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Abstract. We characterize the possible asymptotic behaviors of the compression associated to a

uniform embedding into someLp-space, with1 < p < 1, for a large class ofgroups including
connected Lie groups with exponential growth and word-hyperbolic finitely generated groups.
In particular, the Hilbert compression exponent of these groups is equal to 1. This also provides
new and optimal estimates for the compression of a uniform embedding of the infinite 3-regular
tree into some Lp-space. The main part of the paper is devoted to the explicit construction of
affine isometric actions of amenable connected Lie groups on Lp-spaces whose compressions
are asymptotically optimal. These constructions are based on an asymptotic lower bound of the

Lp-isoperimetric profile inside balls. We compute the asymptotic behavior of this profile for all
amenable connected Lie groups and for all 1 p < 1, providing new geometric invariants of
these groups. We also relate the Hilbert compression exponent with other asymptotic quantities
such as volume growth and probability of return of random walks.
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1. Introduction

The study of uniform embeddings of locally compact groups into Banach spaces and

especially of those associated to proper affine isometric actions plays a crucial role
in various fields of mathematics ranging from K-theory to geometric group theory.
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Recall that a locally compact group is called a-T-menable if it admits a proper affine
action by isometries on a Hilbert space for short: a proper isometric Hilbert action).
An amenable -compact locally compact group is always a-T-menable [CCJJV]; but
the converse is false since for instance non-amenable free groups are a-T-menable.
However, if a locally compact, compactly generated group G admits a proper
isometric Hilbert action whose compression satisfies

t/ t1=2 ;

then G is amenable1. On the other hand, in [CTV], we prove that non-virtually
abelian polycyclic groups cannot have proper isometric Hilbert actions with linear
compression. These results motivate a systematic study of the possible asymptotic
behaviors of compression functions, especially for amenable groups.

In this paper, we “characterize” the asymptotic behavior of the Lp-compression,
with 1 < p < 1, for a large class of groups including all connected Lie groups
with exponential growth. Some partial results in this direction for p D 2 had been

obtained in [GK] and [BrSo] by completely different methods.

1.1. Lp-compression: optimal estimates. Let us recall some basic definitions.
Let G be some locally compact compactly generated group. Equip G with the word
length function j jS associated to a compact symmetric generating subset S and

consider a uniform embedding F of G into some Banach space. The compression
of F is the nondecreasing function defined by

t/ D inf
jg 1hjS t

kF.g/ F.h/k:

Let f;g W RC xRC be nondecreasing, nonzero functions. We write respectively

f g, f g if there existsC > 0such that f t/ D O.g.Ct//, resp. for allc > 0,

f t/ D o.g.ct// when t 1. We write f g if both f g and g f The
asymptotic behavior of f is its class modulo the equivalence relation

Note that the asymptotic behavior of the compression of a uniform embedding
does not depend on the choice of S.

In the sequel, an Lp-space denotes a Banach space of the form Lp.X;m/ where

X; m/ is a measure space. AnLp-representation ofG is a continuous linearG-action
on some Lp-space. Let be an isometric Lp-representation of G and consider a

1-cocycle b 2 Z1.G; / or equivalently an affine isometric action of G with linear
part : see the preliminaries for more details. The compression of b is defined by

t/ D inf
jgjS t kb.g/kp:

1This was proved for finitely generated groups in [GK]. In [CTV], we give a shorter argument that applies to
all locally compact compactly generated groups.
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In thispaper, we mainly focus our attentionon groups in the two following classes.

Denote L/ the class of groups including

1) polycyclic groups and connected amenable Lie groups;

2) semidirect products ZOE 1
mn Ìmn Z, with m, n co-prime integers with2 jmnj 2

if n D 1 this is the Baumslag–Solitar group BS.1; m/); semidirect products

R° Lp2P
Qp/ Ìm Z with m, n coprime integers and P a finite family of

n
primes dividing mn;

3) wreath products F o Z for F a finite group.

Denote L0/ the class of groups including groups in the class L/ and

1) connected Lie groups and their cocompact lattices;

2) irreducible lattices in semisimple groups of rank 2;

3) hyperbolic finitely generated groups.

Let be a left Haar measure on the locally compact group G and write Lp.G/ D
Lp.G; / The groupG acts by isometry onLp.G/ via the left regular representation

G;p defined by

G;p.g/' D '.g 1 /:

Theorem 1. Fix some 1 p < 1. Let G be a group of the class L/ and let f be

an increasing function f W RC RC satisfying

Z
1

1

f t/
t

p dt

t
< 1: Cp)

Then there exists a 1-cocycle b 2 Z1.G; G;p/ whose compression satisfies

f:
Corollary 2. Fix some 1 p < 1. Let G be a group of the class L0/ and let f be
an increasing function f W RC RC satisfying Property Cq/, with q D maxfp; 2g.
Then there exists a uniform embedding of G into some Lp-space whose compression

satisfies

f:
Let us sketch the proof of the corollary. First, recall [W], III.A.6, that for 1

p 2, L2.OE0; 1 / is isomorphic to a subspace of Lp.OE0; 1 / It is thus enough to
prove the theorem for 2 p < 1. This is an easy consequence of Theorem 1 since
every group of class L0/ quasi-isometrically embeds into a group of L/. Indeed,
any connected Lie group admits a closed cocompact connected solvable subgroup.

2This condition guaranties that the group is compactly generated.
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On the other hand, irreducible lattices in semisimple groups of rank 2 are
quasiisometrically embedded [LMR]. Finally, any hyperbolic finitely generated group
quasi-isometrically embeds into the real hyperbolic space Hn for n large enough
[BoS] which is itself quasi-isometric to SO.n;1/.

The particular case of nonabelian free groups, which are quasi-isometric to 3-
regular trees, can also be treated by a more direct method. More generally that
method applies to any simplicial3 tree with possibly infinite degree.

Theorem 3 see Theorem 7.3). Let T be a simplicial tree. For every increasing
function f W RC RC satisfying

Z
1

1

f t/
t

p dt
t < 1; Cp)

there exists a uniform embedding F of T into `p.T/ with compression f
Remark 1.1. In [BuSc1], [BuSc2], it is shown that real hyperbolic spaces and word
hyperbolic groupsquasi-isometrically embed into finite products of simplicial) trees.

Thus the restriction ofCorollary 2 toword hyperbolic groups and to simple Liegroups
of rank 1 can be deduced from Proposition 7.3. Nevertheless, not every connected
Lie group quasi-isometrically embeds into a finite product of trees. Namely, a finite
product of trees is a CAT(0) space, and in [Pau] it is proved that a non-abelian simply
connected nilpotent Lie group cannot quasi-isometrically embed into any CAT(0)
space.

Theorem 4. Let TN be the binary rooted tree of depth N. Let be the compression
of some 1-Lipschitz map from TN to some Lp-space for 1 < p < 1. Then there
existsC < 1, depending only on p, such that

t

q dt
t

C;Z
2N

1

t/

where q D maxfp;2g.

Although this result is a strengthening see Corollary 6.3) of Theorem 1 in [Bou],
its proof is based on the same arguments. As a consequence, we have

Corollary 5. Assume that the 3-regular tree quasi-isometrically embeds into some

metric space X. Then, the compression of any uniform embedding of X into any

Lp-space for 1 < p < 1satisfies Cq/ for q D maxfp; 2g.

3By simplicial, we mean that every edge has length 1.
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In [BeSc], Theorem 1.5, it is proved that the 3-regular tree quasi-isometrically
embeds into any graph with bounded degree and positive Cheeger constant e.g. any
non-amenable finitely generated group). On the other hand, in a work in preparation
with Cornulier [CT], we prove that finitely generated linear groups with exponential
growth, and finitely generated solvable groups with exponential growth admit
quasiisometrically embedded free non-abelian sub-semigroups. Together with the above

corollary, they lead to the optimality of Theorem 1 resp. Corollary 2) when the group
has exponential growth and when 2 p < 1(resp. 1 < p < 1).
Corollary 6. Let G be a finitely generated group with exponential growth which is
either virtually solvable or non-amenable. Let ' be a uniform embedding of G into
some Lp-space for 1 < p < 1. Then its compression satisfies Condition Cq/ for
q D maxfp;2g.

Corollary 7. Let G be a group of class L0/ with exponential growth. Consider
an increasing map f and some 1 < p < 1; then f satisfies Condition Cq/ with
q D maxfp; 2g if and only if there exists a uniform embedding of G into some

Lp-space whose compression satisfies f
Note that the 3-regular tree cannot uniformly embed into a group with

subexponential growth. So the question of the optimality of Theorem 1 for non-abelian
nilpotent connected Lie groups remains open.

About Condition Cp/. First, note that if p q, then Cp/ implies Cq/: this
immediately follows from the fact that a nondecreasing function f satisfying Cp/
also satisfies f t/=t D O.1/.

Let us give examples of functions f satisfying Condition Cp/. Clearly, if f and

h are two increasing functions such that f h and h satisfies Cp/, then f satisfies

Cp/. The function f t/ D ta satisfies Cp/ for everya < 1 but not for a D 1. More
precisely, the function

f t/D
t

log t/1=p

does not satisfy Cp/ but

f t/ D
t

log t/.log logt/a/1=p

satisfies Cp/ for every a > 1. In comparison, in [BrSo], the authors construct a

uniform embedding of the free group of rank 2 into a Hilbert space with compression
larger than

t
log t/.log logt/2/1= 2

:
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As t=.log t/1=p does not satisfy Cp/, one may wonder if Cp/ implies

t/
t

log t/1=p :

The following proposition answers negatively to this question. We say that a function

f is sublinear if f t/=t 0 when t 1.
Proposition 8 see Proposition 7.5). Forany increasingsublinear function hW RC
RC and every 1 p < 1, there exists a nondecreasing function f satisfying Cp/,
a constant c > 0 and an increasing sequence of integers ni / such that

f ni / ch.ni/ 8i 2 N:

In particular, it follows from Theorem 1 that the compression of a uniform
embedding of a 3-regular tree in a Hilbert space does not satisfy any a priori majoration
by any sublinear function.

1.2. Isoperimetry and compression. To prove Theorem 1, we observe a general
relation between the Lp-isoperimetry inside balls and the Lp-compression. Let G be
a locally compact compactly generated group and consider some compact symmetric
generating subset S. For every g 2 G, write4

jzr'j.g/ D sup
s2S

j'.sg/ ' g/j:

Let 2 p < 1 and let us call the Lp-isoperimetric profile inside balls the
nondecreasing function J b

G;p
defined by

J b
G;p.t/ D sup

'
k'kp

kzr'kp
;

where the supremum is taken over all measurable functions in Lp.G/ with support in
the ball B.1; t /. Note that the group G is amenable if and only if limt!1 Jb

G;p t/ D
1. Theorem 1 results from the two following theorems.

Theorem 9 see Theorem 5.1). Let G be a group of class L/. Then J b
G;p t/ t

Theorem 10 see Corollary 4.6). Let G be a locally compact compactly generated
group and let f be a nondecreasing function satisfying

Z
1

1

f t/ p dt
J b t/ tG;p

< 1 CJp)

4We write zr instead of r because this is not a“metric” gradient. The gradient associated to the metric
structure would be the right gradient: jr'j.g/ D sups2S j'.gs/ ' g/j. This distinction is only important
when the group is non-unimodular.
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for some 1 < p < 1. Then there exists a 1-cocycle b 2 Z1.G; G;p/ whose
compression satisfies f

Theorem 9 may sound as a “functional” property of groups of class L/.
Nevertheless, our proof of this result is based on a purely geometric construction. Namely,
we prove that these groups admit controlled Følner pairs see Definition 4.8). In
particular, when p D 1 we obtain the following corollary of Theorem 9, which has

its own interest.

Theorem 11 see Remark 4.10 and Theorem 5.1). Let G be a group of class L/
and let S be some compact generating subset of G. Then G admits a sequence of
compact subsets Fn/n2N satisfying the two following conditions:

i) there is a constant c > 0 such that

sFn M Fn/ c Fn/=n 8s 2 S; 8n 2 NI

ii) for every n 2 N, Fn is contained 5 in Sn.

In particular, G admits a controlled Følner sequence in the sense of [CTV].

This theorem is a strengthening of the well-known construction by Pittet [Pit].
It is stronger first because it does not require the group to be unimodular, second

because the control ii) of the diameter is really a new property that was not satisfied
in general by the sequences constructed in [Pit].

1.3. Compression, subexponential growth, and random walks. Let be an
isometric Lp-representation of G. Denote by B G/ the supremum of all such that
there exists a 1-cocycle b 2 Z1.G; / whose compression satisfies t / t
Denote by Bp.G/ the supremum of B G/ over all isometric Lp-representations
For p D 2, B2.G/ D B.G/ has been introduced in [GK] where it was called the
equivariant Hilbert compression rate we suggest that the term exponent would be

more appropriate here than the term rate). On the other hand, define

G;p D lim inf
t!1

log Jb
G;p t/

log t
:

As a corollary of Theorem 1, we have

Corollary 12. For every 1 p < 1, and every group G of the class L/, we have

Bp.G/ D 1.

The following result is a corollary of Theorem 10.

5Actually, they also satisfy SOEcn Fn for a constant c > 0.



506 R. Tessera CMH

Corollary 13 see Corollary 4.6). Let G be a locally compact compactly generated
group. For every 0 < p < 1, we have

B G;p G/ G;p:

The interest of this corollary is illustrated by the two following propositions.
Recall the volume growth of G is the equivalence class VG of the function r 7!

B.1; r//.

Proposition 14 see Proposition 7.1). Assume that there exists < 1 such that

VG.r/ er Then

G;p 1 :

As an example we obtain that B.G/ 0;19 for the first Grigorchuk’s group see

[Ba] for the best known upper bound of the growth function of this group).
Let G be a finitely generated group and let be a symmetric finitely supported

probability measure on G. Write n/
D n times). Recall that n/.1/ is

the probability of return of the random walk starting at 1 whose probability transition
is given by

Proposition 15 see Proposition 7.2). Assume that there exists < 1 such that
n/.1/ e n Then

G;2 .1 / 2:

In [PS], it is proved that if G is a finitely generated extension

1 K G N 1

where K is abelian and N is abelian with Q-rank d. Then

lim sup
n

log. log. n/.1/// 1 2=.d C 2/

for any symmetric finitely supported probability on G.

Corollary 16. Assume that G is a finitely generated extension 1 K G
N 1 where K is abelian and N is abelian with Q-rank d. Then

B.G/ 1=.d C 2/:

In particular, B.G/ > 0 for any finitely generated metabelian group G.
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1.4. The case ofZ o Z. Combining the construction ofTheorem1forC2oZwith the
cocycle induced by the morphism of Z.Z/ `p.Z/, we obtain see Proposition 7.6
for the details).

Theorem 17. Fix some 1 p < 1. Let G D Z o Z and let f be an increasing
function f W RC RC satisfying

Z
1

1

f t/ p dt
tp=.2p 1/ t

< 1: Cp)

Then there exists a 1-cocycle b 2 Z1.G; G;p/ whose compression satisfies

f:
In particular,

Bp.Z o Z/ p
2p 1

:

In a previous version of this paper, we stated the lower bound B.Z o Z/ 2=3,
but the proof that we gave relied on a wrong version of Proposition 15 we stated

G;2 1 which is wrong as shown by a counter-example in [NP]). The mistake,
together with a proof of the full statement Bp.ZoZ/

p
2p 1

see [NP], Lemma 7.8)
was communicated to us by Naor and Peres. The proof that we propose here is
essentially the same as the one of [NP], but it was actually also known by the author.

1.5. Questions

Question 1.2 Condition Cp/ for nilpotent connected Lie groups.). Let N be a

simply connected non-abelian nilpotent Lie group and let be the compression of a

1-cocycle with values in some Lp-space resp. of a uniform embedding into some

Lp-space) for 2 p < 1. Does always satisfies Condition Cp/?

A positive answer would lead to the optimality of Theorem 1. On the contrary,
one should wonder if it is possible, for any increasing sublinear function f to find a

1-cocycle resp. a uniform embedding) in Lp with compression f This would
also be optimal since we know [Pau] that N cannot quasi-isometrically embed into
any uniformly convex Banach space. Namely, the main theorem in [Pau] states that
such a group cannot quasi-isometrically embed into any CAT(0)-space. So this only
directly applies to Hilbert spaces, but the key argument, consisting in a comparison
between the large scale behavior of geodesics not exactly in the original spaces but
in tangent cones of ultra-products of them) is still valid if the target space is a Banach
space with unique geodesics, aproperty satisfiedby uniformly convexBanach spaces.
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Question 1.3 Quasi-isometric embeddings into L1-spaces.). Which connected Lie
groups quasi-isometrically embed into some L1-space?

It is easy to quasi-isometrically embed a simplicial tree T into `1 see for instance

[GK]). In [BuSc1], [BuSc2], it is proved that every semisimple Lie group of rank 1
quasi-isometrically embeds into a finite product of simplicial trees, hence into a

`1-space. The above question is of particular interest for simply-connected
nonabelian nilpotent Lie groups since they do not quasi-isometrically embed into any
finite product of trees. Kleiner and Cheeger recently announced a proof that the
Heisenberg group cannot quasi-isometrically embed into any L1-space.

Question 1.4. If G is an amenable group, is it true that

Bp.G/ D G;p‹

We conjecture that this is true for Z o Z, i.e. that B.Z o Z/ D 2=3. A first step to
prove this is done by Proposition 3.9 which, applied to G D Z o Z says that

B.Z o Z/ D B G;2 Z o Z/:

As a variant of the abovequestion, we maywonder if theweakerequalityB G;p G/ D
G;p holds, in otherwordsif Corollary 13 is optimal for all amenable groups. Possible

counterexamples would be wreath products of the form G D Z o H where H has

non-linear growth e.g. H D Z2).

Question 1.5. Does there exist an amenable group G with B.G/ D 0?

A candidate would be the wreath product Zo.ZoZ/ since the probability of return
of any non-degenerate random walk in this group satisfies

n/.1/ e n

for every < 1 ([Er], Theorem 2). It is proved in [AGS] that B.Z o Z o Z// 1=2.

Question 1.6. Let G be a compactly generated locally compact group. If G admits
an isometric action on some Lp-space, p 2, with compression t/ t1=p, does

it imply that G is amenable?

Recall that thiswasproved in [GK], [CTV] for p D 2. Thegeneralization to every

p 2 would be of great interest. For instance, this would prove the optimality of a

recent result ofYu [Yu] saying that every finitely generated hyperbolic group admits
a proper isometric action on some `p-space for large p enough, with6 compression

t/ t1=p.

6This is clear in the proof.
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2. Preliminaries

2.1. Compression. Let us recall some definitions. Let X; dX/ and Y;dY / be
metric spaces. A map F W X Y is called a uniform embedding of X into Y if

dX.x;y/!1 dY F x/; F.y//! 1:
Note that this property only concerns the large-scale geometry. A metric space

X; d/ is called quasi-geodesic if there exist i > 0 and 1 such that for all

x; y 2 X, there exists a chain x D x0; x1; : : : ; xn D y satisfying:

n

X
kD1

d.xk 1; xk/ d.x;y/;

8k D 1; : : :; n; d.xk 1; xk/ i:
If X is quasi-geodesic and if F W X Y is a uniform embedding, then it is easy to
see that F is large-scale Lipschitz, i.e. there exists C 1 such that

8x; y 2 X; dY F x/; F.y// CdX.x; y/ C C:

Nevertheless, such a map is not necessarily large scale bi-Lipschitz in other words,
quasi-isometric).

Definition 2.1. We define the compression W RC OE0;1 of a map F W X Y
by

8t > 0; t/ D inf
dX.x;y/ t

dY F x/;F.y//:

Clearly, if F is large-scale Lipschitz, then t/ t
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2.2. Length functions on a group. Now, let G be a group. A length function on

G is a function LW G RC satisfying L.1/ D 0, L.gh/ L.g/ C L.h/, and

L.g/ D L.g 1/. If L is a length function, then d.g; h/ D L.g 1h/ defines a
leftinvariant pseudo-metric on G. Conversely, if d is a left-invariant pseudo-metric on

G, then L.g/ D d.1; g/ defines a length function on G.
LetG be a locally compact compactly generated groupand let S be some compact

symmetric generating subset of G. Equip G with a proper, quasi-geodesic length
function by

jgjS D inffn 2 N W g 2 Sn
g:

Denote dS the associated left-invariant distance. Note that any proper, quasi-geodesic
left-invariant metric is quasi-isometric to dS, and so belongs to the same “asymptotic
class”.

2.3. Affine isometric actions and first cohomology. Let G be a locally compact

group, and an isometric representation always assumed continuous) on a

Banach space E D E The space Z1.G; / is defined as the set of continuous

functions b W G E satisfying, for all g, h in G, the 1-cocycle condition

b.gh/ D g/b.h/ C b.g/. Observe that, given a continuous function b W G H,
the condition b 2 Z1.G; / is equivalent to saying that G acts by affine isometries
onH by g/v D g/vCb.g/. The space Z1.G; / is endowed with the topology
of uniform convergence on compact subsets.

The subspace of coboundaries B1.G; / is the subspace not necessarily closed)
of Z1.G; / consisting of functions of the form g 7! v g/v for some v 2 E. In
terms of affine actions, B1.G; / is the subspace of affine actions fixing a point.

The first cohomology space of is defined as the quotient space

H 1 G; / D Z1 G; / B1 G; /:

Note that ifb 2 Z1.G; / themap g; h/ kb.g/ b.h/kdefinesa left-invariant
pseudo-distance on G. Therefore the compression of a 1-cocycle b W G;dS/ E
is simply given by

t/ D inf
jgjS t kb.g/k:

The compression of an affine isometric action is defined as the compression of the
corresponding 1-cocycle.

Remark 2.2. When the space E is a Hilbert space7, it is well known [HV], §4.a, that
b 2 B1.G; / if and only if b is bounded on G.

7The same proof holds for uniformly convex Banach spaces.
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3. The maximal Lp-compression functions M G;p and M G;p

3.1. Definitions and general results. Let G;dS; / be a locally compact
compactly generated group, generated by some compactsymmetric subset S andequipped
with a left Haar measure Denote by Z1.G; p/ the collection of all 1-cocycles with
values in any Lp-representation of G. Denote by b the compression function of a

1-cocycle b 2 Z1.G; p/.

Definition 3.1. We call maximal Lp-compression function of G the nondecreasing
function M G;p defined by

M G;p.t/ D sup n b.t/ W b 2 Z1 G;p/; sup
s2S

kb.s/k 1o:

We call maximal regular Lp-compression function of G the nondecreasing function
M G;p

defined by

M G;p D sup n b.t/ W b 2 Z1 G; G;p/; sup
s2S

kb.s/k 1o:

Note that the asymptotic behaviors of both M G;p and M G;p do not depend on
the choice of the compact generating set S. Moreover, we have

M G;p t/ M G;p.t / t:

Let ' be a measurable function on G such that ' s/' 2 Lp.G/ for every
s 2 S. For every t > 0, define

Varp.'; t / D inf
jgjS t k' g/'kp:

The function ' and p being fixed, the map t 7! Varp.'; t/ is nondecreasing.

Proposition 3.2. We have

M G;p t/ D sup

kzr'kp 1

Varp.'; t/:

Proof. We trivially have

M G;p t/ sup

kzr'kp 1

Varp.';t /:

Let b be an element of Z1.G; G;p/. By convoluting b.g/, for every g, on the
right by a Dirac approximation, one can approximate b by a cocycle b0 such that

x b0.g/.x/ is continuous for every g in G. Hence, we can assume that b.g/ is
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continuous for every g in G. Now, setting '.g/ D b.g/.g/, we define a measurable

function satisfying

b.g/ D ' g/':
So we have

t/ D Varp.'; t/ M G;p t/
where is the compression of b.

Remark 3.3. It is not difficult to prove that the asymptotic behavior of M G;p is
invariant under quasi-isometry between finitely generated groups.

Proposition 3.4. The group G admits a proper8 1-cocycle with values in some
Lprepresentation if and only if M G;p.t/ goes to infinity as t 1.
Proof. The “only if” part is trivial. Assume that M G;p.t/ goes to infinity. Let tk/
be an increasing sequence growing fast enough so that

X
k2N

1

tpk
< 1:

For every k 2 N, choose some bk 2 Z1.G; p/ whose compression k satisfies

k.tk/
M G;p.tk/

2

and such that
sup
s2S

kbk.s/k 1:

Clearly, we can define a 1-cocycle b 2 Z1.G; p/ by

b D L
`p
k

1
tk bk:

That is, if for every k, bk takes values in the representation k, then b takes values
in the direct sum °`p

k k. Now, observe that for jgj tk and j k, we have

kbj g/k 1=2, so that

kb.g/k
p k=2p:

Thus the cocycle b is proper.

The following proposition, which is a quantitative version of the previous one,
plays a crucial role in the sequel.

8For p D 2, thismeans that G is a-T-menable ifand only ifM G;2 goes to infinity. It should be compared
to the role played by the H-metric see § 2.6 in [C], and § 7.4) for Property T).
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Proposition 3.5. Let f W RC RC be a nondecreasing map satisfying

Z
1

1

f t/ p dt
M G;p.t/ t

< 1; CMp)

Then,

1) there exists a 1-cocycle b 2 Z1.G; p/ such that

f I

2) if one replaces M G;p by M G;p in Condition CMp/, then b can be chosen

in Z1.G; G;p/.

Proof. 1): For every k 2 N, choose some bk 2 Z1.G; p/ for 2), we take bk 2
Z1.G; G;p/) whose compression k satisfies

k.2kC1/ M G;p.2kC1/

2

and such that

sup
s2S

kbk.s/k 1:

Then define another sequence of cocycles Qbk 2 Z1.G; p/ by

Qbk D
f .2k/

M G;p.2kC1/
bk:

Since M G;p and f are nondecreasing, for any 2k t 2kC1, we have

f .2k/

M G;p.2kC1/
f t/

M G;p.t/ :

Hence, for s 2 S,

Xk
k Qbk.s/k

p
p Xk

f .2k/
M G;p.2kC1/

p

2Z
1

M G;p.t/
p dt

1

f t/
t

< 1
So we can define a 1-cocycle on b 2 Z1.G; p/ by

b D Lk
Qbk: 3.1)
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On the other hand, if jgjS 2kC1, then

kb.g/kp kQbk.g/kp

f .2k/
M G;p .2kC1/

k.2kC1/

f .2k/:
So if is the compression of the 1-cocycle b, we have f

2): We keep the previous notation. Assume that f satisfies

Z
1

1

f t/ p dt
M t/ tG;p

< 1:
The cocycle b provided by the proof of 1) has the expected compression but it takes

values in an infinite direct sum of regular representation G;p. Now, we would like
to replace the direct sum b D °kbk by a mere sum, in order to obtain a cocycle in
Z1.G; G;p/. Since G is not assumed unimodular, the measure is not necessarily
right-invariant. However, one can define an isometric representation rG;p on Lp.G/,
called the right regular representation by

rG;p.g/' D g/ 1'. g/ 8' 2 Lp G/;

where is the modular function ofG. Wewill use the followingwell-knownproperty
of the representation rG;p, forp > 1. To simplify, letuswrite r.g/ instead ofrG;p.g/.
For every .'; / 2 Lp.G/ Lp.G/, we have

lim
jgj!1kr.g/' C k

p
p D k'kp

p Ck k
p
p : 3.2)

Moreover, this limit is uniform on compact subsets of Lp.G//2. As rG;p and G;p
commute, rG;p acts by isometries on Z1.G; G;p/.

Lemma 3.6. There exists a sequence gk/of elements ofG such that b0 D P r.gk/bk
defines a cocycle in Z1.G; G;p/ and such that

pkb0.g/kp
k 1

X
jD0

r.gj /bj g/
p

p Xj k
pkbj g/k
p 1 3.3)

for any k large enough and every g 2 B.1; 2kC2/.

Proof of Lemma 3.6. By an immediate induction, using 3.2), we construct a
sequence gk/ 2 GN satisfying, for every K 0, s 2 S,

K

X
kD0

r.gk/bk.s/
p

p

K

X
kD0

kbk.s/k
p
p C

K

X
kD0

2 k 1 1;
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which implies that b0 is a well-defined 1-cocycle in Z1.G; G;p/. Similarly, one can
choose gk/ satisfying the additional property that, for every k 2 N, jgj 2kC2,

k

X
jD0

r.gj /bj g/
p

p

k 1

X
jD0

r.gj/bj g/
p

pp kbk.g/k
p 2 k 1:

Fixing k 2 N, an immediate induction over K shows that for every jgj 2kC2 and
every K k,

K

X
jD0

r.gj /bj g/
p
p

k 1

X
jD0

r.gj/bj g/
p

p

K

X
jDk

pkbj g/kp
K

X
jDk

2 j 1:

This proves 3.3).

By the lemma, for jgj 2kC2,

kb0.g/k
p
p kbk.g/kp

p 1:

Then, for 2kC1 jgj 2kC2, we have

kb0.g/kp
p f .2k/ 1

Therefore, the compression 0 of b0 satisfies

0 f
and we are done.

We have the following immediate consequence.

Corollary 3.7. For every 1 p < 1,

B.G; p/ D lim inf
t!1

logM G;p.t/
log t

:

Example 3.8. Let Fr be the free group of rank r 2 and let A.Fr / be the set of
edges of the Cayley graph of Fr associated to the standard set of generators. The
standard isometric affine action of Fr on `p.A.Fr//, whose linear part is isomorphic
to a direct sum G;p °`p °`p G;p of r copies of G;p has compression t
This shows that M Fr;p t/ t1=p.
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3.2. Reduction to the regular representation for p D 2. In the Hilbert case,

we prove that if a group admits a 1-cocycle with large enough compression, then

M G;2 D M G;2 This result is mainly motivated by Question 1.4 since it implies
that

B.Z o Z/ D B G;2 Z o Z/:

Proposition 3.9. Let be a unitary representation of the group G on a Hilbert space

H and let b 2 Z1.G; / be a cocycle whose compression satisfies

t/ t1=2 :

Then9

M G;2 :

In particular,
M 2 D M G;2:

combining with Proposition 3.5, we obtain

Corollary 3.10. With the same hypotheses, we have

B.G/ D B.G; G;2/ D lim inf
t!1

logM G;2 t /
logt :

Proof of Proposition 3.9. For every t > 0, define

' t g/ D e kb.g/k2= t2:

By Schoenberg’s Theorem Appendix C in [BHV]), 't is positive definite. It is
easy to prove that 't is square-summable see [CTV], Theorem 4.1). By [Dix],
Théorème 13.8.6, it follows that there exists a positive definite, square-summable
function t on G such that ' t D t t where denotes the convolution product.
In other words, 't D h g/ t; t i. In particular,

' t .1/ D 1 D k tk
2
2

and for every s 2 S,

k t s/ tk
2
2 D 2.k tk

2
2 h s/ t; ti/

D 2.1 ' t s//

D 2.1 e kb.s/k2=t2/
1=t2

9Note that the hypotheses of the proposition also imply that G is amenable [CTV] Theorem 4.1), [GK].
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On the other hand, for g such that jgjS/ t, we have

2 D 2.1 e kb.g/k2=t2
k t g/ tk

2 /

2.1 e jgjS/2= t2/
2.1 1=e/:

So, we have

k t g/ tk2

kzr tk2
ct

where c is a constant. In other words,

Var2. t; 1 t// ct:

It follows from the definitions that M G;2

4. Lp-isoperimetry inside balls

4.1. Comparing JbG;p and M G;p Let G be a locally compact compactly
generated group and let S be a compact symmetric generating subset of G. Let A be a
subset of the group G. One defines the Lp-isoperimetric profile inside A by

Jp.A/ D sup

'
k'kp

kzr'kp

where the supremum is taken over nonzero functions in Lp.G/ with support included
in A.

Definition 4.1. The Lp-isoperimetric profile inside balls is the nondecreasing function

Jb
G;p defined by

J b
G;p.t/ D Jp.B.1; t//:

Remark 4.2. The usual Lp-isoperimetric profile of G see for example [Cou]) is
defined by

jG;p.t/ D sup
A/Dt

Jp.A/:

Note that our notion of isoperimetric profile depends on the diameter of the subsets
instead of their measure.

Remark 4.3. The asymptotic behavior of J b
p;G is invariant under quasi-isometry

between compactly generated groups [T]. In particular, it is also invariant under
passing to a cocompact lattice [CS].
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Remark 4.4. Using basic Lp-calculus, one can easily prove [Cou] that if p q,
then

Jb
G;p/p=q Jb

G;q J b
G;p:

Now let us compare Jb
p;G and M G;p introduced in § 3.

Proposition 4.5. For every 2 p < 1, we have

M G;p Jb
G;p:

Proof. Fix some t > 0 and choose some ' 2 Lp.X/ whose support lies in B.1; t/
such that

k'kp
kzr'kp

Jb
G;p.t/=2:

Take g 2 G satisfying jgjS 3t Note that B.1; t/ \ g/B.1; t/ D ;. So ' and

g/' have disjoint supports. In particular,

k' g/'kp k'kp

and

kzr.' g/'/kp D 21=p
kzr'kp:

This clearly implies the proposition.

Combining with Proposition 3.5, we obtain

Corollary 4.6. Let f W RC RC a nondecreasing map be satisfying

Z
1

1
f t/ p dt

J b t/ tG;p
< 1 CJp)

for some 1 p < 1. Then there exists a 1-cocycle b in Z1.G; G;p/ such that

f:
Question 4.7. For which groups G do we have M G;p J b

G;p

We show that the question has positive answer for groups of class L/. On the
contrary, note that the group G is nonamenable if and only if Jb

G;p is bounded. But
we have seen in the previous section that for a free group of rank 2, M G;p t/
t1=p. More generally, the answer to Question 4.7 is no for every nonamenable group
admitting a proper 1-cocycle with values in the regular representation. This question
is therefore only interesting for amenable groups.
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4.2. Sequences of controlled Følner pairs. In this section, we give a method,
adapted10 from [CGP] to estimate J b

p

Definition 4.8. Let G be a compactly generated, locally compact group equipped
with a left invariant Haar measure Let D n/ be a nondecreasing sequence of
integers. A sequence of -controlled Følner pairs of G is a family Hn; H0n/ where

Hn and H0n are nonempty compact subsets of G satisfying for some constantC > 0
the following conditions:

1) S nHn H0n

2) H0n/ C Hn/;
3) H0n 2 B.1; Cn/
If n n, we call Hn; H0n/ a controlled sequence of Følner pairs.

Proposition 4.9. Assume that G admits a sequence of -controlled Følner pairs.
Then

J b
G;p :

Proof. For every n 2 N, consider the function 'n W G RC defined by

'n.g/ D minfk 2 N W g 2 Sk H0n/c
g

where Ac D G X A. Clearly, 'n is supported in H0n It is easy to check that

kzr'nkp H0n//1=p

and that

k'nkp n. Hn//1=p:
Hence by 2),

k'nkp C 1=p
nkzr'nkp;

so we are done.

Remark 4.10. Note that if H and H0 are subsets of G such that SkH H0 and

H0/ C H/, then there exists by pigeonhole principle an integer 0 j k 1
such that

@S j H/ D S jC1H X S j H/
C

k
SjH/:

So in particular if Hn; H0n/ is a -controlled sequence of Følner pairs, then there
exists a Følner sequence Kn/ such that Hn Kn H0n and

@Kn/
Kn/

C= n:

Moreover, if n n, then one obtains a controlled Følner sequence in the sense of
[CTV], Definition 4.8.

10In [CGP], the authors are interested in estimating the L2-isoperimetric profile of a group.
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5. Isoperimetry in balls for groups of class L/
The purpose of this section is to prove the following theorem.

Theorem 5.1. Let G be a group belonging to the class L/. Then, G admits a

controlled sequence of Følner pairs. In particular, J b
G;p t/ t

Note that Theorem 1 follows from Theorem 5.1 and Corollary 4.6.

5.1. Wreath products F o Z Let F be a finite group. Consider the wreath product

G D F o Z D Z Ë F Z/, the group law being defined as n;f /.m; g/ D n C m;
mf Cg/ where mf x/ D f mCx/. As a set, G is a CartesianproductZ U where

U is the direct sum F Z/ D Ln2Z
Fn of copies Fn of F The set S D SF [ SZ,

where SF D F0 and SZ D f 1; 0; 1g is clearly a symmetric generating set for G.
Define

Hn D In Un

and

H0n D I2n Un

where Un D F
OE 2n;2n and In D OE n; n

Let us prove that Hn; H0n/n is a sequence of controlled Følner pairs. We therefore
have to show that

1) SnHn H0n

2) jH0nj 2jHnj;
3) there existsC > 0 such that H0n B.1; Cn/

Property 2) is trivial. To prove 1) and 3), recall that the length of an element of
g D k;u/ of G equals L. / CPh2Z ju.h/jF where L. / is the length of a shortest
path from 0 to k in Z passing through every element of the support of u see [Par],
Theorem 1.2). In particular,

j.u;k/jS 2L. /:
Thus, if g 2 Hn, then L. / 30n. So 3) follows. On the other hand, if g D
k;u/ 2 Sn, then

jkjZ L. / n
and

Supp.u/ In:
So Hng H0n

Remark 5.2. Note that the proof still works replacing Z by any group with linear
growth. On the other hand, replacing it by a group of polynomial growth of degree

d yields a sequence of n1=d-controlled Følner pairs. For instance, as a corollary, we
obtain that B.F o Zd / 1=d.
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5.2. Semidirect products R °L Qp/ Ìm Z.. Note that discrete groups of
p2P n

type 2) of the class L/ are cocompact lattices of a group of the form

n
R° M

p2P

G D Z Ëm Qp

withm, n coprime integersandP afinite set of primes possibly infinite) dividingmn.
To simplify notation, we will only consider the case when P D fpg is reduced to one
single prime, the generalization presenting no difficulty. The case where p D1will
result from the case of connected Lie groups see next section) since ZËmn R embeds
as a closed cocompact subgroup of thegroup of positive affine transformationsRËR.

So consider the group G D Z Ë1=p Qp. Define a compact symmetric generating
set by S D SQp [SZ where SQp D Zp and SZ D f 1;0;1g. Define Hk; H0k/ by

Hk D Ik p 2kZp

and

H0k D I2k p 2kZp;

where Ik D OE k;k Using the same kind of arguments as previously for F o Z, one
can prove easily that Hk; H0k/ is a controlled sequence of Følner pairs.

5.3. Amenable connected Lie groups. Let G be a solvable simply connected Lie
group. Let S be a compact symmetric generating subset. In [Gu] see also [O]), it is
proved that G admits a maximal normal connected subgroup such that the quotient of
G by this subgroup has polynomial growth. This subgroup is called the exponential
radical and is denoted Exp.G/. We have Exp.G/ N, where N is the maximal
nilpotent normal subgroup of G. Let T be a compact symmetric generating subset of
Exp.G/. An element g 2 G is called strictly exponentially distorted if the S-length
of gn grows as log jnj. The subset of strictly exponentially distorted elements of G
coincides with Exp.G/. That is,

Exp.G/ D fg 2 G W jg
n

jS log jnjg [ f1g:

Moreover, Exp.G/ is strictly exponentially distorted inG in the sense that there exists

1 such that for every h 2 Exp.G/ n f1g,

1 log.jhjT C 1/ jhjS log.jhjT C 1/ C 5.1)

where T is a compact symmetric generating subset of Exp.G/.
We will need the following two lemmas.

Lemma 5.3. Let G be a locally compact group. LetH be a closed normal subgroup.
Let and be respectively left Haar measures ofH and G=H. Let i be a measurable
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left-section of the projection W G G=H, i.e. G D tx2G=Hi.x/H. Identify G
with the cartesian product G=H H via the map x; h/ 7! i.x/h. Then the product
measure is a left Haar measure on G.

Proof. We have to prove that is left-invariant on G. Fix g in G. Define a

measurable map g from G=H to H by

g.x/ D i. g/x/ 1gi.x/:

In other words, g.x/ is the unique element of H such that

gi.x/ D i. g/x/ g.x/:

Let ' W G R be a continuous, compactly supported function. We have

Z 'OEgi.x/h d x/d h/ D Z
G=H H G=H H 'OEi. g/x/ g.x/h d x/d h/:

As and are respectively left Haar measures on G=H and H, the Jacobian of the
transformation x; h/ 7! g/x; g.x/h/ is equal to 1. Hence,

Z
G=H H 'OEi. g/x/ g.x/h d x/d h/ D Z

G=H H 'OEi.x/h d x/d h/:

Thus is left-invariant.

Lemma 5.4. LetG bea connected Lie group andH be a normal subgroup. Consider
the projection W G G=H. There exists a compact generating set S of G and a

-compact cross-section of G=H inside G such that S/n/ SnC1.

Proof. Since is a submersion, there exists a compact neighborhood S of 1 in G
such that S/ admits a continuous cross-section 1 in S. Now, let X be a minimal
discrete) subset of G=H satisfying G=H D Sx2X

x S/. Since this covering is
locallyfinite and S/ is compact, one canconstruct by induction a partition Ax/x2X
of G=H such that every Ax is a constructible, and therefore -compact subset of
x S/. Let 2 W X G be a cross-section of X satisfying 2.X \ S/n/ Sn.
Now, for every z 2 Ax, define

z/ D 2.x/ 1.x 1z/:

Clearly, satisfies to the hypotheses of the lemma.

Equip the group P D G=Exp.G/ with a Haar measure and with the symmetric
generating subset S/, where is the projection on P. Assume that S satisfies to
the hypotheses of Lemma 5.4 and let be a -compact cross-section of P inside G
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such that S/n/ SnC1. For every n 2 N, write Fn D S/n/. Let be

some large enough positive number that we will determine later. Denote by bxc the
integer part of a real number x. Define, for every n 2 N,

Hn D SnT bexp. n/c

and

H0n D S 2nT bexp. n/c:

Note that H0n D SnHn. On the other hand, since Exp.G/ is strictly exponentially
distorted, there exists a 1 only depending on and such that, for every n 2 N,

SnT bexp. n/c San :

Hence, to prove that Hn; H0n/ is a sequence of controlled Følner pairs, it suffices to
show that H0n/ C Hn/. Consider another sequence An; A0n/ defined by, for
every n 2 N

An D Fn 1T bexp. n/c

and
A0

n D F2nT 2bexp. n/c:

As Fn is -compact, An and A0n are measurable. To compute the measures of An
and A0n we choose a normalization of the Haar measure on Exp.G/ such that
the measure disintegrates over and the pull-back measure of on P/ as in
Lemma 5.3. We therefore obtain

An/ D S/n 1/ T bexp. n/c/

and
A0n/ D S/2n / T 2bexp. n/c/:

Since P and Exp.G/ have both polynomial growth, there is a constant C such that,

for every n 2 N
A0n/ C An/:

So now, it suffices to prove that

An Hn H0n A0n;

where the only nontrivial inclusion is H0n A0n Let g 2 S2n; let f 2 F2n be such

that g/ D f /. Since F2n S2nC2 S3n,

gf 1
2 S6n \Exp.G/:

On the other hand, by 5.1),

S6n \Exp.G/ T 2bexp.6 n/c:
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Therefore, for every n 2 N

H0n F2nT 2bexp.6 n/cT bexp. n/c D F2nT 2bexp.6 n/cCbexp. n/c:

Hence, choosing 6 C log 2, we have

H0n F2nT 2bexp. n/c D A0n;

and we are done.

6. On embedding of finite trees into uniformly convex Banach spaces

Definition 6.1. A Banach space X is called q-uniformly convex q > 0) if there
is a constant a > 0 such that for any two points x, y in the unit sphere satisfying

kx yk " we have
x C y

2
1 a"q :

Note that by a theorem of Pisier [Pis], every uniformly convex Banach space is
isomorphic to some q-uniformly convex Banach space.

In this section, we prove that the compression of a Lipschitz embedding of a finite
binary rooted tree into a q-uniformly convex space X always satisfies condition Cq/.
Theorem 4 follows from the fact that an Lp-space is maxfp; 2g-uniformly convex.

Theorem 6.2. Let TJ be the binary rooted tree of depth J and let 1 < q < 1. Let

F be a 1-Lipschitz map from TJ to some q-uniformly convex Banach space X and
let be the compression of F Then there exists C D C.q/ < 1such that

t

q dt
t

C: 6.1)Z
2J

1

t/

Corollary 6.3. Let F be any uniform embedding of the 3-regular tree T into some

q-uniformly convex Banach space. Then the compression of F satisfies Condition

Cq/.

As a corollary, we also reobtain the theorem of Bourgain.

Corollary 6.4 ([Bou], Theorem 1). With the notation of Theorem 6.2, there exists at
least two vertices x and y in TJ such that

kF.x/ F.y/k
log J

1=q

d.x; y/
C

:
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Proof. For every 1 t 2J there exist z; z0 2 TJ d.z;z0/ t such that:

t/
t D kF.z/ F.z0/k

t
kF.z/ F.z0/k

d.z; z0/
:

Therefore

min
z¤z02TJ

kF.z/ F.z0/k
d.z; z0/

min
1 u 2J

u/
u

:

But by 6.1)

min
1 u 2J

u/
u

q

Z
2J

1

1

t
dt Z

2J

t

q dt

t
C:

1

t/

We then have

min
z¤z02TJ

kF.z/ F.z0/k
log J

1=q

d.z; z0/

C
:

Proof of Theorem 6.2. Since the proof follows closely the proof of Theorem 1

in [Bou], we keep the same notation to allow the reader to compare them. For

j D 1; 2; : : : denote j D f 1; 1gj and Tj D Sj
0 j j 0 Thus Tj is the finite tree

with depth j Denote d the tree-distance on Tj

Lemma 6.5 ([Pis], Proposition 2.4). There exists C D C.q/ < 1 such that if
s/s2N is an X-valued martingale on some probability space then

Xs
k sC1 sk

q

s
k sk

q
q C sup q 6.2)

where k kq stands for the norm in Lq
X /

Lemma 6.5 is used to prove

Lemma 6.6. If x1; : : : ; xJ with J D 2r, is a finite system of vectors in X, then

r

X
sD1

2 qs min
2s<j J 2s k2xj xj 2s xjC2sk

q C sup
1 j J 1

kxjC1 xj k
q: 6.3)

Denote D0 D1 Dr the algebras of intervals on OE0; 1 obtained by
successive dyadic refinements. Define the X-valued function

D X1 j J 1

1
OE j J

OE xjC1 xj /
J ; jC1
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and considerexpectations s D E OE jDs fors D 1; : : : ;r. Since s form a martingale
ranging in X, it satisfies inequality 6.2). On the other hand

q D 2 rCs2qs
k sC1 sk

q
r

X1<t 2r s

2 qs
k2xt2s x.t 1/2s x.tC1/2sk

q

2 qs min
2s<j J 2s k2xj xj 2s xjC2sk

q:

So 6.3) follows from the fact that

k sk
q
q k sC1 sk

q

j
kxjC1 xj k

q :1 D sup

Lemma 6.7. If f1;: : : ; fJ with J D 2r, is a finite system of functions in L1X /
Then

r

X
sD1

2 qs min
2s<j J 2s k2fj fj 2s fjC2sk

q C sup
1 j J 1

kfjC1 fjk
q
1: 6.4)

Proof. Replace X by Lq
X / for which 6.2) remains valid, and use 6.3).

Lemma 6.8. Let f1; : : : ; fJ with J D 2r be a sequence of functions on f1; 1g
J

where fj only depends on "1; : : :; "j Then

r

X
sD1

2s<j J 2s
Z

j 2s 2s
kfjC2s ."; i/ fjC2s ."; i0/k

qd"didi0

2qC sup

2 qs min

1 j J 1
kfjC1 fj k

q

1 :

Proof. For everyd < j J d, using the triangle inequality, we obtain

k2fj fj d fjCd k
q
q D Z

j d
k2fj fj d fjCdk

qd"di

2 q Z
j d d

kfjC2s ."; i/ fjC2s ."; i0/k
qd"didi0:

The lemma then follows from 6.4).

Now, let us prove Theorem 6.2. Fix J and consider a 1-Lipschitz map F W TJ
X. Apply Lemma 6.8 to the functions f1; : :: ; fJ defined by

8 2 j; fj / D F. /:
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By definition of the compression, we have

d "; i/; ."; i0/ kfjC2s ."; i/ fjC2s ."; i0/k 6.5)

where " 2 j and i; i0 2 2s

But, on the other hand, with probability 1=2, we have

d "; i/; ."; i0/ D 2:2s:

So combining this with Lemma 6.8, 6.5) and with the fact that F is 1-Lipschitz, we
obtain

r

X
sD1

2 qs 2s/q 2qC1C

But since is decreasing, we have

2 qs 2s/q 2 q 1
Z

2s

2s 1 C1

1

t
t/

t

q
dt:

So 6.1) follows.

7. Applications and further results

7.1. Hilbert compression, volume growth and random walks. Let G be a locally
compact group generated by a symmetric compact subset S containing 1. Let us

denote V.n/ D Sn/ and S.n/ D V.n C 1/ V.n/ D SnC1 X Sn/. Extend V
as a piecewise linear function on RC such that V 0.t/ D S.n/ for t 2 n;n C 1OE.

Proposition 7.1. Let G be a compactly generated locally compact group. For any

2 p < 1,
JG;p.t/

t
log V.t/

:

Proof. For every n 2 N, define

k.n/ D supfk; V.n k/ V.n/=2g

and

j.n/ D sup
1 j n

k.j /:

For every positive integer l n=j.n/,

V.n/ 2lV.n lj.n//:
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Hence, as V.0/ D 1,

V.n/ 2n=.j.n/C1/:

Thus, there is a constant c > 0 such that

j.n/
cn

log V.n/
:

Let qn n be such that j.n/ D k.qn/. Now define

'n D

qn 1

X
kD1

1B.1;k/:

Note that the subsets SB.1; k/ M B.1; k/ D B.1; k C 1/ X B.1;k/, for k 2 N, are
piecewise disjoint. Thus, an easy computation shows that

kzr'nkp V.qn/1=p :

On the other hand

k'nkp j.n/V qn j.n//1=p cn
log V.n/

V qn/=2/1=p :

G;p n/ k'nkp=kzr'nkp, we conclude that JbSince Jb
G;p n/ n= logV.n/.

Now, consider a symmetric probability measure on a finitely generated group
G, supported by a finite generating subset S. Given an element ' of `2.G/, a simple
calculation shows that

1“ j'.sx/ ' x/j
2d .2/.s/d x/ D Z .' .2/

2 '/'d D k'k
2

k 'k
2

2 2

where denotes the counting measure on G. Let us introduce a left) gradient on G
associated to Let ' be a function on G; define

2.g/ D Z j'.sg/ ' g/j
2d .2/.s/:jzr'j

2

This gradient satisfies

kjzr'j2k
2
2 D 2.k'k

2
2 k 'k2

2/:

We have

S/ 1=2
jzr'j2 jzr'j jzr'j2:

Proposition 7.2. Assume that n/.1/ e Cnb for some b < 1. Then

Jb
G;2.t/ Ct1 b:
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Proof. Let us prove that there exists a constant C0 < 1 such that for every n 2 N,
there exists n k 2n such that

k jzr
.2k/

j2 k22

k .2k/ k22

C0nb 1:

Since .2k/ is supported in S2k S4n, this will prove the proposition. Let Cn be

such that for every n q 2n,

k jzr .2q/
j2 k22

k .2q/
k22

Cnnb 1:

Since the function defined by q/ Dk
.2q/

k22 satisfies

q C 1/ q/ D
1
2 k jzr

.2q/
j2 k

2
2;

we can extend as a piecewise linear function on RC such that

0.t/ D
1

2 k jzr
.2q/

j2 k
2
2

for every t 2 OEq;q C 1OE. Then, for every n t 2n we have

0.t/
t/

Cnnb 1

which integrates in

log
.2n/

n/
Cnnb :

Since n/ < 1, this implies

.2n/ e
Cnnb:

But on the other hand,

2 .8n/.1/ e 8Cnb.2n/ k
.4n/

k
2 :

So Cn 8C.

7.2. A direct construction to embed trees. Here, we propose to show that the
method used in [Bou], [GK], [BrSo] toembed trees inLp-spacescan alsobe exploited
to obtain optimal estimates i.e. a converse to Theorem 6.2). Moreover, no hypothesis
of local finitude is required for this construction.
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Theorem 7.3. Let T be a simplicial tree. For every increasing function f W RC
RC satisfying, for 1 p < 1

Z
1

1

f t/
t

p dt
t < 1; Cp)

there exists a uniform embedding F of T into `p.T/ with compression f
Proof. Let us start with a lemma.

Lemma 7.4. For every nonnegative sequence n/ such that

Xn
j nC1 nj

p < 1;
there exists a Lipschitz map F W T `p.T / whose compression satisfies

8n 2 N; n/
n

X
jD0

p
j

1=p
:

Proof. Thefollowing construction is a generalization of those carried out in [GK] and

[BrSo]. Fix a vertex o. For every y 2 T denote iy the element of `p.T / that takes

value 1 on y and 0 elsewhere. Let x be a vertex of T and let x0 D x; x1; : : : ;xl D o
be the minimal path joining x to o. Define

F.x/ D
l
X
iD1

i ixi :

To prove that F is Lipschitz, it suffices to prove that kF.x/ F.y/kp is bounded

for neighbor vertices in T So let x and y be neighbor vertices in T such that

d.o;y/ D d.x; o/ C 1 D l C 1. We have

p
p

kF.y/ F.x/kp
0 C

l

X
jD0

j nC1 nj
p :

On the other hand, let x and y be two vertices in T Let z be the last common vertex
of the two geodesic paths joining o to x and y. We have

d.x;y/ D d.x; z/ C d.z;y/
and

kF.x/ F.y/kp
p D kF.x/ F.z/k

p
p CkF.z/ F.y/kp

p

maxfkF.x/ F.z/k
p
p ; kF.z/ F.y/kp

p g:
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Let k D d.z; x/; we have

kF.x/ F.z/kp
p

k

X
jD0

p
j ;

which proves the lemma.

Now, let us prove the theorem. Define j / by

0 D 1 D 0I

8j 1; jC1 j D
1

jp
f j/
j

and consider the associated Lipschitz map F from T to `p.T /. Clearly, we have

Xj nC1 nj
p < 1

and

n

X
jD0

p
j

n

X
jDOEn=2

j 1

X
kD0

j kC1 kj
p

n=2

OEn=2 1

X
kD0

j kC1 kj
p

cf OEn=2 /

using the fact that f is nondecreasing. So the theorem now follows from the lemma.

7.3. Cocycles with lacunar compression

Proposition 7.5. For any increasing sublinear function hW RC RC and every
2 p < 1, there exists a function f satisfying Cp/, a constant c > 0 and an
increasing sequence of integers ni/ such that

8i 2 N; f.ni / ch.ni/:

Proof. Choose a sequence ni/ such that

X
i2N

ni

ph.ni/ < 1
Define

8i 2 N; ni t < niC1; f t/ D h.ni/
We have

Z
1

1

1
t

f t/
t

p
h.ni //p Z

niC1
dt Xi ni

dt
tpC1

p C 1/Xi ni

ph.ni / < 1
So we are done.
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7.4. The case of Z o Z. The proof of Theorem 17 follows from Proposition 3.5 and

from the following observation.

Proposition 7.6. For all 1 p < 1, the maximal `p-compression function of the
group G D Z o Z satisfies

M G;p.t/ tp=.2p 1/:

Proof. Denote by the projection Z o Z C2 o Z. Fix two word lengths on Z o Z
and C2 o Z, which for simplicity, we will both denote by jgj.

Consider the unique cocyclebW ZoZ `p.Z/which extends thenatural injective
morphism Z.Z/ `p.Z/. For any g D k; u/ 2 Z o Z D Z Ë Z.Z/, we therefore
have kb.g/k D kukp. Taking the `p-direct sum of this cocycle with every cocycle
of Z o Z factorizing through and since M C2oZ;p.t/ t we obtain

M ZoZ;p.t/ inf
g2ZoZ; jgj t maxfjp.g/j; kb.g/kg: 7.1)

Up to multiplicative constants, see [Par], Theorem 1.2), the word length of an

element g D k;u/ 2 Z o Z is given by

L. /CX
h2Z

ju.h/j D L. / Ckuk1;

whereL. / is the lengthof a shortestpath from 0tok passing through every element
of the support of u. Similarly, jp.g/j L. / C jSupp.u/j. Hence by 7.1), we can
assume that L. / jgj=2, so that kuk1 jgj=2. By Hölder’s inequality, we have

kuk1 kukpjSupp.u/j
1 1=p, which is less than a constant timeskb.g/kjp.g/j1

1=p.
Therefore

M ZoZ;p.t/ inf
g2ZoZ; jgj t

max
°jp.g/j; jgj=jp.g/j

1 1=p ;

which immediately implies the proposition.

7.5. H-metric. Let G be a locally compact, compactly generated group and let S be

a compact symmetric generating set. A Hilbert length function is a length function
associated to some Hilbert 1-cocycle b, i.e. L.g/ D kb.g/k. Consider the supremum
of all Hilbert length functions on G, bounded by 1 on S: it defines a length function
on G which in general is no longer a Hilbert length function. This length function
has been introduced by Cornulier [C], § 2.6, who called the corresponding metric
“H-metric”. Observe that if the group G satisfies M G;2.t/ t then the H-metric
of G is quasi-isometric to the word length. As a consequence of Theorem 5.1 and
Proposition 4.5, we get

Proposition 7.7. For every group in the class L/, the H-metric is quasi-isometric
to the word length.
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