by T the union of vertical tori TL, where L
runs over the components of G and by c the union of the corresponding curves

cL D TL/ in F

Remark 3.2. Let yL denote a characteristic submanifold of G such that f 1S/ 'Z Z for each Seifert piece S of yL and which is maximal with respect to the natural
inclusion. This means that yL contains a component L of G but yL can be larger than
L. However, by Lemma 2.17 we may assume, after a homotopy, that f yL/ TL.

3.2. Domination of the target via essential surfaces. In this section we prove the
following result.

Lemma 3.3. There exists an efficient surface F in G such that 1. F [ OoCx /
1.F /.

First we construct an efficient surface in G by pull back. Since f jGCW GC †
is a bundle homomorphism one can choose a fiber t in †nW.T / such that f 1.t/ is
a finite union of regular fibers h1; : : : ; hl in int.GC/. In the following we set †0

D †
when the Euler number e.†/ D 0 and †0

D † n W.t/ when e.†/ 6D 0. Next, denote

by G0 the space f 1.†0/ D G n S1 i l W.hi/ D G0 and by f 0
W

G0 †0 the
induced proper non-zero degree map. In any case, †0 is a circle bundle over a surface

F 0 with zero Euler number. Fix a section of the bundle 0
W †0 F 0 so that F 0 can

be seen as an incompressible well-embedded surface in †0. After changing f 0 by a

homotopy so that each component of f 0 1.F 0/ is an incompressible, well-embedded
surface in G0, fix a component F of f 0 1.F 0/ such that deg.f 0jF W F F 0/ 6D 0.
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Denote b y G, resp. † the natural quotient map G W
G0 G, resp. † W †0 †,

and denote still by F the surface G.F /. It is immediate from the construction that

F is an efficient surface of G. In the following we denote by I the map B f
Lemma 3.4. The efficient surface F satisfies the following properties:

i) I 1.F // is a finite index subgroup of 1F I H1.F IQ// D H1.F IQ/ and

FC is not empty.

ii) The map I jFCW FC F factors through xOoC in such a way that there exists a

continuous map J W xOoC F such that I jFC D J B ….

iii) Let d be a simple closed curve in @GC n @G which is not homotopic to a fiber
of GC. Then I H1.dIQ// D H1.cLIQ/, where L denotes the component of
G which contains d.

Proof. First observe that it is a direct consequence of our construction that the map

B † B i 0
W F 0 †0 † F is 1-surjective and that f 0jF W F F 0 is a

proper non-zero degree map. Thus f 0/ 1.F // is a finite index subgroup of 1F 0

and f 0/ H1.F IQ// D H1.F 0IQ/. Hence I 1.F // is a finite index subgroup
of 1F and I H1.F IQ// D H1.FIQ/.

If FC D ; then by connexity F D F and there exists a component L of G
containing F Hence I 1F/ < hOEcL i which implies that 1F contains a finite
index cyclic subgroup. This is a contradiction since F is a hyperbolic surface. Hence
point i) follows.

Next we check point ii). Since f jGC is a bundle homomorphism there exists a

continuous map J W xOC F such that I jGC D J B …. This proves point ii).
It remains to check point iii). Denote by T the component of TG which contains

d and by S the Seifert piece of GC containing T in its boundary. Since T is in
@GC n @G, there exists a component L of G adjacent to S along T Since f jS is
fiber preserving and since f jT is 1-injective it follows that the map I jd W d cL
has non-zero degree. This shows iii).

Lemma 3.5. The map I jFC [ W FC [ F factors through OoCx [ F in such

a way that there exists a continuous map J W xOoC [ F F such that I jFC[ D
J B .… [ q/.

Proof. Deform slightly f so that for any vertices x and y of living in the same

Seifert piece of G we have I.x/ D I.y/. Then the lemma follows directly from
Lemma 3.4.

Now the proof of Lemma 3.3 follows from Lemma 3.5 combined with the
following assertion.
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Claim 3.6. The induced homomorphism

I W H1 [FCIQ/ H1.F IQ/
is surjective.

Proof. Recall that I W H1 F IQ/ H1.F IQ/ is an epimorphism by Lemma 3.4.
Using the Mayer–Vietoris exact sequence one sees that H1 F IQ/ is generated by

H1 [FCIQ/ and H1 F IQ/. Furthermore, for each component V of F there
exists a component L of G containing V and a component d of @V adjacent to
a component of FC in GC. Hence it follows from Lemma 3.4 that hI OEd /i D
I H1.V IQ//. This completes the proof of the claim.

3.3. Connection by a minimal graph. In this section we prove Proposition 3.1. To
this purpose we need to check the following Elimination Lemma.

Lemma 3.7. There exists a connected pseudo subgraph 0 of F satisfying the
following conditions:

i) V. 0/ D V. F /,

ii) for each component O of
OoCx the set 0 \ O is simply connected,

iii) the valence v.x/ of x is 2 in 0 for any x 2 q.M0/,
iv) the space 0 [ xOoC is still connected and the map J j 0 [ xOoC W

0 [ xOoC F
induces an epimorphism at the H1-level with coefficient Q).

Proof. First notice that F satisfies points i), ii) by construction and iv) by
Lemma 3.5 and Claim 3.6. Moreover, it follows from our construction that for
any x 2 q.M0/ we have v.x/ 2.

Now assume that there exists a point x 2 q.M0/ such that v.x/ 3. Then there
exists at least threeedges e1, e2 and e3 of F such that x is an end ofei for i D 1; 2;3.
For each i denote by yi the end of ei such that @ei D fx;yig. Note that each yi is a

point of q.V0 \G / SO2Oox fxOg and thus each yi corresponds to a unique Seifert
C

piece of Go. Denote by Si i D 1; 2;3, the Seifert piece of Go corresponding to
yi and by T the canonical torus corresponding to x. Since T is shared by S1, S2
and S3, there exists i;j 2 f1; 2; 3g such that Si D Sj For simplicity assume that

S2 D S3. Thus necessarily y2 D y3. Since F \ O is simply connected for each

component O of
OoC,

obviously S2 D S3 is a Seifert piece of Go Denote by L the
component of G containing S2 D S3 and denote by d the curve defined by e2 [ e3.

Then J OEd / 2 H1.cLIQ/, where cL is the simple closed curve in F corresponding
to the torus TL of T such that f L/ TL. Let U be a component of TG which is
shared by L and a component S of GoC

and let c be a component of F \ U. Then
by Lemma 3.4, I hOEc i/ D H1.OEcL IQ/. Then there exists an integer a such that
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I OEc a/ D J OEd / Denote by sU a cross section of U with respect to the Seifert
fibration of S induced on U. Then there exists p; q/ 2 Z Z such that OEc

a
D s

p h
q

U S
with p 6D 0 and where hS denotes the generic fiber of S.

Denote still by sU the component of @ xOoC
corresponding to U. Then J OEsU p/ D

J OEd // at the H1-level with coefficient Q.
Consider the graph 0 obtained from F after removing int.e2/. Then 0 satisfies

points i), ii) and iv) and the valence of x in 0 is strictly less than the valence of x
in F The proof of the lemma follows by repeating this operation finitely many of
times.

Proof of Proposition 3.1. Let x be an element of q.M0/ \ V. 0/. We know by
Lemma 3.7 that v.x/ D 2. Then there exist exactly two edges e1, e2 whose x is an
end point. Hence one can replace the edges e1; e2 by a single edge e1 [x e2. By
performing this operation for all points of q.M0/ we get a new graph 1 satisfying
the conclusion of Proposition 3.1.

4. The volume decreases under non-zero degree maps

The main purpose of this section is to prove the following result.

Proposition 4.1. Let f W G; @G/ .†; @†/ be a T -injective, 1-surjective, proper,
non-zero degree map from a Haken graph manifold G with toral boundary to an
orientable S1-bundle .†; ; F/ over an orientable hyperbolic surface F with bundle
projection W † F Assume moreover that for each component L of G there
exists a vertical torus TL in † such that f L/ TL. Then Vol.G/ Vol.†/ and if
G 6D ; then Vol.G/ > Vol.†/.

Remark 4.2. Roughly speaking, in the proof of Proposition 4.1 we establish the
following inequality: Vol.†/ Vol.GC/ C ", where " Vol.G / when G 6D ;.
This inequality is sufficient for our purpose. However the following question is
natural: Is it true that Vol.†/ Vol.GC/?

Throughout this section, we keep the same notations as in Section 3.1.

4.1. Domination of the target by the thick part of the domain

Lemma 4.3. Let f W G; @G/ .†;@†/ be a map satisfying the same hypotheses
as in Proposition 4.1. Assume moreover that either

i) T D ; which is equivalent to the condition G D ;), or

ii) T 6D ; and the homomorphism H1.c IQ/ H1.F IQ/ induced by the
natural inclusion is surjective.
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Then

Vol.GC/ Vol.†/:

Proof. Assume first that condition i) is satisfied. If T D ; then necessarilyG D ;and so G D GC is a Seifert fibered space by Lemma 2.19. Hence in this case

f jGW G † is a bundle homomorphism of non-zero degree and the inequality
follows.

Assume nowthat condition ii) is satisfied. Let yLdenotea connected characteristic
submanifold of G such that f 1S/ ' Z Z for each Seifert piece S of yL and

choose yL so that it is maximal with respect to the natural inclusion. Denote by

L1; : : : ; Ln the set of all such maximal characteristic submanifolds of G. It follows
from Remark 3.2 that the submanifolds Li satisfy the following properties:

a) S1 i n Li G
b) There exists a component Ti of T such that f Li / Ti and fT1;: : : ; Tng D

T
c) There exists a canonical torus Di of G shared by Li and a Seifert piece Si of

GC such that f 1Si/ is non-abelian.
On the other hand, it follows from the T -injectivity thatf jDi W Di Ti is a nonzero

degree map. For each i denote by di the simple closed curve obtained from Di
after killing the primitive curve ofDi corresponding to the generic fiber of the Seifert
piece Si adjacent to Di In this way, di can be seen as a boundary component of the
base surface of Si denoted by xOSi Then f jDi W Di Ti descends to a non-zero

degree map fQW di ci whereci D Ti/ is acomponent ofc Since f jSi is a fiber
preserving map, it follows that f jSi Si descends to the map J W Si xOSi F The
natural inclusion c D SL cL F induces an epimorphism at the H. ; Q/-level
which implies that J W Si @OSix F induces an epimorphism at the H. ; Q/-level
by properties a) and b).

For convenience we index the components Si by S1; : : : ; Sq in such a way that

Si 6D Sj when i 6D j Denote by gi the genus of the base surface of Si and by pi
the number of components of @Si Then

Vol.GC/ qX
iD1

.2gi C pi 2/ :

Since J W Si @ xOSi F induces an epimorphism at the H. ;Q/-level, it follows
that

qX
iD1

pi 1F:

On the other hand, we know that Vol.†/ D 1.F / " with " D 2 or 1 depending
on whether † is closed or not, and by Lemmas 2.5 and 2.8, we may assume that
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gi 2 when i D 1; : : : ; q. Thus we get

Vol.GC/ 1.F†/ C 2 qX
iD1

gi 1/ > Vol.†/:

This proves the lemma.

4.2. Increasing the genus of the base 2-orbifolds of the efficient thin part. In
order to prove Proposition 4.1, we first state a technical lemma which allows us to
construct suitablecoverings which increase the genus of the base of the thin part ofG.

Lemma 4.4. Let f W G † be a map satisfying the hypotheses of Proposition 4.1.
Assume moreover that T 6D ; and that

C1/ H1.c IQ/ H1.F IQ/ is not surjective:

For any n 2 N there exists a finite regular covering fn W Gn †n of f W G †
satisfying the following properties:

i) Any Seifert piece of Gn over a Seifert piece of G admits a fibration over a
2-orbifold of genus at least n.

ii) The covering †n † has fiber degree the fiber degree of Sn S for any
Seifert piece S of G and for any Seifert piece Sn of Gn over S.

In order to prove this result it will be convenient to define a set of invariants which
parametrize themapf W G † satisfying thesame hypotheses as in Proposition 4.1.
Recall that we know, from Lemma 2.3, that each Seifert piece of G admits always a

fibration over an orientable 2-orbifold. Given a Seifert piece S of G, we denote by
hS its generic fiber, by c1; : : :; crS its exceptional fibers and by T1.S/; :: : ;TpS S/
its boundary components, and for each i D 1;: : : ; pS denote by di.S/ a section of

Ti.S/ so that d1.S/ C CdpS S/ Cq1C CqrS D 0 in H1.SIZ/, where each

qi is a chosen section corresponding to the exceptional fiber ci
Recall that for each component S of G there exists a component TS of T

such that f S/ TS. Denote by NuS a simple closed curve in TS such that 1TS D
hOE NuS ; ti. After a homotopy on f jS we may assume that each component of

f jS/ 1. NuS/ is a well-embedded incompressible surface in S.
In the following itwill beconvenient to decomposeG into the unionG ;h[G ;v,

where G ;h, resp. G ;v, consists of the Seifert pieces S of G such that f jS/ 1. NuS/
is made of horizontal, resp. vertical surfaces.

If S denotes a Seifert piece of GC, let qS be the non-zero integer satisfying

f hS/ D tqS

Suppose that S denotes a Seifert piece of G ;h. Let S; S/ be the integers such

that f hS/ D Nu
S

S t S where t denotes the fiber of †. Note that by definition of



26 P. Derbez CMH

G ;h for each i D 1; : : : ; pS there exists i
S 6D 0 and coprime integers aiS; niS/ with

ai
S 6D 0 such that f d

aiS
i S/h

niS /S D Nu

iS
S

Note that S 6D 0 since f jS is not fiber preserving. On the other hand, aiS 6D 0

implies that Rank.hd
aiS
i S/h

niS; hSi/ D 2 and since f is non-degenerate we have
S

S 6D 0.
Suppose that S is a Seifert piece of G ;v. We denote by S the non-zero integer

such that f hS/ D Nu

S
S

andby i
S ; i

S/ the integerssuch that f di.S// D Nu

iS
S t

i
S

with i
S 6D 0.

Then we define the parameters space of the maps f by setting

M.f / WD 8<:

qS when S 2 GC;
S; S/; i

S; aiS i D 1;: : : ; pS when S 2 G ;h;
S; i

S ; i
S/ when S 2 G ;v

9=; :

To prove Lemma 4.4 we first check that we have the following reduction. The
hypotheses are the same as in Lemma 4.4. More precisely:

Claim 4.5. Wemay assume that the map f W G † satisfies the following condition.

There exists a prime number q such that e.†/ 2 qZ and

C2/

q > l:c:m
8<:

qS; S 2 GC;i
S ; S; S 2 G ;h; i D 1; :: : ;pS;
S; i

S S 2 G ;v
9=; :

Proof. First note that if e.†/ D 0 then the claim is obvious. Hence, let us assume

that e.†/ 6D 0 which implies in particular that † is closed. By Lemma 2.6, passing

to a finite covering with fiber degree one of the target we may assume that for each

component c of c

/ Im H1 cIZ/ H1 FIZ// 6D f0g:

On the other hand, recall that the group 1† has a presentation

Pe/ ht; a1; b1; : : : ; ag; bg W a 1
i tai D t; b 1

j tbj D t; OEa1; b1 : : :OEag; bg D t n
i;

where n D e.†/. The integer n also has the following interpretation: the group 1†
is obtained as a central extension of hti D Z by 1F using the exact sequence of the
fibration

f1g hti ' Z i 1† 1F f1g:
Recall that central extensions of Z by 1F correspond to elements of H2. 1F; Z/
and the integer n is the element of Z ' H2. 1F; Z/ corresponding to 1†.
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Let q be a prime number. By condition C1/, there exists an epimorphism

" W H1.FIZ/ Zq such that ker " H1.c IZ/. Consider the finite covering

W z† † corresponding to 1 ker.N"//, where N" denotes the composition
1F H1.F IZ/ Zq. It follows from the construction that is trivial over

T On the other hand, †z is an S1-bundle over a surface Fz that is the covering of F
corresponding to "N. Note that the inclusion 1Fz 1F gives a map

H2 1F;Z/ ' Z 3 1 7! q 1 2 Z' H 2 1Fz; Z/

and thus the integer
Qn

corresponding to the fibration of z† satisfies the equation
Qn D qn.

Note that since the covering is trivial over T it follows that the covering zG G
corresponding to f 1 1 ker. N"/// is trivial over G and over hS, where hS denotes
the generic fiber of S where S runs over the components of GC. In particular for any
Seifert piece S in G ;h, resp. GC, resp. G ;v and any component zS over S in zG
we have

zS D S,
zS D S, i

zS D i
S ai

zS D aiS resp. q zS D qS, resp.
zS D S,

i
zS D

i
S

and i
zS D

i
S

In other words, this covering does not affect the parameter
space. This completes the proof of the claim.

Lemma 4.6. Let f W G † be a map satisfying the hypotheses of Proposition 4.1
and conditions C1/; C2/ and / Let S be a geometric piece of G Let g be an
element of 1S which denotes either the homotopy class of an exceptional fiber or
the homotopy class of a section of a boundary component of S. Then there exists a
finite group H and an epimorphism ' W 1† H such that the following holds:

i) Separation: 'f g/ 62 h'f hS/i.
ii) Action on the fibers: Let pW z† † denote the covering of † corresponding to

' and for any Seifert piece S of G denote by S W zS S the finite covering of
S corresponding to ker.' B f jS/ / Then Gh. S/ Gh.p/.

Proof. Let S be a geometric piece of G and let g be an element of 1S satisfying
the hypothesis of the lemma.

First assume that g is the homotopy class of an exceptional fiber c of S and

denote by > 1the index of this fiber. Let ; / 2 Z2 such that f g/ D NuS t In
particular we have D xS 6D 0, where xS D S if S is a Seifert piece of G ;h or

xS D S if S is in G ;v.

Let p be a prime number such that pj According to Lemma 2.7 there exists

a finite group Hp and an epimorphism W 1F Hp such that uS/ 6D 1 and

p divides the order of uS /, where uS D NuS/. Consider the homomorphism 'given by

1† 1F Hp:
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This completes the proof when g D c. Indeed suppose that there exists n 2 Z
such that 'f g/ D 'f hn /. Then u / D un /. Then p divides 1 n AS S S
contradiction since pj Moreover, the second point of the lemma is satisfied since

the covering on the target corresponding to ' has fiber degree one.

Assume now that g denotes the homotopy class of a section d of a component
of @S.

Case 1: Assume that S is a Seifert piece of G ;h. According to the notation of
Paragraph 4.2 we know that there exists i 2 f1; : :: ; pSg such that d D di.S/. In

particular we have
i

f dai SCniS/ D Nu
S S

S
tniS S where aiS 6D 0.

From the presentation Pe/ of 1† and by condition C2/ one sees that

H1.†IZ/ ' Zn ° H1.F IZ/ where n 2 qZ. Since n 2 qZ there exists an
epimorphism q W Zn Zq. On the other hand, it follows from condition / that the

NuS/’s are non-trivial elements ofH1.FIQ/ when S runs over the Seifert pieces of
G Then there exists a q-group Fq; C/ and an epimorphism q W H1.F IZ/ Fq
such that q.uS/ 6D 0 for any S in G Consider now the homomorphism ' defined
by

1† H1.†IZ/ ' Zn °H1.F IZ/
q q

Zq Fq:
Using condition C2/ we claim that ' satisfies the conclusion of the lemma. First

we check point i). To see this it is sufficient to check that 'f daiS / 62 h'f hS/i.
Assume that there exists m 2 Z such that 'f d aiS/ D 'f hm

S
/. Then using our

notations this means that

i
S C ni

S S/ q uS/ D m S q.uS/ and ni
S S q t/ D m S q t/:

Then q divides i
S C S.niS m/ and ni

S m/ S. Since S; q/ D 1, q divides
niS m and thus q divides i

S A contradiction. It remains to check the second point
of the lemma. First it follows from the construction of ' that Gh.p/ D q, where p is
the finite covering corresponding to '. On the other hand, for any Seifert piece S of
G it follows from our construction and from condition C2/ that 'f hS/ has order

qrS with rS 1, since f hS/ D tqS and q; qS/ D 1 or f hS/ D Nu
S t S and

S
S; q/ D 1 or f hS/ D Nu S

S / with S; q/ D 1 depending on whether S is a

Seifert piece of GC, G ;h or G ;v.
Case 2: Assume that S is a Seifert piece of G ;v. We use the same arguments as

in the first case. Let q be a prime number satisfying condition C2/. Then consider
the epimorphism

H1.†IZ/ ' Zn° H1.F IZ/
q q

Zq Fq

constructed in the first case and denote by ' the composition 1† H1.†IZ/
Zq Fq. Then

'.f hS// D .0; S q.OE

NuS/ //
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and

'.f d // D i
S q.t/; i

S q.OE

NuS/ //:

Since qjn and since q; i
S / D 1, it follows that '.f d// 62 h'.f hS//i. On the

other hand, it follows from our construction and from condition C2/ that Gh.p/ D q
and that for any Seifert piece S of G then 'f hS/ has order qrS with rS 1. This
completes the proof of the lemma.

Proof of Lemma 4.4. Let S be a Seifert piece of G and assume that the genus gS
of the base 2-orbifold OS of S satisfies gS 1. Denote by d1; : : : ; dpS the chosen
section of @S with respect to the fixed Seifert fibration of S) and let c1;: : : ; crS
denote the homotopy class of the exceptional fibers of S with index 1; : :: ; rS
Using Lemma 4.6 and Claim 4.5 we may assume that there exists a homomorphism

' W 1† K onto a finite group such that
i) 'f di / 62 h'f hS/i, for i D 1; : :: ; pS and 'f cj/ 62 h'f hS/i for j D

1; : : : ; rS.
Denote by pW zS S the covering corresponding to ' B f jS/ This covering

induces a branched covering, whose degree is denoted by between the underlying
space of the base 2-orbifolds of S and zS. Let j be the order of 'f cj / in K and

for each i D 1; : : : ;pS denote by ri the number of component of @ zS over Ti and set

ni D ri Then the Riemann–Hurwitz formula allows us the compute the genus of
the base 2-orbifold of zS in the following way:

2g zS D 2 C pS C 2gS C rS 2
iDpS

X
iD1

1
ni

iDrS

X
iD1

1
:

i; i/

By condition i) one can check that 2, ni 2 for i D 1; : : : ; pS and i; i/ 2
for i D 1; : : : ; rS. Then, since moreover pS 1 because GC and G are

nonempty), it is easy to check that gzS > gS when gS 1. Note that condition ii) of
Lemma 4.4 is guaranteed by condition ii) of Lemma 4.6.

Assume now that gS D 0. We follow here the same construction as in the case of
gS 1 using Lemma 4.6. The Riemann–Hurwitz formula gives

2gzS 2 C
pS

2
2 :

Hence if pS 4 then gzS 1 and we have a reduction to the first case. Assume that

pS 3 and perform the same construction as above. Denote by pzS the number of

boundary components of zS. Then the Riemann–Hurwitz formula gives

2gzS D 2 pzS C pS C rS 2
iDrS

X
iD1

1
:

i; i/
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Assume pS D 3. If pzS 4 then we have a reduction to the case above. If pzS D 3
the Riemann–Hurwitz formula gives, since 2, that 2g zS 1 C 1 and thus

gzS 1.
Assume pS D 2. Applying the same argument since gS D 0 and pS D 2 imply

rS 1) we get a reduction to the case pS D 3 or gzS 1.
Note that thecasepS D 1 is impossible. Indeed it follows from the construction of

G that f 1S/ ' Z Z and from the non-degeneration condition that f 1T / 'Z Z for any component T of @S. Thus we get the following commutative diagram:

1T 1S Z Z 1†

H1.T IZ/ H1.SIZ/.

This implies that Rank.H1.T IZ/ H1.SIZ// D 2. If @S is connected then it
follows from the exact sequence corresponding to the pair S; @S/ thatRk.H1.@SIZ/
H1.SIZ// D 1. Hence @S cannot be connected. Next we perform this construction
for each Seifert piece of G

To complete the proof of the lemma it remains to check that one can find a regular
covering. More precisely assume that there exists a finite covering fnW Gn †n
satisfying the conclusion of the lemma. Denote by n W †n † the associated

covering of†, byHn the finite index subgroup of 1† corresponding to this covering
and denote by pn W Gn G the finite covering corresponding to f 1 Hn/. Denote

by "n W y†n †n the finite covering so that n B "n is the regular covering of †
corresponding to the normal subgroup

Kn D \g2 1†
gHng 1 C 1†:

Then consider the corresponding regular covering of f W G † denoted by

fOn
W Gyn †yn. Since Gn satisfies point i) of Lemma 4.4 and since Gyn is a

finite covering of Gn, point i) also holds for yGn. On the other hand, since the fiber
of † is central in 1†, it follows from the construction the fiber degree of n B "n is
equal to the fiber degree of n. This completes the proof of the lemma.

4.3. Proof of Proposition 4.1. By Lemma 4.3, we may assume that G 6D ; and

that the inclusion c F induces a non-surjective homomorphism H1.c IQ/
H1.F IQ/.

Case 1: Firstsuppose thatgenus.OS/ 1forany Seifert piece S ofG whereOS
denotes the base 2-orbifold of S. Denote by 1 the minimal connection graph given
by Proposition 3.1. Consider the Mayer–Vietoris exact sequence corresponding to
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the decomposition of 1[ xOoC given by 1; xOoC; 1 \ xOoC
Denote by O1; : :: ; Ok

the components of xOoC
and by †1;: : : ; †l the Seifert pieces of Go Then we get

f0g H1 xOoC ° H1 1/ H1 1 [ xOoC H0 1 \ xOoC

H0 xOoC °H0 1/ H0 1 [ xOoC f0g:

Thus, since 1 is connected and since xOoC
and xOoC \ 1 have the same number of

components we get the following relation:

1 xOoC D 1 1 [ xOoC 1 1/ :

We know that
Vol Go/ 1 xOoC C 1 xO

o k l;
where xOo denotes the union of the base surfaces of the Seifert pieces of Go Thus
we get

Vol Go/ 1 1 [ xOoC 1. 1/ C 1 xOo k l
ByProposition3.1, weknowthat 1 1[ xOoC 1.F/ andweknowthatVol.†/ D
1.F / " where " D 2 or 1 depending on whether F is closed or not.

Moreover we know that 1 1/ D Card E 1// Card V 1// C 1. This
implies that

Vol Go/ Vol.†/ C " 1 C Card V 1// k l C 1 xOo Card E 1// :

Again by Proposition 3.1, we have Card V 1// D k C l Note also that

1 xOo D Pl
iD1 .2gi C ri 1/, where gi resp. ri denotes the genus, resp. the

number boundary components, of †i i D 1; : : : ; l. Then

Vol Go/ Vol.†/ C 2
lXiD1

gi l C lX
iD1

ri Card E. 1// :

Finally, by Proposition 3.1, we know that Pl
iD1 ri Card E. 1// 0 and since

gi 1 for i D 1;: : : ; l we then get

Vol Go/ Vol.†/ C 2lX
iD1

gi l > Vol.†/:

This proves that Vol.Go/ > Vol.†/ since l 1 by hypothesis. Hence this completes
the proof in this case.

Case 2: If the condition on the genus of the base surfaces of the Seifert pieces in
G is not satisfied then, since condition C1/ is satisfied, we know from Lemma 4.4
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that there exists a finite regular covering f1 W G1 †1 of f W G † satisfying
the following properties. Let W †1 † and pW G1 G denote the finite regular
coverings corresponding to f1. Then

i) any Seifert piece of p 1.G / admits a Seifert fibration over a 2-orbifold of
genus 1,

ii) for any Seifert piece S of G and for any component S1 of p 1.S/ it holds
that Gh.pjS1/ Gh. /

Since G1/ D p 1.G / by Lemma 2.13, one can apply the above arguments to
the map f1 W G1 †1. It follows from the paragraph above that we have Vol.G1/ >
Vol.†1/. Thus we get

Vol.†1/ D Vol.†/
deg. /
Gh. / < Vol G1/ D Vol p 1 G/ :

DenotebyQ1; : : : ; Ql the geometriccomponents ofG andbypi the induced covering

pjp 1.Qi /W p 1.Qi/ Qi Then since p is a regular covering we have

Vol G/ D
1

deg.p/

iDl

X
iD1

Vol p 1 Qi/ Gh.pi/:

Since f W G † is 1-surjective we have deg. / D deg.p/ and by ii) we get

Vol G/ Gh. /
deg. /

Vol p 1 G/ :

By combining this latter inequality with the first one we get Vol.†/ < Vol.G/. This
ends the proof of Proposition 4.1.

5. Proof of the theorems

5.1. Nonzero degree maps decreases the volume. In this section we prove Theorem

1.2.
Case 1: Assume that N/ D 0. If M/ D 0 then M is a virtual torus bundle

and then f is homotopic to a finite covering by [W], in particular f W 1M 1N
is injective. In the other cases M/ 6D 0 and thus Vol.M/ > 0.

Case 2: Assume now that N/ 6D 0. Suppose that f jTM W TM N is 1-
injective. By Lemmas 2.9 and 2.10, G† D f 1.†/ is a characteristic graph
submanifold of M for any Seifert piece † of N. Choose a component G of f 1.†/
so that f jGW G † has non-zero degree. Let †1 denote the finite covering of †
such that f jG has a 1-surjective lift f1 W G †1. By Lemmas 2.2, 2.14 and 2.5,
we may assume that f1 satisfies the hypothesis of Proposition 4.1. This proves that
Vol.G†/ Vol.G/ Vol.†1/ Vol.†/. Hence Vol.M/ Vol.N /.
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Suppose that f jTM W TM N is not 1-injective. Then using Lemma 2.11 we
know that there exists a connected characteristic submanifold M1 M which
containsH.M/ in its interior, aclosed Haken manifoldMy1 obtained fromM1 afterSeifert
Dehn fillings along @M1 and a T -injective non-zero degree extension fO1

W My1 N
of f1 D f jM1 W M1 N such that kMy1k D jdeg.fO1/jkNk.

Since f jTM W TM N is degenerate, there exists at least one Seifert piece yS in
My1 obtained from S after non-trivial i.e. with slope 6D1) Seifert Dehn fillings. The
base 2-orbifold OyS of yS is obtained from the base 2-orbifold OS of S after gluing
some cone points along some components of @OS. Note that S necessarily supports
an H2 R-geometry.

Indeed, ifnot thenS is the twisted I-bundle over theKlein bottleand thusMy1 D Sy

is a closed Seifert fibered space whose base is a 2-sphere with cone points .2;2; n/.
ThenMy1 is aSeifert fibered space whose base2-orbifold admits a spherical geometry.
This contradicts the fact that My1 is a Haken manifold.

Then we get OS/ < OyS / 0. This proves that Vol.My1/ < Vol.M/.
On the other hand, since fO1 W My1 N has non-zero degree and since kMy1k D
jdeg.fO1/jkNk, it follows that Vol.My1/ Vol.N/ by the first case. This completes
the proof of Theorem 1.2.

5.2. Proof of the rigidity theorem. In this paragraph we prove Theorem 1.3. Let

f W M N be a non-zero degree map between closed Haken manifolds satisfying
theVolumeConditionkMk D jdeg.f /jkNkandVol.M/ D Vol.N /. Then it follows
from Theorem 1.2 that f jTM is 1-injective.

Case 1: Assume that N admits a geometry E3, Nil or Sol. This means that

M/ D N/ D 0. ThenM is a virtual torus bundle in particularM is geometric)
and since N is irreducible, the map f is homotopic to a deg.f /-fold covering by a

result of [W].
Case 2: Assume that N admits a geometry H2 R or SL.2;R/. Then we check

the following

Lemma 5.1. Let f W M; @M/ N; @N/ be a proper non-zero degree map from
a Haken graph manifold M with toral boundary to an orientable Seifert manifold
with geometry H2 R or SL.2;R/. If Vol.M/ D Vol.N/ then f is homotopic to a
covering map with Gob.f / D 1 and Gh.f / D jdeg.f /j.
Proof. Denote by f1 W M N1 the 1-surjective lift of f into the finite covering

N1 of N corresponding to f 1M/.
We first check that M is a Seifert manifold. If not then we claim that Vol.M/ >

Vol.N /. Indeed, to see this, first note that by Lemmas 2.2, 2.14 and 2.5 we may
assume that f1 satisfies the hypothesis of Proposition 4.1. Hence, ifM is not Seifert

thenMC 6D ; andM 6D ; by Lemma 2.19. This implies that Vol.M/ > Vol.N1/
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Vol.N /, by Proposition 4.1. A contradiction. Thus M D MC which implies that M
is Seifert and that f and f1 are homotopic to fiber preserving maps.

Since f1 is fiber preserving, by Lemma2.2 thereexists a finite covering fQ1
W Mz

Nz of f1 such that Mz M and Nz N1 have fiber degree 1 and such that Nz is
an S1-bundle over an orientable hyperbolic surface Fz. Note that it follows from our
construction that Vol.Mz/ D Vol.Nz/. Then the map fQ1 descends to a non-zero degree
map

W OxMz Fz, where OxMz denotes the base surface ofMz Note that OMz /
OxMz / deg. / Fz// > 0 where OMz denotes the base 2-orbifold of Mz

and from Vol.Mz/ D Vol.Nz/ we conclude that OMz / D OxMz / D Fz/ < 0.

Thus Mz is an S1-bundle over an orientable hyperbolic surface Kz D OxMz D OMz

and deg. / D 1 which implies that W Kz Fz is homotopic to a homeomorphism.
Denote by h resp. t the homotopy class of the fiber in Mz in Nz resp.) and let n
denote the non-zero integer such that fQ1/ h/ D tn. Using the exact sequences

f1g Z
n

1.Mz/

fQ

1.Kz/ f1g

f1g Z 1.Nz/ 1.Fz/ f1g,

we check that fQ1/ is an isomorphism. Thus so is f1/ and finally, by [Wa],

f is a covering map. Moreover we claim that Gh.f / D deg.f / and Gob.f / D 1.
Indeed, byLemma2.1 we have j OM/j D Gob.f /j ON/j > 0and fromVol.M/ D
j OM/j D Vol.N / D j ON /j 6D 0 we get Gob.f / D 1. Since jdeg.f /j D
Gh.f / Gob.f / our lemma is shown.

Case 3: Assume that N is hyperbolic. In this case the condition on the volume
implies that M is still a hyperbolic manifold and f is homotopic to a covering map
by a rigidity result of Soma ([S1, Theorem 1]).

Case 4: Assume that N is a non-geometric Haken manifold. This means in
particular that N/ 6D 0. Let q W Ny N be the finite covering of N corresponding
to f 1M/ and let fOW M Ny denote the lifting of f By Theorem 1.2 we know
that Vol.M/ D Vol.Ny/ and kMk D jdeg.fO/jkNyk.

By Lemmas 2.5 and 2.2, we may assume that Ny contains no embedded Klein
bottle.

After adjusting fOW M Ny by a homotopy, we may assume, using Lemmas 2.9
and 2.10 that fO is characteristic and M is necessarily a non-geometric Haken manifold.

Assume that S.Ny/ 6D ;. Fix a Seifert piece † in Ny. Then necessarily † admits

a H2 R-geometry. Consider a component G of fO 1.†/ so that deg.fOjGW G
†/ 6D 0. Applying, Lemmas 2.2, 2.14, 2.5 and Proposition 4.1 to fOjG we see that
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Vol.G/ Vol.†/. This implies, since Vol.M/ D Vol.Ny/, that Vol.G/ D Vol.†/
and that any component Gi of fO 1.†/ n G is a twisted I-bundle over the Klein
bottle. Then using Lemma 5.1 we know that fOjG is a covering map such that

Gh.fOjG/ D deg.fOjG/ and Gob.fOjG/ D 1.

On the other hand, since fO is characteristic, it follows from the construction that

fOjGi W Gi † is a proper map. Denote by T the component of @† such that

fO.@Gi / T Since fO is T -injective, there then exists a non-zero integer n such

that fO OE@Gi / D nOET at the H2. IZ/-level. Since Gi has connected boundary,
OE@Gi D 0 in H2.GiIZ/ and thus, since H2.†IZ/ is torsion free, OET D 0 in
H2.†IZ/. This proves that @† is connected. Hence deg.fOjGi/ 6D 0 which is
impossible since † admits a H2 R-geometry. Thus fO 1.†/ D G. This proves

that fOjS.M/W S.M/ S.Ny/ is a covering map.
Assume that S.Ny/ D ;. In this case Vol.Ny/ D 0 and thus Vol.M/ D 0. This

means that if S.M/ 6D ; then each Seifert piece ofM is homeomorphic to a twisted

I-bundle over the Klein bottle and that for each component K of S.M/ there exists a

canonical torus T of Ny such that fO.K/ W.T /. Hence fOjK is non-degenerate and

fO 1K/ is abelian. We get a contradiction since K admits a Seifert fibration over a

non-orientable surface see the proof of Lemma 2.3). This shows that S.M/ D ;.
On the other hand fOjH.M/ W H.M/ H.Ny/ is a covering map by a result

of Soma in [S1]. But since fO is 1-surjective, fO actually is a homeomorphism,
using [Wa], and hence f is a covering map. Note that the induced proper map

f jS.M/ W S.M/ S.N / is a covering map such that Gh.f jSh.M// D deg.f /
and Gob.f jSh.M// D 1. This completes the proof of Theorem 1.3.

5.3. Proof of Theorem 1.6. We consider here degree one maps between closed
Haken manifolds. In view of Theorem 1.3, to prove Theorem 1.6 we have to check
the following

Claim 5.2. For any closed Haken manifold M there exists a constant M 2 .0;1/,
which depends only onM, such that for any degreeone map f W M N intoaclosed
Haken manifold N satisfying N/ M/.1 M/ it holds that M/ D N/.

Proof. Suppose the contrary. Then there is a closed Haken manifold M0 and a
sequence ofclosed HakenmanifoldsNn such that there are degree one maps fnW M0
Nn satisfying Nn/ M0/.1 1=n/ and Nn/ 6D M0/ for any n 2 N. This
implies in particular that kM0k kNnk kM0k.1 1=n/. Then limn!1 kNnk D
kM0k. Hence by [D] this implies that the sequence fNngn2N is finite up to
homeomorphism. This contradicts the inequalities

kM0k 1
1

n
Nn/ < M0/ :



36 P. Derbez CMH

This completes the proof of the claim.

Thus one can applyTheorem 1.3with the hypothesis deg.f / D 1. This completes
the proof of the theorem.
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