Rational connectedness modulo the non-nef locus

Autor(en): Broustet, Amaël / Pacienza, Gianluca
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 86 (2011)

PDF erstellt am:
17.07.2024

Persistenter Link: https://doi.org/10.5169/seals-283462

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Rational connectedness modulo the non-nef locus

Amaël Broustet and Gianluca Pacienza

Abstract

It is well known that a smooth projective Fano variety is rationally connected. Recently Zhang [Z2] (and later Hacon and McKernan [HM] as a special case of their work on the Shokurov RC-conjecture) proved that the same conclusion holds for a klt pair (X, Δ) such that $-\left(K_{X}+\Delta\right)$ is big and nef. We prove here a natural generalization of the above result by dropping the nefness assumption. Namely we show that a klt pair (X, Δ) such that $-\left(K_{X}+\Delta\right)$ is big is rationally connected modulo the non-nef locus of $-\left(K_{X}+\Delta\right)$. This result is a consequence of a more general structure theorem for arbitrary pairs (X, Δ) with $-\left(K_{X}+\Delta\right)$ pseff.

Mathematics Subject Classification (2010). 14J40.
Keywords. Rational connectedness, non-nef locus, big and pseff divisors, rational curves.

1. Introduction

An important and nowadays classical property of smooth Fano varieties is their rational connectedness, which was established by Campana [Ca2] and by Kollár, Miyaoka and Mori [KMM]. Singular varieties, and more generally pairs, with a weaker positivity property arise naturally in the Minimal Model Program, and it was conjectured that a klt pair (X, Δ) with $-\left(K_{X}+\Delta\right)$ big and nef is rationally connected. The conjecture was proved by Zhang [Z2], and was also obtained later by Hacon and McKernan [HM] as a special case of their work on the Shokurov RC-conjecture. Even in the smooth case, as soon as the nefness hypothesis is dropped one can loose the rational connectedness, as shown by the following example (which is a natural generalization to arbitrary dimension of Example 6.4 in [T]).

Example 1.1. Let \mathbf{P}^{N} be a hyperplane of \mathbf{P}^{N+1}, Z a smooth hypersurface of degree $N+1$ in \mathbf{P}^{N} and $C_{Z} \subset \mathbf{P}^{N+1}$ a cone over it. Let X be the blowing up of C_{Z} at its vertex. Notice that X is a \mathbf{P}^{1}-bundle over the strict transform of Z. The variety X has canonical divisor equal to $K_{X}=-H+a E$ where E is the exceptional divisor (which is isomorphic to Z) and H the pull-back on X of an hyperplane section of C_{Z}. Since C_{Z} has multiplicity $N+1$ at its vertex, an easy computation shows that $a=-1$. Thus $-K_{X}$ is big, but X is not rationally connected since Z is not.

One way to measure the lack of nefness of a divisor is the non-emptiness of a perturbation of its (stable) base locus. To be precise, let us recall first that the stable base locus $\operatorname{SBs}(D)$ of a divisor D is given by the set-theoretic intersection $\bigcap_{m \geq 1} \operatorname{Bs}(m D)$ of the base loci of all its multiples. Then one defines, following [N] (see also [Bou], Definition 3.3 and Theorem A.1), the non-nef locus of D to be the set $\operatorname{NNef}(D):=\bigcup_{m} \operatorname{SBs}(m D+A)$, where A is a fixed ample divisor. One checks that the definition does not depend on the choice of A, and that $\operatorname{NNef}(D)=\emptyset$ if, and only if, D is nef. Notice that the countable union defining $\operatorname{NNef}(D)$ is a finite one, if the ring $R(X, D)$ is finitely generated (see $\S 2.4$ below). In any case $\operatorname{NNef}(D)$ is not equal to X, as soon as D is pseudo-effective, and we always have $\operatorname{NNef}(D) \subset \operatorname{SBs}(D)$. We prove the following.

Theorem 1.2. Let (X, Δ) be a pair such that $-\left(K_{X}+\Delta\right)$ is big. Then X is rationally connected modulo an irreducible component of $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$, i.e., there exists an irreducible component V of $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ such that for any general point x of X there exists a rational curve R_{x} passing through x and intersecting V.

If the pair is klt , i.e., if the non-klt locus $\operatorname{Nklt}(X, \Delta)$ is empty (see $\S 2.2$ for the definition of the non-klt locus), we immediately deduce the following.

Corollary 1.3. Let (X, Δ) be a klt pair such that $-\left(K_{X}+\Delta\right)$ is big. Then X is rationally connected modulo an irreducible component of the non-nef locus of $-\left(K_{X}+\Delta\right)$.

Notice that if X is as in Example 1.1 then $\operatorname{NNef}\left(-K_{X}\right)=E$.
Another immediate consequence of Theorem 1.2 is the following generalization of Zhang's result ([Z2], Theorem 1) to arbitrary pairs.

Corollary 1.4. Let (X, Δ) be a pair such that $-\left(K_{X}+\Delta\right)$ is big and nef. Then X is rationally connected modulo the non-klt locus $\operatorname{Nklt}(X, \Delta)$.

Again by Example 1.1, one can see that the previous statement is optimal. Indeed, take X as in Example 1.1, and Δ equal to the exceptional divisor E. Then X is not rationally connected, but it is rationally connected modulo $\operatorname{Nklt}(X, \Delta)=E$.

It may be interesting to point out that, thanks to the work of Campana [Ca1], from Theorem 1.2 we also deduce the following.

Corollary 1.5. Let (X, Δ) be a pair such that $-\left(K_{X}+\Delta\right)$ is big. Let V be an irreducible component of $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ such that X is rationally connected modulo V. Then, if V^{\prime} is a desingularization of V, the image of $\pi_{1}\left(V^{\prime}\right)$ inside $\pi_{1}(X)$ has finite index.

Theorem 1.2 is a special case of a more general statement, which may be regarded as a generalization of the main result of Zhang in [Z1]. Namely we have the following.

Theorem 1.6. Let (X, Δ) be a pair such that $-\left(K_{X}+\Delta\right)$ is pseff. Let $f: X \rightarrow Z$ be a dominant rational map with connected fibers. Suppose that
the restriction of f to $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ does not dominate Z. (1.1)
Then, either (i) the variety Z is uniruled; or (ii) $\kappa(Z)=0$. Moreover, in the case $-\left(K_{X}+\Delta\right)$ is big, under the same assumption (1.1) we necessarily have that Z is uniruled.

Notice that the possibility (ii) in Theorem 1.6 does occur, as one can see by taking X to be the product of a projective space and abelian variety Z. To put Theorem 1.6 into perspective, notice that in general the image of a variety X with pseff anticanonical divisor may be of general type. Indeed we have the following instructive example (due to Zhang, Example on pp. 137-138 in [Z2]).

Example 1.7. Let C be a smooth curve of arbitrary genus $g>0$. Let A be an ample line bundle with $\operatorname{deg}(A)>2 \operatorname{deg}\left(K_{C}\right)$. Consider the surface $S:=\mathbf{P}\left(\mathcal{O}_{C}(A) \oplus \mathcal{O}_{C}\right)$, together with the natural projection $\pi: S \rightarrow C$. Then: (i) $-K_{S}$ is big, but not nef; (ii) for any integer $m>0$ the linear system $\left|-m K_{S}\right|$ contains a fixed component dominating the base C.

In the smooth case the proof of Theorem 1.6 yields a better result, which is optimal by Example 1.7.

Theorem 1.8. Let X be a smooth projective variety such that $-K_{X}$ is pseff. Let $f: X \rightarrow Z$ be a dominant rational map with connected fibers. Suppose that
the restriction of f to $\operatorname{Cosupp}\left(\mathscr{A}\left(\left\|-\left(K_{X}+\Delta\right)\right\|\right)\right)$ does not dominate Z.
Then, either (i) the variety Z is uniruled; or (ii) $\kappa(Z)=0$. Moreover, in the case $-\left(K_{X}+\Delta\right)$ is big, under the same assumption (1.2) we necessarily have that Z is uniruled.

As a by-product of the previous result we obtain, in the smooth case, the following improvement of Theorem 1.2.

Theorem 1.9. Let X be a smooth projective variety such that $-K_{X}$ is big. Then X is rationally connected modulo the locus $\operatorname{Cosupp}\left(\mathcal{L}\left(X,\left\|-\left(K_{X}\right)\right\|\right)\right)$.

Again, notice that if X is as in the Example 1.1 then $E=\operatorname{NNef}\left(-K_{X}\right)$ is equal to $\operatorname{Cosupp}\left(\mathcal{F}\left(X,\left\|-\left(K_{X}\right)\right\|\right)\right)$.

Moreover, as remarked by Zhang in [Z1] and [Z2], Theorems 1.6 and 1.8 allow to obtain the following information on the geometry of the Albanese map, which may be seen as generalizations of [Z1], Corollary 2 , and [Z2], Corollary 3 .

Corollary 1.10. Let (X, Δ) be a pair such that $-\left(K_{X}+\Delta\right)$ is pseff. Let $\mathrm{Alb}_{X}: X \rightarrow$ $\mathrm{Alb}(X)$ be the Albanese map (from any smooth model of X). Suppose further that $\mathrm{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ does not dominate the image of X inside $\operatorname{Alb}(X)$. Then the Albanese map is dominant with connected fibers.

Corollary 1.11. Let X be a smooth projective variety such that $-K_{X}$ is pseff. Let $\mathrm{Alb}_{X}: X \rightarrow \mathrm{Alb}(X)$ be the Albanese map. Suppose that $\operatorname{Cosupp}\left(\mathscr{(}\left(X,\left\|-\left(K_{X}\right)\right\|\right)\right)$ does not dominate the image of X inside $\mathrm{Alb}(X)$. Then the Albanese map is surjective with connected fibers.

Our approach to prove Theorem 1.6 follows closely [Z1], [Z2] and [HM] (although we do not need the powerful extension theorem of [HM] which is an important part of their work). The main new technical ingredient is Proposition 3.3 below which can be viewed as a Bertini-type theorem in the spirit of [Kol2], §4. More precisely, the sketch of the proof goes as follows: using the hypotheses and multiplier ideal techniques we prove that there exists an effective divisor $D \sim_{\mathbb{Q}}-\left(K_{X}+\Delta\right)$ such that the restriction $(\Delta+D)_{\mid X_{z}}$ to the general fiber of f is klt (if $-\left(K_{X}+\Delta\right)$ is not big we actually add a small ample to it). Then, supposing for simplicity that X and Y are smooth, and f regular, we invoke Campana's positivity result [Ca3], Theorem 4.13 , to deduce that $f_{*}\left(K_{X} / Z+\Delta+D\right) \sim_{\mathbb{Q}}-K_{Z}$ is weakly positive. Then by results contained in [MM], [BDPP] and [N] the variety Z is forced to be either uniruled or to have zero Kodaira dimension. The technical difficulties come from the singularities of the pair, and from the indeterminacies of the map, but they may be overcome by working on an appropriate resolution. In particular, the detailed and very nice account given by Bonavero in $\S 7.7$ of [Bon] on how to reprove [Z 2] using the methods of [HM] was of great help for us. We hope that the results of this paper will give a new insight on the rôle that the non-nef locus plays in the birational geometry of varieties with "positive" anticanonical divisor.

Acknowledgements. We thank Shigeharu Takayama for bringing to our attention the problem from which this work arose.

2. Preliminaries

We recall some basic definitions and results.
2.1. Notation and conventions. We work over the field of complex numbers. Unless otherwise specified, a divisor will be integral and Cartier. If D and D^{\prime} are \mathbb{Q}-divisors on a projective variety X we write $D \sim \mathbb{Q} D^{\prime}$, and say that D and D^{\prime} are \mathbb{Q}-linearly equivalent, if an integral non-zero multiple of $D-D^{\prime}$ is linearly equivalent to zero. A divisor D is big if a large multiple $m D$ induces a birational map $\varphi_{m D}: X \rightarrow \mathbf{P} H^{0}\left(X, \vartheta_{X}(m D)\right)^{*}$. A divisor D is pseudo-effective (or pseff) if its class belongs to the closure of the effective cone $\overline{\operatorname{Eff}(X)} \subset N^{1}(X)$. For the basic properties of big and pseff divisors and of their cones see [L1], §2.2. A variety X is uniruled if there exists a dominant rational map $Y \times \mathbf{P}^{1} \rightarrow X$ where Y is a variety of dimension $\operatorname{dim}(Y)=\operatorname{dim}(X)-1$. As a combination of the deep results contained in [MM] and [BDPP] we have the following characterization of uniruledness: a proper algebraic variety X is uniruled if, and only if, there exists a smooth projective variety X^{\prime} birational to X whose canonical divisor $K_{X^{\prime}}$ is not pseff.
2.2. Pairs. We need to recall some terminology about pairs. Let X a normal projective variety, $\Delta=\sum a_{i} D_{i}$ an effective Weil \mathbb{Q}-divisor. If $K_{X}+\Delta$ is \mathbb{Q}-Cartier, we say that (X, D) is a pair. Consider a log-resolution $f: Y \rightarrow X$ of the pair (X, Δ), that is a proper birational morphism such that Y is smooth and $f^{*} \Delta+E$ is a simple normal crossing divisor, where E is the exceptional divisor of f. There is a uniquely defined exceptional divisor $\sum_{j} b_{j} E_{j}$ on Y such that

$$
K_{Y}=f^{*}\left(K_{X}+\Delta\right)-\left(f^{-1}\right)_{*} \Delta+\sum_{j} b_{j} E_{j}
$$

where $\left(f^{-1}\right)_{*} \Delta$ denotes the strict transform of Δ in Y.
We say that (X, Δ) is log-terminal or Kawamata log-terminal (klt for short) if for each i and j, we have $a_{i}<1$ and $b_{j}>-1$. If the previous inequalities are large, we say that the pair is log-canonical. We say that the pair (X, Δ) is klt or log-canonical at a point x if these inequalities are verified for each of the divisors D_{i}, E_{j} having a non empty intersection with $f^{-1}(\{x\})$. We call $\operatorname{Nklt}(X, \Delta)$ the set of points x at which the pair (X, Δ) is not klt. We refer the reader to [Kol2] for a detailed treatment of this subject.
2.3. Multiplier ideals. We will freely use the language of multiplier ideals as described in [L2]. We recall in particular that we can associate to a complete linear series $|D|$ and a rational number c, an asymptotic multiplier ideal $\mathcal{F}(c \cdot\|D\|)$ defined as the unique maximal element for the inclusion in

$$
\left\{\mathcal{G}\left(\frac{c}{k} \cdot \mathfrak{G}(|k D|)\right\}_{k \geqslant 1} .\right.
$$

For any integer $k \geqslant 1$, there is an inclusion $G(|k D|) \subset \mathcal{L}(k \cdot\|D\|)$. One important property is that, when the divisor D is big, the difference between the two ideals above is uniformly bounded in k (see Theorem 11.2 .21 in [L2] for the precise statement).
2.4. Non-nef locus. The non-nef locus (also called the restricted base locus) of a divisor L depend only on the numerical equivalence class of L (see [Na]). Moreover, by [ELMNP], Corollary 2.10 , if X is smooth we have that

$$
\operatorname{NNef}(L)=\bigcup_{m \in \mathbb{N}} \operatorname{Cosupp}(\mathscr{A}(X,\|m L\|))
$$

As mentioned in the introduction L is nef if, and only if, $\operatorname{NNef}(L)=\emptyset$ and moreover L is pseudo-effective if, and only if, $\operatorname{NNef}(L) \neq X$. For the proofs of the properties mentioned above and more details on non-nef and stable base loci, see [ELMNP], $\S 1$, and [N], III, §1. Note that though there is no known example, it is expected that $\operatorname{NNef}(L)$ is not Zariski-closed in general. Nevertheless, when the algebra $R(X, D)$ is finitely generated, $\operatorname{NNef}(L)=\operatorname{Bs}(|k D|)$ for a sufficiently large integer k : apply [L2], Example 11.1.3, and [ELMNP], Corollary 2.10.
2.5. Positivity of direct images. Recall the following positivity result for direct images, due to Campana ([Ca3], Theorem 4.13) which improves on previous results obtained by Kawamata [Ka], Kollár [Kol1] and Viehweg [Vie1]. We refer the reader to Chapter 2 in [Vie2] for the definition and a detailed discussion of the notion of weak positivity, which will not be directly used in this paper.

Theorem 2.1 (Campana). Let $f: V^{\prime} \rightarrow V$ be a morphism with connected fibres between smooth projective varieties. Let Δ be an effective \mathbb{Q}-divisor on V^{\prime} whose restriction to the generic fibre is log-canonical. Then, the sheaf

$$
f_{*} \vartheta_{V^{\prime}}\left(m\left(K_{V^{\prime} / V}+\Delta\right)\right)
$$

is weakly positive for all positive integer m such that $m \Delta$ is integral.
We will rather use the following consequence of Campana's positivity result (for a proof see e.g. [D], Section 6.2.1).

Corollary 2.2. Let $f: V^{\prime} \rightarrow V$ be a morphism with connected fibres between smooth projective varieties. Let Δ be an effective \mathbb{Q}-divisor on V^{\prime} whose restriction to the generic fibre is log-canonical. Let W be a general fiber of f and suppose that

$$
\kappa\left(W, m\left(K_{V^{\prime} / V}+\Delta\right)_{\mid W}\right) \geq 0 .
$$

Then, for every ample divisor H on V there exists a positive integer $b>0$ such that

$$
h^{0}\left(V^{\prime}, b\left(K_{V^{\prime} / V}+\Delta+f^{*} H\right)\right) \neq 0
$$

3. Proof of the results

3.1. The proof of the main result. We will use the following result. For a proof we refer the reader to Lemme 64 in [Bon].

Lemma 3.1. Let (X, Δ) be a pair, $f: X \rightarrow T$ a proper surjective morphism, and X_{t} the general fiber of f. Suppose that Δ is big and that $\left(X_{t}, \Delta_{\mid X_{t}}\right)$ is kit. Then there exist two \mathbb{Q}-divisors A and B, with A ample and B effective such that $\Delta \sim \mathbb{Q} A+B$, and the restrictions $\left(X_{t},(A+B)_{\mid X_{t}}\right)$ and $\left(X_{t}, B_{\mid X_{b}}\right)$ are klt.

Another easy fact which we will use is the following lemma, whose is included for lack of reference.

Lemma 3.2. Let a, b be two ideal sheaves on X. Let $f: Y \rightarrow X$ be a proper birational morphism such that $f^{-1} a$ and $f^{-1} b$ are invertible. Let E and F be two effective divisors on Y such that $\mathcal{\vartheta}_{Y}(-F)=f^{-1} \mathfrak{a}$ and $\mathcal{O}_{Y}(-E)=f^{-1} \mathrm{~b}$. Then $\vartheta_{Y}(-E-F)=f^{-1}(\mathfrak{a} \otimes \mathfrak{b})$.

Proof. We will differ from the standard definition for the inverse image of a sheaf [H], p. 65: we denote by $f^{\dagger} a$ the sheaf associated to the presheaf defined by

$$
f^{\dagger} a(U)=\lim _{V \supset f(U)} a(V)
$$

We have by definition ([H], p. 110) that $f^{-1} a:=f^{\dagger} a \otimes_{f^{\dagger}} \mathcal{O}_{X} \mathcal{O}_{Y}$. By the commutativity of the direct limit with tensor products, see [AM], Exercise 20, p. 33, we have

$$
\begin{aligned}
\vartheta_{Y}(-E-F) & =\left(f^{\dagger} a \otimes_{f^{\dagger} \vartheta_{X}} \vartheta_{Y}\right) \otimes\left(f^{\dagger} \mathfrak{b} \otimes_{f^{\dagger} \vartheta_{X}} \vartheta_{Y}\right) \\
& =f^{-1} \mathfrak{a} \otimes f^{-1} \mathfrak{b}=f^{\dagger}(a \otimes \mathfrak{b}) \otimes_{f^{\dagger} \vartheta_{X}} \vartheta_{Y}=f^{-1}(a \otimes \mathfrak{b})
\end{aligned}
$$

and we are done.
An important technical ingredient of the proof is provided by the following.
Proposition 3.3. Let (X, Δ) be a pair and L a big \mathbb{Q}-Cartier divisor on X. Then there exists an effective \mathbb{Q}-Cartier divisor $D \sim_{\mathbb{Q}} L$ such that $\operatorname{Nklt}(X, \Delta+D) \subset$ $\operatorname{NNef}(L) \cup \operatorname{Nklt}(X, \Delta)$.

Proof. We will construct D as the push-forward of a divisor on a well chosen birational model of (X, Δ).

Let $f_{Y}: Y \rightarrow X$ be a log-resolution of the pair (X, Δ). Let Δ_{Y} be an effective Q-divisor on Y such that $\left(f_{Y}\right)_{*} \Delta_{Y}=\Delta$ and

$$
K_{Y}+\Delta_{Y}=f_{Y}^{*}\left(K_{X}+\Delta\right)+F_{Y}
$$

with F_{Y} effective and not having common components with Δ_{Y}. Note that

$$
\begin{equation*}
f_{Y}\left(\operatorname{Nklt}\left(Y, \Delta_{Y}\right)\right) \subset \operatorname{Nklt}(X, \Delta) \tag{3.1}
\end{equation*}
$$

By Theorem 11.2.21 in [L2], there is an effective divisor E on Y such that for each sufficiently divisible integer $m>0$ we have $\mathcal{f}\left(m \cdot\left\|f_{Y}^{*} L\right\|\right) \otimes \mathcal{O}_{Y}(-E) \subset \mathfrak{b}\left(\left|m f_{Y}^{*} L\right|\right)$. Let $m>0$ be a large and sufficiently divisible integer such that

$$
\begin{equation*}
\operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m} E\right)=\operatorname{Nklt}\left(Y, \Delta_{Y}\right) \tag{3.2}
\end{equation*}
$$

Let $f_{V}: V \rightarrow Y$ be a common log-resolution of $\mathscr{f}\left(m \cdot\left\|f_{Y}^{*} L\right\|\right) \otimes \mathcal{O}_{Y}(-E)$ and $\mathfrak{G}\left(\left|m f_{Y}^{*} L\right|\right)$ (see [L2], Definition 9.1.12). Let Δ_{V} be an effective \mathbf{Q}-divisor such that $\left(f_{V}\right)_{*} \Delta_{V}=\Delta_{Y}+\frac{1}{m} E$ and

$$
K_{V}+\Delta_{V}=f_{V}^{*}\left(K_{Y}+\Delta_{Y}+\frac{1}{m} E\right)+F_{V}
$$

with F_{V} effective not having common components with Δ_{V}. Again, the pair $\left(V, \Delta_{V}\right)$ verifies

$$
\begin{equation*}
f_{V}\left(\operatorname{Nklt}\left(V, \Delta_{V}\right)\right) \subset \operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m} E\right)=\operatorname{Nklt}\left(Y, \Delta_{Y}\right) \tag{3.3}
\end{equation*}
$$

Denote by G_{1} the effective divisor such that

$$
\mathcal{O}_{V}\left(-G_{1}-f_{V}^{*} E\right)=f_{V}^{-1}\left(\mathscr{L}\left(m \cdot\left\|f_{Y}^{*} L\right\|\right) \otimes \mathcal{O}_{Y}(-E)\right)
$$

and by G_{2} the divisor such that

$$
\mathcal{O}_{V}\left(-G_{2}\right)=f_{V}^{-1} \mathfrak{G}\left(\left|m f_{Y}^{*} L\right|\right)
$$

Since $\mathscr{f}\left(m \cdot\left\|f_{Y}^{*} L\right\|\right) \otimes \mathcal{O}_{X}(-E) \subset \mathfrak{G}\left(\left|m f_{Y}^{*} L\right|\right)$, we have $G_{1}+f_{V}^{*} E \geqslant G_{2}$. Moreover, by Lemma 3.2, the divisor G_{1} verifies

$$
\begin{equation*}
f_{V}\left(G_{1}\right)=\operatorname{Cosupp}\left(\mathscr{(}\left(m \cdot\left\|f_{Y}^{*} L\right\|\right)\right) \tag{3.4}
\end{equation*}
$$

Notice that by construction there exists a base-point-free linear series $|N|$ on V such that $f_{V}^{*} f_{Y}^{*} m L \sim N+G_{2}$. Since $|N|$ is base-point-free, there is a \mathbf{Q}-divisor $N^{\prime} \sim_{\mathbf{Q}} N$ such that we have

$$
\begin{align*}
Z & :=\operatorname{Nklt}\left(V, \Delta_{V}+\frac{1}{m}\left(G_{1}+N^{\prime}\right)\right) \\
& =\operatorname{Nklt}\left(V, \Delta_{V}+\frac{1}{m} G_{1}\right) \subset \operatorname{Supp} G_{1} \cup \operatorname{Nklt}\left(V, \Delta_{V}\right) \tag{3.5}
\end{align*}
$$

By (3.3), (3.4) and (3.5) we get

$$
f_{V}(Z) \subset \operatorname{Cosupp}\left(f\left(m \cdot\left\|f_{Y}^{*} L\right\|\right)\right) \cup \operatorname{Nklt}\left(Y, \Delta_{Y}\right) \subset \operatorname{NNef}\left(f_{Y}^{*} L\right) \cup \operatorname{Nklt}\left(Y, \Delta_{Y}\right)
$$

Since $G_{1}+f_{V}^{*} E+N^{\prime} \geqslant G_{2}+N^{\prime}$, we have

$$
\left(f_{V}\right)_{*}\left(G_{1}+f_{V}^{*} E+N^{\prime}\right) \geqslant\left(f_{V}\right)_{*}\left(G_{2}+N^{\prime}\right)
$$

thus
$\operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m}\left(\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right)\right) \subset \operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m}\left(E+\left(f_{V}\right)_{*}\left(N^{\prime}+G_{1}\right)\right)\right)$.
Since we have

$$
\operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m}\left(E+\left(f_{V}\right)_{*}\left(N^{\prime}+G_{1}\right)\right)\right)=f_{V}\left(\operatorname{Nklt}\left(V, \Delta_{V}+\frac{1}{m}\left(N^{\prime}+G_{1}\right)\right)\right)
$$

we deduce that

$$
\operatorname{Nklt}\left(Y, \Delta_{Y}+\frac{1}{m}\left(\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right)\right) \subset \operatorname{NNef}\left(f_{Y}^{*} L\right) \cup \operatorname{Nklt}\left(Y, \Delta_{Y}\right)
$$

Note that $\left.\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right) \sim_{\mathbb{Q}} m f_{Y}^{*} L$. Thanks to (3.1) to conclude the proof it is sufficient to prove that $f_{Y}\left(\operatorname{NNef}\left(f_{Y}^{*} L\right)\right) \subset \operatorname{NNef}(L)$ and set

$$
D:=\left(f_{Y}\right)_{*}\left(\frac{1}{m}\left(\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right)\right)
$$

Let A an ample \mathbf{Q}-divisor on Y and W an irreducible component of $\operatorname{SBs}\left(f_{Y}^{*} L+A\right)$. Then there exists an ample \mathbf{Q}-divisor H on X such that $A-f_{Y}^{*} H$ is ample. Thus

$$
f_{Y}(W) \subset f_{Y}\left(\operatorname{SBs}\left(f_{Y}^{*}(L+H)\right)\right) \subset \operatorname{SBs}(L+H)
$$

This is true for every A and therefore

$$
f_{Y}\left(\operatorname{NNef}\left(f_{Y}^{*} L\right)\right) \subset \operatorname{NNef}(L)
$$

From the previous inclusions, we conclude that

$$
\operatorname{Nklt}\left(X, \Delta+\frac{1}{m}\left(f_{Y}\right)_{*}\left(\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right)\right) \subset \operatorname{NNef}(L) \cup \operatorname{Nklt}(X, \Delta)
$$

and setting $D:=\left(f_{Y}\right)_{*}\left(\frac{1}{m}\left(\left(f_{V}\right)_{*}\left(N^{\prime}+G_{2}\right)\right)\right)$ we are done.
Proof of Theorem 1.6. We give the proof in the case $-\left(K_{X}+\Delta\right)$ is pseff and point out at the end how to obtain a stronger conclusion when it is big.

First we may assume that Z is smooth. Fix an ample divisor H_{X} on X, and a rational number δ with $0<\delta \ll 1$. From Proposition 3.3 applied to the big divisor $L=-\left(K_{X}+\Delta\right)+\delta H_{X}$ we deduce the existence of an effective \mathbf{Q}-divisor

$$
D \sim_{\mathbb{Q}}-\left(K_{X}+\Delta\right)+\delta H_{X}
$$

such that $\operatorname{Nklt}(X, \Delta+D)$ does not dominate the base Y. From a result on generic restrictions of multiplier ideals [L2], Theorem 9.5.35, we have that the restriction to the generic fiber $\left(X_{z},(\Delta+D)_{\mid X_{z}}\right)$ is a klt pair. In conclusion, by the above discussion and Lemma 3.1, we may replace our original pair (X, Δ) by a new pair, which, by abuse of notation, we will again call (X, Δ), such that:
(i) $K_{X}+\Delta \sim_{\mathbb{Q}} \delta H_{X}$;
(ii) $\Delta=A+B$, where A and B are \mathbb{Q}-divisor which are respectively ample and effective, and A may be taken such that $A \sim \mathbb{Q} \frac{\delta}{2} H_{X}$;
(iii) the restrictions $\left(X_{z}, \Delta_{\mid X_{z}}\right)$ and $\left(X_{z}, B_{\mid X_{z}}\right)$ to the fiber over the general point $z \in Z$ are klt.
Consider a proper birational morphism $\mu: Y \rightarrow X$ from a smooth projective variety Y onto X providing a log-resolution of the pair (X, Δ) and resolving the indeterminacies of the map $X \rightarrow Z$. In particular we have the following commutative diagram

We write

$$
\begin{equation*}
K_{Y}+\Sigma=\mu^{*}\left(K_{X}+\Delta\right)+E \tag{3.7}
\end{equation*}
$$

where Σ and E are effective divisor without common components and E is μ exceptional. Notice that from (3.7) and the fact that E is exceptional we deduce that

$$
\begin{equation*}
\kappa\left(Y, K_{Y}+\Sigma\right)=\kappa\left(X, K_{X}+\Delta\right) \tag{3.8}
\end{equation*}
$$

whereas from (3.7) together with (iii) above we get that
the restriction $\left(Y_{z}, \Sigma_{\mid Y_{z}}\right)$ to the fiber of g over the general point $z \in Z$ is klt.

More precisely, if we write

$$
\begin{equation*}
\Sigma=\mu^{*} A+B_{Y} \sim \mathbb{Q} \frac{\delta}{2} \mu^{*} H_{X}+B_{Y} \tag{3.10}
\end{equation*}
$$

we have
the restriction $\left(Y_{z},\left(B_{Y}\right)_{\mid Y_{Z}}\right)$ to the fiber of g over the general point $z \in Z$ is klt.
We have the following result.
Lemma 3.4. In the above setting, there exists an ample \mathbb{Q}-divisor H_{Z} on Z such that $\mu^{*} H_{X} \sim_{\mathbb{Q}} 2 g^{*} H_{Z}+\Gamma$ where Γ is effective and the restriction $\left(Y_{z},\left(B_{Y}+\Gamma\right)_{Y_{z}}\right)$ to the general fiber is klt.

Proof of Lemma 3.4. Let F be the exceptional divisor of μ. For $0<\varepsilon \ll 1$ the divisor $\mu^{*} H_{X}-\varepsilon F$ is ample. Take a very ample divisor H_{1} on Z, an integer $m \gg 0$ large enough so that $m\left(\mu^{*} H_{X}-\varepsilon F\right)-g^{*} H_{1}$ is base-point-free and a general member

$$
A_{m} \in\left|m\left(\mu^{*} H_{X}-\varepsilon F\right)-g^{*} H_{1}\right|
$$

Then $\mu^{*} H_{X} \sim_{\mathbb{Q}} \frac{1}{m} A_{m}+\varepsilon F+\frac{1}{m} g^{*} H_{1}$. For $m \gg 0$ and $0<\varepsilon \ll 1$, and $z \in Z$ general, the pair

$$
\left(Y_{z},\left(\frac{1}{m} A_{m}+\varepsilon F+B\right)_{\mid Y_{Z}}\right)
$$

is klt, since $\left(Y_{z}, B_{\mid Y_{z}}\right)$ is. To conclude the proof it is sufficient to set $H_{Z}:=\frac{1}{2 m} H_{1}$ and $\Gamma:=\frac{1}{m} A_{m}+\varepsilon F$.

By Lemma 3.4 and (3.7) we have that

$$
\left(K_{Y / Z}+B_{Y}+\Gamma\right)_{\mid Y_{Z}} \sim_{\mathbb{Q}}\left(K_{Y}+\Sigma\right)_{\mid Y_{Z}} \sim_{\mathbb{Q}} E_{\mid Y_{Z}}
$$

is effective. Therefore, by Corollary 2.2, there exists a positive integer $b>0$ such that

$$
\begin{equation*}
h^{0}\left(Y, b\left(K_{Y / Z}+B_{Y}+\Gamma+g^{*}\left(\delta H_{Z}\right)\right)\right) \neq 0 \tag{3.12}
\end{equation*}
$$

Consider a divisor

$$
\begin{equation*}
M \in\left|b\left(K_{Y / Z}+B_{Y}+\Gamma+g^{*}\left(\delta H_{Z}\right)\right)\right| . \tag{3.13}
\end{equation*}
$$

Let $C \subset Y$ be a mobile curve coming from X, i.e., the pull-back via μ of a general complete intersection curve on X. Then $C \cdot M \geq 0$. Equivalently we have

$$
\begin{equation*}
C \cdot g^{*} K_{Z} \leq C \cdot g^{*}\left(\delta H_{Z}\right)+b\left(K_{Y}+B_{Y}+\Gamma\right) \cdot C \tag{3.14}
\end{equation*}
$$

Notice that by (3.7), (3.10) and Lemma 3.4 we have

$$
\begin{equation*}
\left(K_{Y}+B_{Y}+\Gamma\right) \sim_{\mathbb{Q}} \mu^{*}\left(K_{X}+\Delta\right)+E+2 \delta g^{*} H_{Z} \tag{3.15}
\end{equation*}
$$

Now,
(a) $\mu^{*}\left(K_{X}+\Delta\right) \cdot C \rightarrow 0$ as $\delta \rightarrow 0$, since $K_{X}+\Delta \sim_{\mathbb{Q}} \delta H_{X}$ by (i) above;
(b) $E \cdot C=0$, since E is μ-exceptional and C is the pull-back via μ of a curve on X;
(c) $2 \delta\left(g^{*} H_{Z}\right) \cdot C \rightarrow 0$ as $\delta \rightarrow 0$.

Therefore letting $\delta \rightarrow 0$ in (3.14), from (3.15) and (a), (b) and (c) we deduce

$$
\begin{equation*}
C \cdot g^{*} K_{Z} \leq 0 \tag{3.16}
\end{equation*}
$$

If we have strict inequality $C \cdot g^{*} K_{Z}<0$, then Z is uniruled by [MM]. Assume now that $C \cdot g^{*} K_{Z}=0$ and Z is not uniruled. By [BDPP] the canonical class K_{Z} is pseff and we can therefore consider its divisorial Zariski decomposition $K_{Z} \equiv P+N$ into a positive part P which is nef in codimension 1 , and a negative one N, which is an effective \mathbb{R}-divisor (see [Bou] and [N]). Since the family of general complete intersection forms a connecting family (in the sense of Notation 8.1 in [BDPP]) and $g(C) \cdot K_{Z}=0$, by [BDPP], Theorem 9.8, we have that $P \equiv 0$. Then the numerical

Kodaira dimension $\kappa_{\sigma}(Z)=0$ and hence $\kappa(Z)=0$, by [N], Chapter V, Corollary 4.9. This concludes the proof of the theorem when $-\left(K_{X}+\Delta\right)$ is only assumed to be pseff.

If moreover $-\left(K_{X}+\Delta\right)$ is big, then we do not need to add the small ample δH_{X} to it in order to apply Proposition 3.3. In this case we may therefore replace our original pair (X, Δ) by a new pair, again called (X, Δ), such that:
(j) $K_{X}+\Delta \sim \mathbb{Q} 0$;
(ji) $\Delta=A+B$, where A and B are \mathbb{Q}-divisors which are respectively ample and effective;
(jij) the restrictions ($X_{z}, \Delta_{\mid X_{z}}$) and ($X_{z}, B_{\mid X_{z}}$) to the fiber over the general point $z \in Z$ are klt.
Then we argue as in the pseff case. Notice that in this case, from (3.8) and (j) above we deduce that

$$
\begin{equation*}
\kappa\left(Y, K_{Y}+\Sigma\right)=0 \tag{3.17}
\end{equation*}
$$

As in Lemma 3.4, we write $\mu^{*} A \sim_{\mathbb{Q}} 2 g^{*} A_{Z}+\Gamma$, with A_{Z} ample on Z, Γ effective and the restriction $\left(Y_{z},\left(B_{Y}+\Gamma\right)_{Y_{z}}\right)$ to the general fiber klt. As before, using Campana's positivity result we deduce

$$
\begin{equation*}
h^{0}\left(Y, b\left(K_{Y / Z}+B_{Y}+\Gamma+g^{*}\left(A_{Z}\right)\right)\right) \neq 0 \tag{3.18}
\end{equation*}
$$

Hence for all $m>0$ sufficiently divisible, the group $H^{0}\left(Z, m b\left(K_{Z}+A_{Z}\right)\right)$ injects into

$$
\begin{aligned}
& H^{0}\left(Y, m b\left(K_{Y / Z}+B_{Y}+\Gamma+g^{*} A_{Z}+f^{*}\left(K_{Z}+A_{Z}\right)\right)\right) \\
& \quad=H^{0}\left(Y, m b\left(K_{Y}+B_{Y}+\mu^{*} A\right)\right)
\end{aligned}
$$

(for the equality above we use again Lemma 3.4). Since $K_{Y}+\Sigma=K_{Y}+B_{Y}+\mu^{*} A$ we deduce that

$$
\begin{equation*}
0=\kappa\left(Y, K_{Y}+\Sigma\right) \geq \kappa\left(Z, K_{Z}+A_{Z}\right) \tag{3.19}
\end{equation*}
$$

If the variety Z were not uniruled, by [BDPP] and [MM] this would imply that K_{Z} is pseff. Therefore $K_{Z}+A_{Z}$ is big, and (3.19) yields the desired contradiction. The proof of the theorem in the case $-\left(K_{X}+\Delta\right)$ big is now completed.

Notice that, when $-\left(K_{X}+\Delta\right)$ is big, the proof of Theorem 1.6 shows the following statement. which will be used in the proof of Theorem 1.2.

Theorem 3.5. Let (X, Δ) be a pair such that $\kappa\left(K_{X}+\Delta\right)=0$, and that Δ is big. Let $f: X \rightarrow Z$ be a rational map with connected fibers. Assume that $\operatorname{Nklt}(X, \Delta)$ does not dominate Z. Then Z is uniruled.

3.2. The proof of the consequences of the main result

Proof of Theorem 1.2. Let (X, Δ) be a pair with $-\left(K_{X}+\Delta\right)$ big. From Proposition 3.3 we deduce that there exists an effective divisor $D \sim_{Q}-\left(K_{X}+\Delta\right)$ such that

$$
\operatorname{Nklt}(X, \Delta+D) \subset \operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)
$$

Let $v: X^{\prime} \rightarrow X$ a log-resolution of $(X, \Delta+D)$. We write

$$
\begin{equation*}
K_{X^{\prime}}+\Delta^{\prime}=v^{*}\left(K_{X}+\Delta+D\right)+E \tag{3.20}
\end{equation*}
$$

where Δ^{\prime} and E are effective divisors without common components and E is v exceptional. Notice that from (3.20) and the fact that E is exceptional we deduce that

$$
\begin{equation*}
\kappa\left(X^{\prime}, K_{X^{\prime}}+\Delta^{\prime}\right)=\kappa\left(X, K_{X}+\Delta+D\right)=0 \tag{3.21}
\end{equation*}
$$

Notice also that $v\left(\operatorname{Nklt}\left(X^{\prime}, \Delta^{\prime}\right)\right) \subset \operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$.
Consider now the rational quotient $\rho: X^{\prime} \rightarrow R^{\prime}:=R\left(X^{\prime}\right)$. By the main theorem of [GHS], the variety R^{\prime} is not uniruled. Therefore from Theorem 3.5 we obtain that $\operatorname{Nklt}\left(X^{\prime}, \Delta^{\prime}\right)$ dominates R^{\prime}.

Let $x \in X$ be a general point. Let $y \in X^{\prime}$ be a general point such that $\nu(y)=x$. Since by generic smoothness a general fiber of f is smooth, thus rationally connected, there is a single rational curve R_{y} passing through y and intersecting $\operatorname{Nklt}\left(X^{\prime}, \Delta^{\prime}\right)$. Projecting this curve on X, and using the fact that $v\left(\operatorname{Nklt}\left(X^{\prime}, \Delta^{\prime}\right)\right) \subset$ $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$, we have the same property for X, that is: there exists a rational curve $R_{x}:=v\left(R_{y}\right)$ containing x and intersecting an irreducible component of $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ (it is sufficient to take any irreducible component X^{\prime} of $\operatorname{NNef}\left(-\left(K_{X}+\Delta\right)\right) \cup \operatorname{Nklt}(X, \Delta)$ containing the component of $v\left(\operatorname{Nklt}\left(X^{\prime}, \Delta^{\prime}\right)\right)$ dominating $\left.R^{\prime}\right)$.

Proof of Corollary 1.5. The statement follows immediately from Theorem 2.2 in [Ca1].

Proof of Theorem 1.8. The structure of the proof is identical to that in the singular case. In the smooth case we get a better result because instead of Proposition 3.3 we may invoke the following result.

Proposition 3.6 ([L2], Example 9.3.57 (i)). Let X be a smooth projective variety and L abig \mathbb{Q}-Cartier divisor on X. Then there exists an effective divisor $D \sim_{\mathbb{Q}} L$ such that $\operatorname{Nklt}(X, D) \subset \mathscr{L}(\|L\|)$.

The conclusion now follows.

Proof of Corollary 1.11. Let $X \xrightarrow{f} Y \xrightarrow{g} \mathrm{Alb}(X)$ be the Stein factorization of Alb_{X}. Since an abelian variety does not contain rational curves, from the hypothesis and from Theorem 1.8 it follows that $\kappa(Y)=0$. From [U] it follows that $\mathrm{Alb}_{X}(X)$ is an abelian variety. Therefore by $[\mathrm{Ka}]$ together with the universality of the Albanese map we have that Alb_{X} is surjective and with connected fibers.

Proof of Corollary 1.10. It is sufficient to pass to a smooth model $X^{\prime} \rightarrow X$ and to argue as in the proof of Corollary 1.11.

References

[AM] M. F. Atiyah, and I. G. Macdonald, Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass., 1969. Zbl 0175.03601 MR 0242802
[Bon] L. Bonavero, Variétés rationnellement connexes sur un corps algébriquement clos. Preprint 2010, arXiv:0806.2912v4 [math.AG].
[Bou] S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds. Ann. Sc. École Norm. Sup. (4) 37 (2004), 45-76. Zbl 1054.32010 MR 2050205
[BDPP] S. Boucksom, J.-P. Demailly, M. Păun, and Th. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. Preprint 2004. arXiv:math/0405285 [math.AG].
[Ca1] F. Campana, On twistor spaces of the class C. J. Differential Geom. 33 (1991), 541-549. Zbl 0694.32017 MR 1094468
[Ca2] F. Campana, Connexité rationnelle des variétés de Fano. Ann. Sc. École Norm. Sup. (4) $\mathbf{2 5}$ (1992), 539-545. Zbl 0783.14022 MR 1191735
[Ca3] F. Campana, Orbifolds, special varieties and classification theory. Ann. Inst. Fourier (Grenoble) $\mathbf{5 4}$ (2004), no. 3, 499-630. Zbl 1062.14014 MR 2097416
[D] O. Debarre, Systèmes pluricanoniques sur les variétés de type général [d'après Hacon-McKernan, Takayama, Tsuji]. Séminaire Bourbaki, n. 970, available at http://www-irma.u-strasbg.fr/~debarre/970.pdf
[ELMNP] L.Ein, R.Lazarsfeld, M. Mustaţă, M. Nakayame, and M. Popa, Asymptotic invariants of base loci. Ann. Inst. Fourier. $\mathbf{5 6}$ (2006), 1701-1734. Zbl 1127.14010 MR 2282673
[GHS] T. Graber, J. Harris, and J. Starr, Families of rationally connected varieties. J. Amer. Math. Soc. 16 (2003), 57-67. Zbl 1092.14063 MR 1937199
[H] R.Hartshorne, Algebraic geometry. Grad. Texts in Math. 52, Springer-Verlag, Berlin 1977. Zbl 0367.14001 MR 0463157
[HM] Ch. Hacon and J. McKernan, On Shokurov's rational connectedness conjecture. Duke Math. J. 138 (2007), no. 1, 119-136. Zbl 1128.14028 MR 2309156
[Ka] Y. Kawamata, Characterization of abelian varieties. Compositio Math. 43 (1981), 253-272. Zbl 0471.14022 MR 0622451
[Kol1] J. Kollár, Higher direct images of dualizing sheaves, I. Ann. of Math. 123 (1986), 11-42. Zbl 0598.14015 MR 0825838
[Kol2] J. Kollár, Singularities of pairs. In Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, 221-287. Zbl 0905.14002 MR 1492525
[KMM] J. Kollár, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano manifolds. J. Differential Geom. 36 (1992), 765-769. Zbl 0759.14032 MR 1189503
[L1] R. Lazarsfeld, Positivity in algebraic geometry I. Ergeb. Math. Grenzgeb. 48, Springer-Verlag, Heidelberg 2004. Zbl 1093.14501 MR 2095471
[L2] R. Lazarsfeld, Positivity in algebraic geometry II. Ergeb. Math. Grenzgeb. 49, Springer-Verlag, Heidelberg 2004. Zbl 1093.14500 MR 2095472
[MM] Y. Miyaoka and S. Mori, A numerical criterion for uniruledness. Ann. of Math. 124 (1986), 65-69. Zbl 0606.14030 MR 0847952
[Na] M. Nakamaye, Stable base loci of linear series. Math. Ann. 318 (2000), 837-847. Zbl 1063.14008 MR 1802513
[N] N. Nakayama, Zariski-decomposition and abundance. MSJ Memoirs 14, Math. Soc. Japan, Tokyo 2004. Zbl 1061.14018 MR 2104208
[T] S. Takayama, On the uniruledness of stable base loci. J.Differential Geom. 78 (2008), 521-541. Zbl 1136.14005 MR 2396253
[U] K. Ueno, Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math. 439, Springer-Verlag, Berlin 1975. Zbl 0299.14007 MR 0506253
[Vie1] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. In Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math. 1, North Holland, Amsterdam 1983, 329-353. Zbl 0513.14019 MR 0728619
[Vie2] E. Viehweg, Quasi-projective moduli for polarized manifolds. Ergeb. Math. Grenzgeb. (3) 30, Springer-Verlag, Berlin 1995. Zbl 0844.14004 MR 1368632
[Z1] Qi Zhang, On projective varieties with nef anticanonical divisors. Math. Ann. 332 (2005), no. 3, 697-703. Zbl 1083.14010 MR 2181470
[Z2] Qi Zhang, Rational connectedness of $\log Q$-Fano varieties. J. Reine Angew. Math. 590 (2006), 131-142. Zbl 1093.14059 MR 2208131

Received February 25, 2009
Amaël Broustet, UMR CNRS 8524, UFR de Mathématiques, Université Lille I, 59655 Villeneuve d’Ascq Cedex, France
E-mail: broustet@math.univ-lille1.fr
Gianluca Pacienza, Institut de Recherche Mathématique Avancée Université de Strasbourg et CNRS, 7 rue R. Descartes, 67084 Strasbourg Cedex, France
E-mail: pacienza@math.unistra.fr

